The different ways to look for Dark Matter

Fabío Iocco

ICTP-SAIFR IFT-UNESP São Paulo

International Centre for Theoretical Physics South American Institute for Fundamental Research SPSAS-HighAstro IAG at USP 29/5/17 São Paulo

Common ground to start with

[e.g. Planck coll.]

CMB, a dark matter probe

CMB, a dark matter probe

 $\omega_{\rm m}$ and $\omega_{\rm bar}$ from CMB only

The "Bullet Cluster" 1E 0657-558

collision in the plane of the sky

[Markevitch et al. '06]

The "Bullet Cluster" 1E 0657-558

The Bullet is only the first, most famous, of a plethora of similar systems.

[Harvey et al. '16]

Quantitative constraints on DM-baryon separation

[Harvey et al. `16]

Rotation Curves in local galaxies: an evergreen classic: (with interesting twists)

discrepancy between observed and predicted (from visible matter only)

The Milky Way:

one more spiral Galaxy (and its Rotation Curve)

[Iocco, Pato, Bertone, Nature Physics 2015]

Ly- α forest: probing structures during Universe evolution

Ly-a forest to constrain the perturbation power spectrum

What can we learn from astrophysics (about DM?)

DM is there, at different scales ($\approx 100 \text{ Mpc}$, $\approx 1 \text{ Mpc}$, $\approx 10 \text{ kpc}$)

Upper limits on DM coupling to the baryons

Upper limits on the DM coupling to itself

Upper limits on the "warmth" of DM

The Universe in a box

[IIlustris, Vogelsberger 2014]

While staying agnostic on its very nature, a checklist for its properties (see later)

- 1. Does it match the appropriate relic density?
- 2. Is it cold?
- 3. Is it neutral?
- 4. Is it consistent with BBN?
- 5. Does it leave stellar evolution unchanged?
- 6. Is it compatible with constraints on selfinteractions?
- 7. Is it consistent with direct DM searches?
- 8. Is it compatible with gamma-ray constraints?
- 9. Is it compatible with other astrophysical bounds?
- 10. Can it be probed experimentally?

In fact, there's plenty of options

The way we look for it, depends on what we expect

Weakly Interacting Massive Particles:

a very good candidate (but not the only one, nonetheless)

Direct detection: DM scattering against nuclei, recoil

Indirect detection: Annihilation in astrophysical envir. Observation of SM products of annih.

Production at LHC

Direct, indirect and collider searches

A brief state-of-the-art on WIMPs (ideal testbed of complementary techniques)

Direct DM searches

The DM cloud

(Elastic) scatter of a DM particle over a nucleus induces recoil Measure recoil in controlled environment: Lab on Earth (but also...)

Direct Detection: principles and dependencies

A big mountain (or a deep mine)

a relatively cheap detector

Your observed data

Your ticket to Stockholm

Direct Detection: principles and dependencies (to go...)

you need this

 $\frac{dR}{dE} \propto \frac{1}{\mu^2} \frac{\sigma_{\chi}}{m_{\chi}} \rho_0 \eta(v,t)$

No observations: constraints

Indirect DM searches

Looking for byproducts of DM annihilation/decay into SM. You need a lot of DM \rightarrow astrophysical (big) objects

Indirect Detection: principles and dependencies

 $F_i \propto \frac{1}{4\pi d^2} B_i \frac{\langle \sigma v \rangle}{m_{\chi}} \int \rho^2(r) dV$

Indirect Detection: principles and dependencies

Galactic center, Dwarf Galaxies, Galactic Halo... dependence on density structure *discovery (or constraints) subject to same uncertainty*

$$F_i \propto \frac{1}{4\pi d^2} B_i \frac{\langle \sigma v \rangle}{m_{\chi}} \int \rho^2(r) dV$$
$$J_{annih} \propto \int_{los} \rho^2(r) dV$$

$$\Phi_{DM}(E) = \Phi_{PP}(E)\mathcal{J}$$

Indirect Detection: constraints (what to do when there is no signal)

[Fermi coll, 2015]