Black Hole

Magnetospheres (Wrap-up)

Alexander

(Sasha) Tchekhovskoy

TAC Fellow UC Berkeley

Northwestern University

How do Jets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\| \Rightarrow \mu = \frac{F_{E}}{F_{M}} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1)$$

$$\frac{cEB_{\varphi}}{4\pi} \gamma F_{M}$$

Alexander (Sasha) Tchekhovskoy

mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

Alexander (Sasha) Tchekhovskoy

mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\begin{vmatrix} e^{EB\varphi} \\ 4\pi \end{vmatrix} \Rightarrow \mu = \frac{F_{E}}{F_{M}}$$

Alexander (Sasha) Tchekhovskoy

mass-loaded How do^vJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

 $F_{B} = B_{p}$ $F_{M} = \gamma \rho v_{p} = \eta B_{p}$ $F_{E} = F_{EM} + F_{KE}$ $H = \frac{F_{E}}{F_{M}}$ $\Rightarrow \mu = \frac{F_{E}}{F_{M}}$ $\frac{cEB_{\varphi}}{4\pi} \quad \gamma F_M$ $|| E = B_{\varphi} = \Omega R B_p / c$ $\Omega^2 R^2 B_p^2$ $4\pi c$

Alexander (Sasha) Tchekhovskoy

mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\frac{cEB_{\varphi}}{4\pi} \gamma F_{M}$$

$$\frac{CEB_{\varphi}}{4\pi} \gamma F_{M}$$

$$\frac{\Omega^{2}}{4\pi^{2} \eta c} \pi B_{p} R^{2} + \gamma$$

$$\frac{\Omega^{2} R^{2} B_{p}^{2}}{4\pi c}$$

Alexander (Sasha) Tchekhovskoy

mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

Alexander (Sasha) Tchekhovskoy

mass-loaded How do^vJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\frac{cEB_{\varphi}}{4\pi} \gamma F_{M}$$

$$\frac{\Omega^{2}}{4\pi^{2}\eta c} \pi B_{p}R^{2} + \gamma = \frac{\mu}{\Phi}\pi B_{p}R^{2} + \gamma$$

$$\frac{\gamma}{\mu} = 1 - \frac{\pi B_p R^2}{\Phi}$$

Alexander (Sasha) Tchekhovskoy

In order to accelerate efficiently, need reduction in local field line density (Komissarov+09, AT+09)

Acceleration in a magnetic nozzle

If $B_P(R) = \text{const}$, no acceleration. Need magnetic flux bunching toward jet axis.

Hydro: de Laval nozzle: flow opens up after sonic surface \rightarrow pressure drops $\rightarrow \nabla p$ accelerates flow:

MHD: reduction in field line density as the rest of field lines bunch up at the jet axis. Bunching $F = -\nabla p$

Alexander (Sasha) Tchekhovskoy

• Communication is essential

Alexander (Sasha) Tchekhovskoy

Communication is essential

Alexander (Sasha) Tchekhovskoy

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

Alexander (Sasha) Tchekhovskoy

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)$$

• Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$

Alexander (Sasha) Tchekhovskoy

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis
 SPSAS-HighAstro '17

Alexander (Sasha) Tchekhovskoy

but, most jets are collimated:

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis
 SPSAS-HighAstro '17

Alexander (Sasha) Tchekhovskoy

lexander (Sasha) Tchekhovskoy

Communication is essential

Alexander (Sasha) Tchekhovskoy

lexander (Sasha) Tchekbovskoy

Communication is essential

Alexander (Sasha) Tchekhovskoy

dexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

lexander (Sasha) Tchekhovskoy

Communication is essential to avoid collisions

Jet boundary B needs to keep announcing its trajectory to the rest of the jet

Alexander (Sasha) Tchekhovskoy

lexander (Sasha) Ichekhovskoy

Alexander (Sasha) Tchekhovskoy

What Do We Observe?

- Expect in collimated jets: $\gamma\theta \lesssim \sigma^{1/2} \lesssim 1$
- Observe:
 - Active Galactic Nuclei: $\gamma \theta \sim 0.1 0.2$
 - Gamma-ray bursts (GRBs): $\gamma \theta \sim 10-100$
- Does it mean that GRB jets are unmagnetized?

Alexander (Sasha) Tchekhovskoy

GRB Jets: Problem Setup

Confined vs. Deconfined

 $3r_*$

Confined vs. Deconfined

Jet Structure Recap

Fully unconfined jet: $\gamma \theta \simeq 20 \sigma^{1/2}$ (AT+ 2010)

Fully confined jet, large distance. <u>Centrifugal force</u> limits jet velocity (AT+ 2008):

$$\gamma \approx \left(\frac{R_c}{R}\right)^{1/2}$$

Fully confined jet, small distance. Linear increase:

 $\gamma pprox \Omega R/c$

(Michel 1969)

The disk-jet

connection

Alexander

(Sasha) Tchekhovskoy

TAC Fellow UC Berkeley

Northwestern University

• What sets the diskjet connection?

- What sets the diskjet connection?
- How do disks and jets emit?

- What sets the diskjet connection?
- How do disks and jets emit?
- What can we learn from
 - spectra

Simulated ALMA, VLA, Chandra, NuSTAR spectra

- What sets the diskjet connection?
- How do disks and jets emit?
- What can we learn from
 - spectra
 images
 on small and

Simulated ALMA, VLA, Chandra, NuSTAR spectra

Jet images (VLA, VLBA,

Hubble)

- What sets the diskjet connection?
- How do disks and jets emit?
- What can we learn from
 - spectra images on small and large scales?

Simulated ALMA, VLA, Chandra, NuSTAR spectra

Jet images (VLA, VLBA,

Hubble)

- What sets the diskjet connection?
- How do disks and jets emit?
- What can we learn from
 - spectra images on small and large scales?

What is a Healthy Jet Diet?

• Disk?

 \sim

- Disk size/thickness/ collimation?
- Net vertical magentic flux/ dynamo?
- Ambient medium?

Simulated EHT image of SgrA*
When are Jets Produced?

Tidal disruptions (TDEs), ultra-luminous X-ray sources, gamma-ray bursts

Quasars, X-ray binaries, TDEs

Low-luminosity active galactic nuclei (LLAGN), X-ray binaries

10⁻⁶ M87

10⁻⁹ SgrA*

 $\lambda = L/L_{\rm edd}$

0.01

SPSAS-HighAstro '17

Two major methods of measuring BH spin

- Both methods rely on measuring the size of the 'hole' in the disk
- 'Hole' size = Radius of Innermost Stable Circular Orbit (ISCO), RISCO
- Continuum fitting: via
 blackbody-like spectrum (McClintock, Narayan, Steiner, ...)
- Iron line: via the shape of the Fe line

(Brenneman, Fabian, Reynolds, Russell, ...) Alexander (Sasha) Tchekhovskoy

Two major methods of measuring BH spin

- Both methods rely on measuring the size of the 'hole' in the disk
- 'Hole' size = Radius of Innermost Stable Circular Orbit (ISCO), RISCO

Continuum fitting method:

keV

SPSAS-HighAstro '17

ls it inner disk's...

- magnetic pressure? $(B^2/8\pi)_{BH} = (B^2/8\pi)_{DISK} NO$
- total pressure? $(B^2/8\pi)_{BH} = P_{DISK}$

$$\begin{array}{c} P_{j} \sim a^{2}B^{2}r_{g}^{2}c \propto \Phi^{2}(a/r_{g})^{2} \xrightarrow[\text{(Blandford \& Znajek '77, AT+10)}]{} \\ \text{S sub-} & 0 \leq P_{j} = k\Phi^{2} \lesssim \dot{M}c^{2} & \text{B dominant} \\ \text{dominant} & & & & \\ \Phi = 0 & \Phi = \Phi_{\text{MAX}} & \text{Magnetically-} \\ \text{How strong are} & n = P \cdot /\dot{M}c^{2} & \text{(MAD)} \end{array}$$

AT+ 2011)

the jets? $p_j - I_j / N_l$

SPSAS-HighAstro '17

Alexander (Sasha) Tchekhovskoy

SPSAS-HighAstro '17

Upper Envelope of Jet Power vs. Spin (h/r~0.3)

(Tchekhovskoy+ 11; Tchekhovskoy, McKinney 12; McKinney, Tchekhovskoy, Blandford 12; Tchekhovskoy 15)

Quantify feedback due to black hole jet, disk wind from first principles

 $p>100\%\,{\rm means}$ net energy is extracted from the BH

Upper Envelope of Jet Power vs. Spin (h/r~0.3)

(Tchekhovskoy+ 11; Tchekhovskoy, McKinney 12; McKinney, Tchekhovskoy, Blandford 12; Tchekhovskoy 15)

Quantify feedback due to black hole jet, disk wind from first principles

Jet = 85% of Blandford-Znajek power Wind = BP = 15% of BZ power + 5% Disk wind is powered by a combination of BH spin and disk rotation Upper Envelope of Jet Power vs. Spin (h/r~0.3)

(Tchekhovskoy+ 11; Tchekhovskoy, McKinney 12; McKinney, Tchekhovskoy, Blandford 12; Tchekhovskoy 15)

Quantify feedback due to black hole jet, disk wind from first principles

Jet = 85% of Blandford-Znajek power Wind = BP = 15% of BZ power + 5% Disk wind is powered by a combination of BH spin and disk rotation

(see also Thorne 1974, Gammie et al. 2005, Shapiro et al. 2005, Benson & Babul 2009)

(see also Thorne 1974, Gammie et al. 2005, Shapiro et al. 2005, Benson & Babul 2009)

Can Toroidal Fields Make Jets? Unlikely: healthy α-ω dynamo:

Oninkely: nearthy jets need poloidal field (e.g., Beckwith, Hawley, Krolik+08, McKinney, AT, Blandford '12)

Possible mechanism for jets without B_p?
 Large-scale α-ω dynamo

(Moffatt '78; Parker '79)

BUT: not seen in global simulations

Can Toroidal Fields Make Jets? Unlikely: healthy

Onlikely: healthy jets need poloidal field (e.g., Beckwith, Hawley, Krolik+08, Krolik+08,

 Possible mechanism for jets without B_p?
 Large-scale α-ω dynamo

McKinney, AT, Blandford '12)

(Moffatt '78; Parker '79)

BUT: not seen in global simulations

Quataert, in prep. Tchekhovskoy &

 $t [r_g/c]$

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

Practical Tutorial

Alexander (Sasha) Tchekhovskoy

Why is Simulating Jets Hard?

- Typical AGN jet has $\gamma \sim 10$
- How do you get something to move that fast?
- You need energy! $\frac{B^2}{8\pi} = \epsilon = \gamma \rho c^2$

• Set
$$\frac{B^2}{8\pi} = 10$$
, then $\rho c^2 = 1$

- 10% error in B^2 means $\Delta \epsilon = 1$, or 100% error in ρc^2 !
- This is a stiff problem
- We need to minimize errors. How?

Non-relativistic:

 $\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_x)}{\partial x} = S$

Alexander (Sasha) Tchekhovskoy

 $\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_x)}{\partial x} = S$

Gen. relativistic (GR):

Non-relativistic:

(g is the determinant of the metric)

Alexander (Sasha) Tchekhovskoy

 $\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_x)}{\partial x} = S$

Gen. relativistic (GR):

Non-relativistic:

(g is the determinant of the metric)

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Alexander (Sasha) Tchekhovskoy

Non-relativistic:
$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_x)}{\partial x} = S$$

Gen. relativistic (GR):

$$\frac{\partial(\sqrt{-g}\rho\gamma)}{\partial t} + \frac{\partial(\sqrt{-g}\rho\gamma v^x)}{\partial x} = S$$

(g is the determinant of the metric)

Conservation $\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$ law:

The rest of equations of motion reduce to this form of conservation law as well.

Alexander (Sasha) Tchekhovskoy

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Alexander (Sasha) Tchekhovskoy

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Alexander (Sasha) Tchekhovskoy

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Alexander (Sasha) Tchekhovskoy

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Alexander (Sasha) Tchekhovskoy

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F^x}{\partial x} = S$$

Conservation law:

Integrate over the volume of a grid cell:

Conservation law:

Integrate over the volume of a grid cell:

Fit a high-order non-oscillatory polynomial (e.g., high order schemes possible in GR, e.g., AT+2007)

Conservation law:

Integrate over the volume of a grid cell:

Fit a high-order non-oscillatory polynomial (e.g., high order schemes possible in GR, e.g., AT+2007)

 $x_{i-1/2}$

 $x_{i+1/2}$

Conservation law:

Integrate over the volume of a grid cell:

Fit a high-order non-oscillatory polynomial (e.g., high order schemes possible in GR, e.g., AT+2007)

Conservation law:

Integrate over the volume of a grid cell:

Fit a high-order non-oscillatory polynomial (e.g., high order schemes possible in GR, e.g., AT+2007)

Compute fluxes

Conservation law:

Integrate over the volume of a grid cell:

Fit a high-order non-oscillatory polynomial (e.g., high order schemes possible in GR, e.g., AT+2007)

Compute fluxes

Compute $\Delta \langle U_i \rangle$

$$\frac{\partial U}{\partial t} + \frac{\partial F^{x}}{\partial x} = S$$
$$\frac{\partial \langle U_{i} \rangle}{\partial t} + \frac{F_{i+1/2}^{x} - F_{i-1/2}^{x}}{\Delta x} = \langle S_{i} \rangle$$
$$\frac{\langle U_{i} \rangle}{F^{x}}$$

 \mathcal{X}_{i}

 $x_{i+1/2}$

 \mathcal{X}

 $F_{i-1/2}^x$

 x_{i-1}

We can concentrate resolution in regions of interest by choosing an appropriate mapping f.

Literally flexible: grid can be curved or non-uniform, to conform to the shape of the boundary or geometry of the problem.

 Concentrates resolution where needed: jet and disk (AT et al. 2011)

- Concentrates resolution where needed: jet and disk (AT et al. 2011)
- Follows collimating jet

- Concentrates resolution where needed: jet and disk (AT et al. 2011)
- Follows collimating jet
- Allows the use of smaller resolutions

Jet

- Concentrates resolution where needed: jet and disk (AT et al. 2011)
- Follows collimating jet
- Allows the use of smaller resolutions
- Question: isn't the time step too small in 3D?

- Concentrates resolution where needed: jet and disk (AT et al. 2011)
- Follows collimating jet
- Allows the use of smaller resolutions
- Question: isn't the time step too small in 3D?

Alexander (Sasha) Tchekhovskoy

• Time step is the *smallest* light crossing time among all cells

Alexander (Sasha) Tchekhovskoy

• Time step is the *smallest* light crossing time among all cells

Alexander (Sasha) Tchekhovskoy

• Time step is the *smallest* light crossing time among all cells

Alexander (Sasha) Tchekhovskoy

- Time step is the *smallest* light crossing time among all cells
- Small cell azimuthal extent can slow down a run by I0x

Alexander (Sasha) Tchekhovskoy

- Time step is the smallest light crossing time among all cells
- Small cell azimuthal extent can slow down a run by I0x
- This issue is of great importance for 3D performance

SPSAS-HighAstro '17

Alexander (Sasha) Tchekhovskoy

 Need to ensure that numerically no signals escape from the inner grid boundary

- Need to ensure that numerically no signals escape from the inner grid boundary
- We use horizon-penetrating (Kerr-Schild) coordinates

- Need to ensure that numerically no signals escape from the inner grid boundary
- We use horizon-penetrating (Kerr-Schild) coordinates
- Grid extends to the *interior* of the event horizon

- Need to ensure that numerically no signals escape from the inner grid boundary
- We use horizon-penetrating (Kerr-Schild) coordinates
- Grid extends to the *interior* of the event horizon
- This ensures causal disconnect of the inner radial boundary from the rest of the grid

Code Parallelization and Scaling

 Both HARM and Athena Fully parallelized via domain decomposition (hybrid MPI+OpenMP)

 Near-ideal scaling up to 50,000 cores (weak scaling, 32³ tile, NICS Kraken, Cray XT5)

Alexander (Sasha) Tchekhovskoy

New Code HARMPI

- General Relativistic MHD code
- Based on serial, 2D code HARM2D (Gammie et al. 2003)
- Parallelized it via MPI
- Extended to 3D
- Kept it simple (graduate student startup time = hours)
- Made it open-source: <u>github.com/atchekho/harmpi</u>
- Added extra physics

Alexander (Sasha) Tchekhovskoy

https://github.com/atchekho/harmpi/blob/master/tutorial.md

HARMPI Tutorial by Sasha Tchek

Please also see useful exercises that give you an idea of scientific

How to set up HARMPI: choose the probler

• To install the code, you do:

git clone git@github.com:atchekho/harmpi.git cd harmpi make clean make

https://github.com/atchekho/harmpi/blob/master/exercises.md

HARMPI exercises by Sasha Tchek

Please also see the tutorial that explains basic code use.

Hydro problems

To run problems with HARMPI and to analyze the results, please for

1D hydro problems

Bondi accretion

Set WHICHPROBLEM to BONDI_PROBLEM_1D in decs.h. Note: a goo

 Plot the profiles of density at a few times in a simulation. Hint: look at where v1p variable changes sign. Ordinarily fast wave (in this problem there is no magnetic field, so far flow barely falls inward, so it will be > 0 but at small rad speed of light, so it will be < 0.

The disk-jet

connection (grand finale)

Alexander

(Sasha) Tchekhovskoy

TAC Fellow UC Berkeley

Northwestern University

Alexander (Sasha) Tchekhovskoy

 $10^5 r_g$

 (\bullet)

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

SPSAS-HighAstro '17

detection might be imminent —

—detection might be imminent —

but:

detected! —

see also Perna+16

Alexander (Sasha) Tchekhovskoy

— detected! but:

see also Perna+16

Alexander (Sasha) Tchekhovskoy

– detection might be imminent and can have EM counterparts:

Alexander (Sasha) Tchekhovskoy

Effect of composition on kilonova light curves

 n_e Electron fraction $Y_e =$ n_{B} νL_{ν} $_{e} > 0.25$ $Y_e < 0.25$ week day high Y_e = short blue luminous transient

Alexander (Sasha) Tchekhovskoy

Merger disk mass outflow:
fully forms in ~5 seconds
only studied in 2D, neglecting GR and magnetic fields (Fernandez+15)
Crucial to include both in 3D

(AT, Fernandez+ 2016, in prep)

$$M_{
m BH}=3~M_{
m sun}$$
 $M_{
m disk}=0.03~M_{
m sun}$ $a=0.8$ $B_p=10^{15}~G$

Implemented into HARMPI:
neutrino emission
nuclear recombination

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

Magnetic effects lead to:
2.5x increase in ejecta mass
brighter kilonova
broader ejecta composition
more heavy element enrichment

0.

0.1

0.2

Magnetic effects lead to:
2.5x increase in ejecta mass
brighter kilonova
broader ejecta composition
more heavy element enrichment

0.

Long-term goal: Compute kilonova light curves from first principles.

0.3

 Y_{c}

0.4

0.5

first principles.

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

a = 0.9spherical accretion no rotation 0

Dai & Tchekhovskoy, in prep

 $t [r_g/c]$

a = 0.9spherical accretion rotation: $R_{\rm circ} = 50r_g$

0

Dai & Tchekhovskoy, in prep

 $t [r_g/c]$

Alexander (Sasha) Tchekhovskoy

SPSAS-HighAstro '17

Alexander (Sasha) Tchekhovskoy

 $10r_q$

SPSAS-HighAstro '17

 ∞r_q

Alexander (Sasha) Tchekhovskoy

SPSAS-HighAstro '17

When are Jets Produced?

(AT+13, 17 AT & Giannios 15) Tidal disruptions (TDEs), ultra-luminous X-ray sources, gamma-ray bursts

(Zamaninasab ++AT 14, Ghisellini+14)

Quasars, X-ray binaries, TDEs

(Nemmen **Low-luminosity active galactic nuclei** & AT 15) (LLAGN), X-ray binaries

0.01 10⁻⁷ M87 0⁻⁹ SgrA*

Alexander (Sasha) Tchekhovskoy

SPSAS-HighAstro '17

 $\lambda = L/L_{\rm edd}$

When are Jets Produced?

MADs:

(AT+13, 17 AT & Giannios 15) Tidal disruptions (TDEs), ultra-luminous X-ray sources, gamma-ray bursts

(Zamaninasab ++AT 14, Ghisellini+14)

Quasars, X-ray binaries, TDEs

(Nemmen **Low-luminosity active galactic nuclei** & AT 15) (LLAGN), X-ray binaries

Disk radiative properties are most uncertain at low luminosities.

Recent Event Horizon Telescope (EHT) observations might have already resolved the shadows of 2 black holes accreting in this regime

Electron Micro-physics is Key to SgrA* Observations

- Plasma is *collisionless*, so electron and proton temperatures decouple
 - but, $T_e (\neq T_p)$ is poorly known!
- Dissipation predominantly heats protons, whereas electrons radiate
- So, T_e is usually "painted" on top of simulations:
 - Usual assumption (eg Dexter+10): $T_e/T_p = \text{const.} < 1$
 - To reproduce flat radio spectrum, need to "paint" polar regions with hot $T_e=10^{11}$ K electrons (Moscibrodzka et al. 2014)
- Is there a way to calculate the free function, $T_e(T_p, \ldots)$?

Alexander (Sasha) Tchekhovskoy

Collisionless Electron Heating in a Nutshell

- Plasma is collisionless:
 - Electrons do not know protons exist
 - But, both feel Alfven waves
- Alfven waves couple to protons if $v_A \leq v_{th}$:
 - if $v_A \gg v_{th}$, electrons get all the heat
- Stronger electron heating in magnetized $\frac{Qe}{Qe} \propto \exp\left(-\frac{v_A^2}{v_{th}^2}\right) = \exp\left(-\frac{1}{\beta}\right)$

$$f_e \equiv \frac{Q_e}{Q_e + Q_p} = f_e(T_e/T_p, \beta)$$

Electron Microphysics is Key to SgrA* Observations

- Our predictive approach:
 - Evolve electrons as a second fluid
 - Electrons receive a fraction $f_e(T_e/T_p,\beta)$ of dissipated heat, Q (Howes 2010)
 - stronger electron heating in highly magnetized regions
 - Include thermal conduction *along* field lines
 - Neglect back-reaction of electrons on the flow
- Simulations with HARMPI, new parallel, 3D general relativistic MHD code that includes electrons as a separate fluid (Ressler, AT et al., 2015, 2016)

Alexander (Sasha) Tchekhovskoy

Sean Ressler (UC Berkeley)

SPSAS-HighAstro '17

Electron Temperature in Simulations

Alexander (Sasha) Tchekhovskoy

(Ressler, AT et al, 2017, MNRAS, arXiv:1611.09365)

5

ľ

1.5

1

0.5

0

 $\log_{10}\Theta_{\rm e}$

10

Jet-Disk Symbiosis in SgrA*

Our new simulations are:

- *predictive*: \dot{M} is the only free parameter
- naturally reproduce the spectrum at $\gtrsim 30$ GHz

Sean Ressler (UC Berkeley)

Alexander (Sasha) Tchekhovskoy

Jet-Disk Symbiosis in SgrA*

Sean Ressler (UC Berkeley)

Alexander (Sasha) Tchekhovskoy

Jet-Disk Symbiosis in SgrA*

Low- ν emission is from the jets

- *predictive:* \dot{M} is the only free parameter
- naturally reproduce the spectrum at \gtrsim 30GHz

 $2~\mu\mathrm{m}$

Sean Ressler (UC Berkeley)

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy (Ressler, AT et al, 2017, MNRAS, arXiv:1611.09365)

Explaining Jet High-Energy Emission

Binary Merger GRB

Explaining Jet High-Energy Emission

Binary Merger GRB Core collapse GRB

Universal mechanism to convert 10-50% of jet energy into heat? (Panaitescu and Kumar 03, Nemmen+2013)

Alexander (Sasha) Tchekhovskoy

SPSAS-HighAstro '17

Universal mechanism to convert 10-50% of jet energy into heat? (Panaitescu and Kumar 03, Nemmen+2013)

Magnetic reconnection is promising (Sironi+2015) but how to get it to work generically in a smooth jet?

Magnetic Instabilities and Jet Emission

Magnetic Instabilities and Jet Emission

(Meyer+13)

В

Magnetic Instabilities and Jet Emission

(Meyer+13)

Bromberg and MNRAS, 456,

Bromberg and MNRAS, 456, 1

rg and Tchekhovskoy, 2016, 5, 456, 1739; figures/movies courtesy Bromberg

Bromberg and MNRAS, 456, 1

How does Jet Heating Work?

Recollimation \rightarrow internal kink \rightarrow \rightarrow turbulence \rightarrow reconnection \rightarrow VHE emission SPSAS-HighAstro '17

Alexander (Sasha) Tchekhovskoy

What does Jet Morphology Tell Us? FRI/FRII dichotomy (Fanaroff & Riley, 1974)

What does Jet Morphology Tell Us? FRI/FRII dichotomy (Fanaroff & Riley, 1974)

70 kpc

Why powerful jets make it out of their galaxies...

~10 billion solar mass black hole

Image courtesy of NRAO/AUI; R. Perley, C. Carilli & J. Dreher

(radio, 7 mm)

Walker et al. 2008

1 light year 1000 black hole radii M87 galaxy (radio, 20 cm) FRI

 $P_{j} = 10^{44} \text{ erg/s}$

~10 billion solar mass black hole

NRAO/AUI and F. Ower

3000 light years

What does Jet Morphology Tell Us? FRI/FRII dichotomy (Fanaroff & Riley, 1974)

What does Jet Morphology Tell Us? FRI/FRII dichotomy (Fanaroff & Riley, 1974)

Instability of Magnetized Jets

 Kink instability growth timescale controlled by the magnetic pitch (high-mag., mildly relativistic):

$$t_{\rm kink} \simeq \frac{2\pi R_{\rm j}}{c} \frac{B_p}{B_\phi}$$

(Appl et al. 2001)

• Jets are unstable if $5t_{kink} \leq t_{travel}$, or

$$\Lambda \simeq 10 \left(\frac{L_{\rm j}}{\rho r^2 c^3} \right)^{1/6} \lesssim 1 \qquad \begin{array}{l} \text{(Bromberg \&} \\ \text{AT 2016)} \end{array}$$

• Cartoon galaxy density profile:

Graphical Processing Units (GPUs), the cutting edge of modern supercomputing

Matthew Liska (U of Amsterdam)

SPSAS-HighAstro '17

- Graphical Processing Units (GPUs), the cutting edge of modern supercomputing
- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2017):
 - Based on Godunov-type code HARM2D (Gammie et al. '03)
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP, OpenCL)
 - 100-450x speedup compared to a CPU core

Matthew Liska (U of Amsterdam)

SPSAS-HighAstro '17

- Graphical Processing Units (GPUs), the cutting edge of modern supercomputing
- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2017):
 - Based on Godunov-type code HARM2D (Gammie et al. '03)
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP, OpenCL)
 - 100-450x speedup compared to a CPU core
- Features on par with state-of-the-art CPU codes
 (e.g., Athena++): Adaptive Mesh Refinement (AMR)
 with local adaptive time-stepping
 - features developed in the past year on BW
 - ideal for studying typical, tilted systems
 - give an additional speedup of ≥10x (or even 100x) for hardest problems!

Matthew Liska (U of Amsterdam)

- Graphical Processing Units (GPUs), the cutting edge of modern supercomputing
- Multi-GPU 3D H-AMR ("hammer", Liska, AT, et al. 2017):
 - Based on Godunov-type code HARM2D (Gammie et al. '03)
 - 85% parallel scaling to 4096 GPUs (MPI, OpenMP, OpenCL)
 - 100-450x speedup compared to a CPU core
- Features on par with state-of-the-art CPU codes
 (e.g., Athena++): Adaptive Mesh Refinement (AMR)
 with local adaptive time-stepping
 - features developed in the past year on BW
 - ideal for studying typical, tilted systems
 - give an additional speedup of ≥10x (or even 100x) for hardest problems!
- Ideal for getting computational time
 - 9M GPU-hours ≥ 9B CPU core-hour allocation on Blue Waters supercomputer
 - Science is no longer limited by computational resources!

Matthew Liska (U of Amsterdam)

Rest mass density $\log(\rho)$

Tilted Disk Physics

- Thick disks precess due to general relativistic frame dragging by BH spin
 - precessing tilted disk sims could not handle jets (Fragile et al. 2005, 2007)
 - Do tilted disks produce jets at all? Do jets precess or point along BH spin? (McKinney, AT+2013)
- Thin disks can align due to Bardeen-Petterson (1975) effect
 - Seen only in pseudo-Newtonian simulations and at small inclinations (Hawley and Krolik 2015)
 - At larger inclinations disks predicted to break (Nixon et al. 2012)
 - Do thin disks align in GR? Or do they break?
- Challenge: enormous dynamical range. Need to resolve thin streams *over* long run times.

Alexander (Sasha) Tchekhovskoy

Thick Disks Precess

200

 \mathbf{O}

0

- BW enabled the first demonstration that
 - tilted thick disks produce tilted jets tilted jets precess
- Longest GRMHD tilted disk simulation, $120,000 \ r_g/c$
- Highest resolution GRMHD simulations: $896 \times 288 \times 480$
 - convergence verified at $1792 \times 576 \times 960$: first ever billion cell run

Thick Disks Precess

- BW enabled the first demonstration that
 - tilted thick disks produce tilted jets tilted jets precess
- Longest GRMHD tilted disk simulation, $120,000 \ r_g/c$
- Highest resolution GRMHD simulations: $896 \times 288 \times 480$
 - convergence verified at $1792 \times 576 \times 960$: first ever billion cell run

Thin Strongly Misaligned Disks Do NOT Align 2 80 2

40

-3

Liska, Hesp, AT+2017b -8 -80 -8 -80 8 -40 40 80 \mathbf{O} -8 0

- BW enabled the thinnest disk simulations to date (h/r = 0.03)
 - first tilted disk simulation in non-linear tilt regime $(i \gg h/r)$
 - effective resolution $1792 \times 860 \times 1200$, 3 AMR levels
 - preliminary: even thinner disk, h/r = 0.015, does not appear to align either

Thin Strongly Misaligned Disks Do NOT Align

- BW enabled the thinnest disk simulations to date (h/r = 0.03)
 - first tilted disk simulation in non-linear tilt regime $(i \gg h/r)$
 - effective resolution $1792 \times 860 \times 1200$, 3 AMR levels
 - preliminary: even thinner disk, h/r = 0.015, does not appear to align either

Thin Weakly Misaligned Disks Align ^{2 80} ²

40

-3

Liska, Hesp, AT+2017b _8 -8 -80 8 40 -80 -40 -8 \mathbf{O} 80 0

- BW enabled first demonstration of (Bardeen-Petterson?) alignment in a general relativistic MHD simulation of a thin disk
- Effective resolution $1792 \times 860 \times 1200$, 3 AMR levels

-80

-40

0

40

80

 BW enabled first demonstration of (Bardeen-Petterson?) alignment in a general relativistic MHD simulation of a thin disk

8

4

 \mathbf{O}

-8

-4

• Effective resolution $1792 \times 860 \times 1200$, 3 AMR levels

Making the Disk from Scratch

- Initial conditions computed by the phantom code by Eric Coughlin
- First GR simulation of star on parabolic orbit tidally disrupted by supermassive BH, $M_{\rm BH}=10^6\,M_*$ (>> 500 M_* , Shiokawa+15)
- effective resolution $1792 \times 860 \times 1200$, 3 AMR levels

Making the Disk from Scratch

- Initial conditions computed by the phantom code by Eric Coughlin
- First GR simulation of star on parabolic orbit tidally disrupted by supermassive BH, $M_{\rm BH}=10^6\,M_*$ (> $500M_*$, Shiokawa+15)
- effective resolution $1792 \times 860 \times 1200$, 3 AMR levels

Summary

- Dynamically important magnetic fields wide spread
- Jet morphology is set by 3D external kink and controlled by jet power and ambient density:
 - low-power jets are unstable and get stalled inside galaxies
 - FRI/FRII dichotomy likely mediated by magnetic instabilities
 Jets are resilient: how to shut them off?
- GPUs + H-AMR = qualitative breakthrough in black hole simulations
 - Multi-scale physics at the new level of complexity
 - Tilted accretion studies are now routine
- I soon move to Northwestern University: please apply to join my group

Alexander (Sasha) Tchekhovskoy