Gamma-Ray data analysis with Cherenkov Telescopes (Lecture IV)

São Paulo School Advanced Science on High Energy and Plasma Astrophysics in the CTA Era

2017, May 24 2017, May 25

Overview

Analysis of data from imaging Cherenkov telescopes

- introduction
- > air showers and their detection
- > image analysis
- > direction, energy, gamma selection
- > spatial and spectral analysis

> Source detection probability?

test statistics (TS), significance, …

Right Ascension α

Gernot Maier ACT Data Analysis | May 2017

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, …

Right Ascension α

Gernot Maier ACT Data Analysis | May 2017

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, …

> What is its source position?

source confusion, 'dark' emitter, ...

Right Ascension α

Gernot Maier ACT Data Analysis | May 2017

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, …

> What is its source position?

source confusion, 'dark' emitter, ...

> How bright is the source? (detection)

flux, light curves, etc.

Right Ascension α

Gernot Maier ACT Data Analysis | May 2017

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, …

> What is its source position?

source confusion, 'dark' emitter, ...

> How bright is the source? (detection)

flux, light curves, etc.

Is the emission variable?

constant emission, flares, periodic, …

Right Ascension α

Gernot Maier ACT Data Analysis | May 2017

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, …

> What is its source position?

source confusion, 'dark' emitter, ...

How bright is the source? (detection)

flux, light curves, etc.

Is the emission variable?

constant emission, flares, periodic, …

> What is the upper limit on the flux? (non detection)

with 99% probability the source is not brighter than...

12^h20^m

Gernot Maier ACT Data Analysis | May 2017

Parameter estimation and hypothesis testing

Right Ascension α

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, …

> What is its source position?

source confusion, 'dark' emitter, ...

How bright is the source? (detection)

flux, light curves, etc.

Is the emission variable?

constant emission, flares, periodic, …

> What is the upper limit on the flux? (non detection)

with 99% probability the source is not brighter than...

> How does the energy spectrum look?

power laws + variations, ...

Ine emission

Gernot Maier ACT Data Analysis | May 2017

> Source detection probability?

test statistics (TS), significance, …

> What shape does the source have?

point-like source, extended, ...

> What is its source position?

source confusion, 'dark' emitter, ...

How bright is the source? (detection)

flux, light curves, etc.

Is the emission variable?

constant emission, flares, periodic, …

> What is the upper limit on the flux? (non detection)

with 99% probability the source is not brighter than...

> How does the energy spectrum look?

- power laws + variations, ...
- Ine emission

> What are the statistical and systematic errors on all of that?

Gernot Maier ACT Data Analysis | May 2017

key observables for each gamma ray: energy, direction, arrival time

> detector response:

- detection probability (effective areas)
- angular point-spread function
- energy dispersion matrix
- instrument dead time

>background (lots of it)

>gamma-ray selection (or background suppression)

>systematic uncertainties

- understanding of detector
- fluctuations in the atmosphere
- choices by you

•

key observables for each gamma ray: energy, direction, arrival time

> detector response:

- detection probability (effective areas)
- angular point-spread function
- energy dispersion matrix
- instrument dead time

>background (lots of it)

> gamma-ray selection (or background suppression)

>systematic uncertainties

- understanding of detector
- fluctuations in the atmosphere
- choices by you

key observables for each gamma ray: energy, direction, arrival time

> detector response:

- detection probability (effective areas)
- angular point-spread function
- energy dispersion matrix
- instrument dead time

background (lots of it)

> gamma-ray selection (or background suppression)

>systematic uncertainties

- understanding of detector
- fluctuations in the atmosphere
- choices by you

Fermi LAT 3-years sky map > 10 GeV (Ackermann et al (2013)

> key observables for each gamma ray: energy, direction, arrival time

> detector response:

- detection probability (effective areas)
- direction resolution
- energy dispersion matrix
- instrument dead time

background (lots of it)

>gamma-ray selection (or background suppression)

> systematic uncertainties

- understanding of detector
- In fluctuations in the atmosphere
- choices by you

event reconstruction

instrument response **functions** (from Monte Carlo simulations)

measurements or Monte Carlo simulations

Monte Carlo simulations

measurements or Monte Carlo simulations

Measuring air showers

Air shower measurement & Cherenkov emission

Earth

Air showers

Extensive Air Showers and Cherenkov Emission

emitted when velocity *v* of charged particle exceeds local speed of light:

$$nv/c = n\beta > 1$$

light is emitted along a cone with half opening angle θ

 $\cos\Theta = 1/(\beta n)$

number of Cherenkov photons per path length x:

$$rac{d^2N}{dxd\lambda} = rac{2\pilpha z^2}{\lambda^2} \,\left(1 - rac{1}{eta^2 n^2(\lambda)}
ight)$$

Gernot Maier ACT Data Analysis | May 2017

20

10

40

30

50

altitude [km]

60

11

Determines shape:

$$\cos\Theta = 1/(\beta n)$$

Determines amount of light:

$$rac{d^2N}{dxd\lambda} = rac{2\pilpha z^2}{\lambda^2} \, \left(1 - rac{1}{eta^2 n^2(\lambda)}
ight)$$

Nanoseconds long flash of mostly blue light; few photons / m²

Lateral distribution comparison

distance to shower [m]

Proton vs Gamma-ray showers

Wavelength [nm]

Propagation of Cherenkov Photons in the Atmosphere

Wavelength [nm]

Cherenkov radiation: wavelength distribution

Measuring Air Showers

first TeV gamma-ray observatory in the US

FIGURE 1. The first TeV gamma-ray observatory in the United States consisted of two 1.5m telescopes (made from World War II searchlight reflectors) above (left center); the telescopes were manually operated and were located at a dark site in southern Arizona during the winter of 1967-8 [10]. The telescopes were directed (by eye) at a point ahead of the position of the putative source so that the earth's rotation swept the source through the field of view. Power came from an electric generator on the back of the truck (center right) and the pulse counting electronics were housed in a small trailer (center). The system was mercifully free of computers and the analysis was done offline with a mechanical calculator. No sources were detected.

The Whipple Telescope

completed in 1968 upgrade with imaging camera proposed 1977 first detection (Crab Nebula) 1986

CTA Telescopes

Mid-size telescope 12 m diameter 90 GeV to 10 TeV large field of view precision instrument

Large-size telescope 23 m diameter >20 GeV rapid slewing (<50s)

Small-size telescope 4-5 m diameter >5 TeV large field of view large collection area

Prototypes

Prototype of a CTA mid-size telescope Berlin Adlershof

> Dual-mirror mid-size telescope (Arizona)

T Data Analysis | May 2017

Small-size telescope (Sicily)

Small-size telescope

(Meudon)

Cherenkov Telescope Array

CTA Southern Site Paranal, Chile 4 large size telescopes 25 mid-size telescopes 70 small size telescopes

CTA Northern Site La Palma Island 4 large-size telescopes 15 mid-size telescopes

Measuring gamma-rays

GEO: c_x=0.08 c_y=1.44 dist=1.44 length=0.798 width=0.244 size=845837/845837 loss=0.00 lossDead=0.66 tgrad=0.00

Image Cleaning

uncleaned image

GEO: c_x=-0.01,c_y=0.03,dist=0.03,length=1.975,width=1.955,size=380217/380217,loss=0.09,lossDead=0.09,tgrad=0.30

GEO: c_x=-0.98,c_y=0.37,dist=1.05,length=0.192,width=0.058,size=5625/5625,loss=0.00,lossDead=0.00,tgrad=1.10

Image cleaning

GEO: c_x=0.02,c_y=-0.01,dist=0.02,length=1.935,width=1.909,size=340294/340294,loss=0.09,lossDead=0.09,tgrad=0.63

Image cleaning

- Classical image cleaning algorithms: two-level signal cleaning
 - signal pixels: charge > N_{signal}
 - border pixel (neighbour of signal pixel): charge > N_{border}
 - (plus requiring a minimum amount of signal pixels per image)
- Many variations of this classical algorithm:
 - island removal
 - time image cleaning
 - optimised next-neighour cleaning

Image cleaning

- Classical image cleaning algorithms: two-level signal cleaning
 - signal pixels: charge > N_{signal}
 - border pixel (neighbour of signal pixel): charge > N_{border}
 - (plus requiring a minimum amount of signal pixels per image)
- Many variations of this classical algorithm:
 - island removal
 - time image cleaning
 - optimised next-neighour cleaning

GEO: c_x=0.57,c_y=-0.92,dist=1.08,length=0.275,width=0.093,size=23130/23130,loss=0.00,lossDead=0.00,tgrad=1.47

Timing and image cleaning

Optimised next-neighbour cleaning

Expert's slide

requires simulations of night-sky background or measured pedestal events

Telescope 1

Telescope 2

400

500

Threshold, [FADC cnts]

600

t [ns] 01∆

10

1

10⁻¹

10⁻²

10⁻³

 10^{-4}

0

Maxim Shayduk, arXiv 1307.4939

n

Rate above Threshold, [Hz]

10⁷

 10^{6}

10⁵

10⁴

200

300

100

Threshold, [FADC counts]

Image parameters (Hillas parameter)

+many variations and additions

e.g. D.Fegan, J. Phys. G: Nucl. Part. Phys. 23 1013 (1997)

Direction reconstruction

ACT Data Analysis | May 2017

Direction and core reconstruction

Which one is a typical CTA shower?

Weighting extremely important for direction reconstruction,

 $Weight = \left(\frac{1}{S_1} + \frac{1}{S_2}\right)^{-1} \times \left(\frac{w_1}{l_1} + \frac{w_2}{l_2}\right)^{-1} \times sin(\theta_{12})$ Gernot Maier ACT Data Analysis | May 2017

angle between two 37 image axis

Direction and core reconstruction

Large arrays of Cherenkov Telescopes

Direction and core reconstruction

A typical CTA shower!

Weighting extremely important for direction reconstruction,

 $Weight = \left(\frac{1}{S_1} + \frac{1}{S_2}\right)^{-1} \times \left(\frac{w_1}{l_1} + \frac{w_2}{l_2}\right)^{-1} \times sin(\theta_{12})$ Gernot Maier ACT Data Analysis | May 2017

angle between two 39 image axis

reconstructed direction

Angular resolution - angular point-spread function

Reconstruction & Analysis - ground-based analysis

key observables for each gamma ray: energy, direction, arrival time

event reconstruction

> detector response:

- detection probability (effective areas)
- direction resolution
- energy dispersion matrix
- instrument dead time
- background (lots of it)
- > gamma-ray selection (or background suppression)

>systematic uncertainties

- understanding of detector
- fluctuations in the atmosphere
- choices by you

• • • • •

<-----

•

instrument response functions (from Monte Carlo simulations)

measurements or Monte Carlo simulations

Monte Carlo simulations

measurements or Monte Carlo simulations

Background suppression

Gernot Maier ACT Data Analysis | May 2017

Background suppression

> Example from VERITAS:

data taking rate: 400 Hz

gamma-ray rate from the Crab Nebula after cuts
<20 gammas / min (0.3 Hz)

> background cosmic rays:

charged nuclei (mostly protons)cosmic-ray electrons

Observations - VERITAS

V-rav σ <u>()</u> about every 1000th event

Gernot Maier ACT Data Analysis | May 2017

(each frame 2 ns long)

43

Observations - VERITAS

V-rav σ <u>()</u> about every 1000th event

Gernot Maier ACT Data Analysis | May 2017

(each frame 2 ns long)

43

Gamma-hadron separation: mean scaled variables

mean reduced scaled width

$$mscw = \frac{1}{N_{\text{images}}} \left[\sum_{i}^{N_{\text{images}}} \frac{\text{width}_{i} - w_{\text{MC}}(R, s, \Theta)}{\sigma_{\text{width}, \text{MC}}(R, s, \Theta)} \right]$$

Gamma-hadron separation

Gamma-hadron separation

Gamma/hadron separation methods

A.Hoecker et al (2007): TMVA 4 Users Guide

- box cuts
- multivariate analysis
 - neutral networks
 - k-Nearest neighbors
 - random forests
 - boosted decision trees
 - support vector machines
 - • • •
- correlations between variables important

Application of MVA methods in VHE Astronomy: F.Dubois et al, Astroparticle Physics 32, 73 (2009) S.Ohm et al, Astroparticle Physics 31, 383 (2009) Y.Becherini et al, Astroparticle Physics 34, 858 (2011)

Gamma/hadron separation methods

A.Hoecker et al (2007): TMVA 4 Users Guide

box cuts

- multivariate analysis
 - neutral networks
 - k-Nearest neighbors
 - random forests
 - boosted decision trees
 - support vector machines

• • • • •

 correlations between variables important

Application of MVA methods in VHE Astronomy: F.Dubois et al, Astroparticle Physics 32, 73 (2009) S.Ohm et al, Astroparticle Physics 31, 383 (2009) Y.Becherini et al, Astroparticle Physics 34, 858 (2011)

Background event seen with CTA

Background after gamma/hadron cuts for CTA

Energy estimation

Energy reconstruction: E = E(image size, core distance)

Energy estimation - simple lookup tables

one energy per telescopes -> event energy

Alternatively:

> multivariate

methods:

take more

account

dependencies into

between variables

take correlations

random forests

decision trees

into account

> typically use

or boosted

also called energy dispersion matrix

also called energy dispersion matrix

also called energy dispersion matrix $\log_{10} (E_T/TeV)$ 2.5 1.5 0.5 0 -0.5 reconstructed energy -1.5 1.5 2 2.5 log₁₀ (E_{rec}/TeV) -1.5 _1 -0.5 0.5 -2 0 1

Spectral energy reconstruction

Gernot Maier ACT Data Analysis | May 2017 G.Mohanty et al, Astroparticle Physics 9, 15 (1998) J.Albert et al, NIM A 583, 494 (2007) Many textbooks, e.g. Cowan: Statistical Data Analysis, Oxford (1998)

Effective areas

Systematic Uncertainties

> often ignored / forgotten / neglected

Monte Carlo Simulations

- parameterisation of atmosphere and atmospheric transmission
- mirror reflectivity changes
- photon detection efficiency
- bad / dead channels

Calibration

- flatfielding
- pointing errors
- non-linearities in the signal chain

> Reconstruction

- signal extraction
- cuts and methods used

Systematic Uncertainties

often ignored / forgotten / neglected

Monte Carlo Simulations

- parameterisation of atmosphere and atmospheric transmission
- mirror reflectivity changes
- photon detection efficiency
- bad / dead channels

Calibration

- flatfielding
- pointing errors
- non-linearities in the signal chain

Reconstruction

- signal extraction
- cuts and methods used

CTA Requirements:

The systematic uncertainty of the energy of a photon candidate (at energies above 50 GeV) must be < 15%.

The uncertainty on the collection area of the system well above threshold (a factor of two above the lowest energy at which sensitivity is required) must be < 12%.

Le Bohec et al 1998 de Naurois & Rolland 2009 Parson & Hinton 2014

Gernot Maier ACT Data Analysis | May 2017 no image cleaning, no image parameterisation, no lookup tables, no line intersection, etc...

Le Bohec et al 1998 de Naurois & Rolland 2009 Parson & Hinton 2014

Data

GEO: c_x=-0.54,c_y=-0.11,dist=0.55,length=0.528,width=0.405,size=283275/283275,loss=0.04,lossDead=0.04,tgrad=0.21

(a) Integrated charge per pixel.

Model from library of simulated showers or analytical calculation

(b) Best-fit image template.

Gernot Maier ACT Data Analysis | May 2017 no image cleaning, no image parameterisation, no lookup tables, no line intersection, etc...

Le Bohec et al 1998 de Naurois & Rolland 2009 Parson & Hinton 2014

Gernot Maier ACT Data Analysis | May 2017 no image cleaning, no image parameterisation, no lookup tables, no line intersection, etc...

56

Excursus: Maximum Likelihood Technique

- > import method for parameter estimation
- provides unbiased and minimal variance estimation of parameters and parameter errors
- > works with binned and unbinned data
- > allows the combination of different measurements
- standard tool for estimation of spatial and spectral parameters of a gamma-ray source from measurements of e.g. in EGRET, Fermi LAT, CTA

Method of Maximum Likelihood

> *N independent* measurements

$$x = \{x_i\} = \{x_1, x_2, \dots, x_N\}$$

> model with M parameters:

$$a = \{a_k\} = \{a_1, a_2, \dots, a_M\}$$

probability function of x is known:

$$f = f(x|a)$$

$$\int_{\Omega} f(\boldsymbol{x}|\boldsymbol{a}) \, \mathrm{d}\boldsymbol{x} = 1$$

for all a

> Likelihood function

$$L(a) = f(x_1|a) \cdot f(x_2|a) \cdots f(x_n|a) = \prod_{i=1}^n f(x_i|a)$$

Best estimator for a:

L(a) = Maximum

Gernot Maier ACT Data Analysis | May 2017 = **()** for all k 58

in general: minimise negative log likelihood

$$F(a) = -l(a) = -\sum_{i=1}^{n} \ln f(x_i|a)$$

different methods to estimate variance of ML estimator

analytical method, Monte Carlo method, graphical method, RCF bound (Fisher information matrix)

very often: solve numerically with e.g. MINUIT (MIGRAD and HESSE)

Le Bohec et al 1998 de Naurois & Rolland 2009 Parson & Hinton 2014

Data

GEO: c_x=-0.54,c_y=-0.11,dist=0.55,length=0.528,width=0.405,size=283275/283275,loss=0.04,lossDead=0.04,tgrad=0.21

(a) Integrated charge per pixel.

Model from library of simulated showers or analytical calculation

 $GEO: c_x = -0.54, c_y = -0.11, dist = 0.55, length = 0.528, width = 0.405, size = 283275/283275, loss = 0.04, loss Dead = 0.04, tgrad = 0.21, tgrad = 0.21$

(b) Best-fit image template.

Le Bohec et al 1998 de Naurois & Rolland 2009 Parson & Hinton 2014

(a) Integrated charge per pixel.

(b) Best-fit image template.

Le Bohec et al 1998 de Naurois & Rolland 2009 Parson & Hinton 2014

Analysis - Input

key observables for each gamma ray. energy, direction, arrival time

event reconstruction (4 dimensions)

detector response:

- detection probability (effective areas)
- direction resolution
- energy dispersion matrix
- instrument dead time
- >background (lots of it)
- > gamma-ray selection (or background suppression)

systematic uncertainties

- understanding of detector
- fluctuations in the atmosphere
- choices by you

Gernot Maier ACT Data Analysis | May 2017

irreducible background

Background estimation

Background estimation

Right Ascension α

Spatial and spectral analysis - ML

maximum likelihood analysis in 4 dimensions: spatial coordinates, energy, time

Maximum Likelihood analysis

Maximum Likelihood analysis

- > formulate likelihood function with background, source function, point-spread function
- can give at the same time information on source position, extension, spectral information (E_T/TeV

$$L=\prod_{ij}p_{ij}$$

log 10

p_{ij} is probability of observing n_{ij} counts in a bin when the number of predicted counts is Θ_{ij} :

$$p_{ij} = \frac{\theta_{ij}^{n_{ij}} e^{-\theta_{ij}}}{n_{ij}!}$$

maximize log likelihood

$$\ln L = \sum_{ij} n_{ij} \ln (\theta_{ij}) - \sum_{ij} \theta_{ij}$$

Gernot Maier ACT Data Analysis | May 2017 J.R.Mattox et al, ApJ 461, 396 (1996)

Maximum Likelihood analysis

M.Meyer

CTA science analysis tools

Two different prototypes for science analysis tools for CTA

Gammapy A prototype for the CTA science tools

Similarity to FTOOLS

uses astropy, sherpa, ...

Is a source significantly detected?

> hypothesis testing

- likelihood ratio test: compare likelihood of two hypotheses to see which one is supported by the data
- two unknown parameters:
 - expected number of source photons expected number of background events
- > null hypothesis:

- $< N_S >= 0$
- $\rightarrow L_0$

 $< N_S >$

 $\langle N_B \rangle$

 $\rightarrow L_1$ > alternative hypothesis: $< N_S > \neq 0$

$2(\ln L_1 - \ln L_0) \sim \chi^2$ likelihood ratio test:

Source detected: Li & Ma method

Likelihood ratio method after Li & Ma (1983):

$$S = \sqrt{-2 \ln \lambda} = \sqrt{2} \left\{ N_{\text{on}} \ln \left[\frac{1+\alpha}{\alpha} \left(\frac{N_{\text{on}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] + N_{\text{off}} \ln \left[(1+\alpha) \left(\frac{N_{\text{off}}}{N_{\text{on}} + N_{\text{off}}} \right) \right] \right\}^{1/2}$$

Source detected: Li & Ma method

Trials factors - look-elsewhere effect

often not clear at the beginning of the analysis where to look for an effect

- Iocation of gamma-ray sources in the sky
- energy (mass) of particle responsible for line emission
- search through data for a significant signal but with statistical penalty

Krause (2017)

Trials factors - look-elsewhere effect - example

- > 4σ event P-value of 6.3 x 10⁻⁵
- > post-trial P-value: $P_{post} = 1 (1 P_{pre})^N$
- > 1000 bins in sky map -> 1000 trials

 $P_{post} = 1 - (1 - 6.3 \times 10^{-5})^{1000} = 0.06 \simeq 1.9\sigma$

Krause (2017)

Trials factors - avoid them, if possible!

> fix always all possible parameter for your analysis before looking into the data

each change of the parameters is trail

optimise parameters and cuts with a different data set or Monte Carlo simulations

> never adjust the analysis parameters to enhance some small signal

this is considered to be scientific misconduct

> clearly state assumptions and trials calculation in publications

- > things to fix before the analysis
 - cuts
 - search regions
 - binning in energy or time

Can you make it 5 sigma?

Trials factors - avoid them, if possible!

> fix always all possible parameter for your analysis before looking into the data

each change of the parameters is trail

optimise parameters and cuts with a different data set or Monte Carlo simulations

> never adjust the analysis parameters to enhance some small signal

this is considered to be scientific misconduct

> clearly state assumptions and trials calculation in publications

- > things to fix before the analysis
 - cuts
 - search regions
 - binning in energy or time

CTA Differential Flux Sensitivity

CTA Sensitivity Calculations

Gernot Maier ACT Data Analysis | May 2017 p-p Interactions: Multiplicity

<dieter.heck@ik.fzk.de>

VIHKOS CORSIKA School 31.5. - 5.6.2005

Background simulations - hadronic interaction models
Background simulations - hadronic interaction models

G.Maier & J.Knapp, Astroparticle Gernot Maier ACT Data Analysis | May 2017 Physics 28, 72 (2007)

CTA Differential Flux Sensitivity

CTA Short-term flux sensitivity

Boosted decision trees

Wavelength [nm]

mirror reflectivity

ACT Data Analysis | May 2017

wavelength [nm]

Geomagnetic Field

