
Event Manager User Guide
007-4661-001

CONTRIBUTORS
Written by Darrin Goss
Edited by Cindi Leiser
Production by Glen Traefald
Engineering contributions by Andrei Vilkotski, Elena Gorvitovskaia, and Jonathan Lim.

COPYRIGHT
© 2003, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, IRIX, and the SGI logo are registered trademarks, and CXFS is a trademark of Silicon Graphics, Inc., in the United States
and/or other countries worldwide.

UNIX is a registered trademark of The Open Group. All other trademarks mentioned herein are the property of their respective owners.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

001 August 2003
Original publication
007-4661-001 iii

Contents

Figures . . ix

Tables . xi

Examples . xiii

About This Document . xv
Obtaining Publications . xv
Conventions . xvi
Reader Comments . . xvi

1. Overview . 1
Event Manager . . 3
Event Producer. . 4
Event Subscriber . 4
Event Consumer . 5
Event Manager API . 6

2. Event Manager API . 7
API Data Structures . 7

Event Structure . 8
GeneralBlock Structure 12

API Functions . . 13
emgrAddDataToEvent() 16
emgrAddFileToEvent() 17
emgrAddGbToEvent() . 18
emgrAddIntIemToEvent() 19
emgrAddItemToEvent() 20
emgrAddSubscribe() . . 21
emgrAddTaggedDataToEvent() 22
007-4661-001 v

Contents
emgrAddTaggedFileToEvent() 23
emgrAddUnsubscribe() . 24
emgrAllocEvent() . . 25
emgrBuildQSearch() . . 26
emgrCheckEvent(). . 26
emgrCloneEvent() . . 27
emgrCloneGb() . 27
emgrForwardEvent() . . 28
emgrFreeEvent() . 29
emgrGetEventItem() . . 30
emgrGetFirstEventGb() . 31
emgrGetFirstEventItem() 32
emgrGetNextEventGb() 33
emgrGetNextEventItem() 34
emgrIsDaemonInstalled(). 35
emgrIsDaemonStarted() 35
emgrNewQuery() . . 36
emgrNewSubscribe() . . 37
emgrNewUnsubscribe() 38
emgrPrintEvent() . . 39
emgrRunQuery() . . 40
emgrRunSubscribe() . . 41
emgrRunUnSubscribe() . 42
emgrSearchGb() . 43
emgrSendEvent() . . 44
emgrSetToForward() . . 45
emgrShmCliInitEvent() . 46
emgrShmInitEvent() . . 47
emgrSubscribeSpecCntFreq() 48
emgrSubscribeSpecDsoConsumer() 49
emgrSubscribeSpecExecConsumer() 50
emgrSubscribeSpecExecShMemConsumer() 51
emgrSubscribeSpecFacility() 52
vi 007-4661-001

Contents
emgrSubscribeSpecForwardConsumer() 53
emgrSubscribeSpecPriority() 54
emgrSubscribeSpecRegexpMap() 55
emgrSubscribeSpecTimeFreq() 56
getConfigValue() . . 58

3. Creating Producer, Subscriber, and Consumer Applications 59
Creating a Producer Application 59
Creating a Subscriber Application 64

Creating, Modifying, and Submitting Subscription Events 64
Examples . . 68

Creating, Modifying, and Submitting Unsubscription Events 71
Examples . . 74

Creating a Consumer Application 77
Example . 79

4. eventmond Command-line Options 81
Configuring the Daemon . . 81
Sending Commands to Tasks 82
Displaying Help . 82
007-4661-001 vii

Figures

Figure 1-1 Event Manager Architecture 1
Figure 1-2 Event Manager Components 3
Figure 2-1 Event Structure Layout 9
Figure 3-1 Creating and Submitting an Event from a Producer Application. . 60
Figure 3-2 Creating/Updating and Submitting a Subscription Event from a

Subscriber Application. 65
Figure 3-3 Creating/Updating and Submitting an Unsubscription Event

from a Subscriber Application 71
Figure 3-4 Accessing an Event from a Consumer Application. 77
007-4661-001 ix

Tables

Table 2-1 Event Header Fields 10
Table 2-2 Event Body Fields 10
Table 2-3 API Function Categories 13
Table 2-4 Event Frequency Examples 56
Table 4-1 eventmond Command-line Options to Configure the Daemon . . 81
Table 4-2 eventmond Command-line Options to Start and Stop Tasks . . . 82
007-4661-001 xi

Examples

Example 3-1 Example Producer Code 62
Example 3-2 Example Code to Subscribe a DSO Consumer 68
Example 3-3 Example Code to Subscribe an Executable Consumer 69
Example 3-4 Example Code to Subscribe a Shared Memory Consumer. . . . 70
Example 3-5 Example Code to Unsubscribe a DSO Consumer 74
Example 3-6 Example Code to Unsubscribe an Executable Consumer 75
Example 3-7 Example Code to Unsubscribe a Shared Memory Consumer . . . 76
Example 3-8 Example Code to Access Event Data from a Shared Library

Consumer Application. 79
Example 3-9 Example Code to Access Event Data from a Shared Memory

Consumer 80
007-4661-001 xiii

About This Document

This document describes the Event Manager application. It includes the following topics:

• An overview of the Event Manager application

• A description of the Event Manager application programming interface (API)

• Information about creating producer, subscriber, and consumer applications

• Information about the eventmond command-line options

Obtaining Publications

You can obtain SGI documentation in the following ways:

• Visit the online SGI Technical Publications Library at http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man <title> on a command line.
007-4661-001 xv

About This Document
Conventions

The following conventions are used throughout this publication:

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library webpage:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.
xvi 007-4661-001

About This Document
• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy, M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
007-4661-001 xvii

Chapter 1

1. Overview

The Event Manager collects event information from other applications. It runs
independently of all other applications and enables local or remote applications to
receive event data from it on a subscription basis.

The Event Manager uses a producer/consumer architecture (refer to Figure 1-1).

Figure 1-1 Event Manager Architecture

Applications that create events and send them to the Event Manager are called producer
applications (or producers). Applications that subscribe to receive event information from
the Event Manager are called consumer applications (or consumers). Producers and
consumers can reside on the same system as the Event Manager or on remote systems.

Producer

Producer

Consumer

Consumer

Event Manager

Remote System

Consumer

Remote System

Producer

Local System
007-4661-001 1

1: Overview
When the Event Manager registers an event from a producer application, it forwards the
event information to all consumer applications that are subscribed to receive information
about the event. Those applications must include functionality to process the event
because the Event Manager simply forwards the event information that it receives; the
Event Manager does not process the event information.

The Event Manager runs as a daemon (eventmond) that starts at system startup and waits
to receive events from producer applications and send event information to consumer
applications. You can also manually run eventmond to send commands to the daemon
through secured UNIX domain sockets.

Event management uses the following components (refer to Figure 1-2):

• Event manager

• Event producer

• Event subscriber

• Event consumer

• Event manager application programming interface (API)

Note: A single application can combine any or all of the event subscriber, producer, and
consumer functions.
2 007-4661-001

Event Manager
Figure 1-2 Event Manager Components

Event Manager

The Event Manager is a multi-threaded UNIX process that normally runs at system
startup as a daemon (eventmond) and monitors TCP/IP port 5553 for events from
producers and subscription/unsubscription requests from subscribers. When the Event
Manager detects an event, it forwards the event information to all local and remote
consumers that are subscribed to the event. The Event Manager discards any events that
are not subscribed to a consumer.

Event Manager
(eventmond)

Remote System
Forward
Events

Remote System

Producer

Receive
Events

Local System

Subscribe/
Unsubcribe

Events

Generate
Events

Generate
Events

Producer EM
API

ConsumerEM
API

Producer EM
API

ConsumerEM
API

SubscriberEM
API
007-4661-001 3

1: Overview
You can use the eventmond command to configure the daemon and control tasks that it
runs. (Refer to Chapter 4, “eventmond Command-line Options,” for more information)

Note: This new version of eventmond replaces the version of eventmond that shipped
with earlier versions of IRIX. It is named eventmond to provide compatibility with older
versions of IRIX.

Event Producer

An event producer is an application that creates events and sends them to the Event
Manager via the Event Manager API. There are two types of event producer applications:

• A separate process that runs on the local system or on a remote system.

• A shared library (also called a dynamic shared object [DSO]) that the Event
Manager loads and executes.

Example event producers include the syslog DSO and the availmon and configmon

standalone applications.

Event Subscriber

An event subscriber is a special subscription management application. It subscribes a
consumer to an event so the consumer can receive event information from the Event
Manager. It unsubscribes the consumer from the event when the consumer no longer
requires information about the event.

An example event subscriber is espconfig, which handles event subscription for
Embedded Support Partner (ESP) version 3.0.

Note: Event subscriber functions can also be contained in producer or consumer
applications.
4 007-4661-001

Event Consumer
Event Consumer

An event consumer is an application that subscribes to receive events and then processes
the event data that it receives. There are four types of event consumer applications:

• A shared library consumer is a compiled function that is linked in a shared library that
the Event Manager can dynamically load into its address space and then execute.
The Event Manager passes the event as a parameter to the function. You must
specify the name of the shared library and the function that you want to call in the
shared library when you subscribe the consumer to the event. If the shared library is
not in a standard library directory (for example, /usr/lib), you must specify the
full path to the shared library when you subscribe the consumer.

• An executable consumer can be any type of executable file that the Event Manager can
execute with a fork()/exec() sequence. If the executable file is not accessible
through the PATH environment variable, you must specify the full path to the file
when you subscribe the consumer.

• A shared memory executable consumer is an application that can access the event
information directly from memory that is shared with the Event Manager. The
Event Manager sends the consumer a command-line parameter that specifies a key
which indicates where the consumer can access the event information.

• A forwarding consumer is a feature of the Event Manager that simply forwards the
event to another application. It does not process the event.

Consumers must subscribe to events with the Event Manager to receive information
about the events that occur. Consumers should unsubscribe from events when they no
longer need to receive the event information. Event subscription and unsubscription is
normally performed by a subscriber application, but it can be performed by a producer,
consumer, or subscriber application.

An example event consumer application is the Embedded Support Partner consumer
DSO that processes all events for ESP by logging the events and performing actions
assigned to them.
007-4661-001 5

1: Overview
Event Manager API

The Event Manager application programming interface (API) contains a set of functions
that enable other applications to communicate with the Event Manager. Event producers
send information to the Event Manager via the Event Manager API. Event handlers
(consumers) receive event information via the Event Manager API.

Subscriber applications use the Event Manager API to manage the event
subscription/unsubscription process for consumers. The API also enables applications
to access information within an event.

The API library is dynamically linked to the applications.

Refer to Chapter 2, “Event Manager API,” for descriptions of the Event Manager API
functions.
6 007-4661-001

Chapter 2

2. Event Manager API

The Event Manager application programming interface (API) provides functions that
enable applications to communicate with the Event Manager daemon (eventmond).
These functions enable the applications to:

• Subscribe events

• Unsubscribe events

• Log events

• Query events

The Event Manager API uses a TCP/IP socket to communicate with the Event Manager
daemon. The emgrapi.h file contains the function declarations, and the libemgrapi.so
file contains the actual functions.

This chapter describes the functions that the Event Manager API contains. Chapter 3,
“Creating Producer, Subscriber, and Consumer Applications,” describes how to use the
functions to create producer, subscriber, and consumer applications.

API Data Structures

The Event Manager API functions use the following special data structures:

• Event structure

• GeneralBlock structure
007-4661-001 7

2: Event Manager API
Event Structure

The API functions use a structure called event (EmgrEvent_t) to pass event information.
The event structure includes a fixed portion (the event header) and a variable portion
(the event data). The event header contains information about the event (application that
created it, host where it originated, time that it occurred, and so on), and the event data
contains the actual event.

Note: An event structure contains all public data for the event. All private data that the
API control layer requires is stored in a private event control structure that contains the
event structure as its first element. Do not directly allocate memory for an event
structure; use the emgrAllocEvent() API function to allocate event resources.

Figure 2-1 shows the layout of the event structure.
8 007-4661-001

API Data Structures
Figure 2-1 Event Structure Layout

Zero-terminated string

Zero-terminated string

Zero-terminated string

Event Header

Event Payload

Item 1 ValueItem 1 Name

(name, value) pairs (stored in a
linked list of GeneralBlock structures)

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

8 bytes

2 bytes

2 bytes

Event Body

source

appname

origin

Item 2 ValueItem 2 Name

Item N ValueItem N Name

total_size

header_size

evid

uid

evClass

timestamp

evType

version

flags
007-4661-001 9

2: Event Manager API
Table 2-1 describes the fields that the event header contains.

Table 2-2 describes the fields that the event body contains.

The event payload portion of the event structure contains a linked list of “items” that are
formatted as (name, value) pairs. The name portion is a zero-terminated string that acts
like an additional field in the event structure. The value portion is a typed value that the
Event Manager can use to filter expressions or a consumer application can use as event
data.

Table 2-1 Event Header Fields

Field Description Size

evClass Event class ID number 4 bytes

evType Event type ID number that is unique to each application 4 bytes

flags Internal flags that indicate how to handle the message 2 bytes

version Event version number that is specific to each application 2 bytes

timestamp Time that the event occurred 8 bytes

uid User ID number of the process that generated the event 4 bytes

evid Event ID number 4 bytes

header_size Size of the event header plus event body 4 bytes

total_size Size of the entire event 4 bytes

Table 2-2 Event Body Fields

Field Description Size

source Hostname (including domain name) of the system that
generated the event

Variable (included in a zero- terminated
string)

appname Application that owns the event (for example, Kernel or UNIX) Variable (included in a zero terminated
string)

origin Application that generated the event (for example, SYSLOG) Variable (included in a zero terminated
string)
10 007-4661-001

API Data Structures
You must enter information in the following fields before you can send event information
via the Event Manager API:

• The source field must be set to the hostname of the system where the event
originates.

• The appname field must be set to the application that is sending the event (for
example, ESP, CXFS, etc.).

The following definitions in the emgrapi.h file create the event structure:

• Definition of the event header:

typedef struct EmgrEventHeader {

int32_t evClass; /* Event Class number (application specific) */
int32_t evType; /* Event Type number (application specific) */
int16_t flags; /* Event flags */
int16_t version; /* Event Version (application specific) */
int64_t timestamp; /* Event Time (GMT) */
int32_t uid; /* User ID of a process which sends an event */
uint32_t evid; /* Event id <16 bit sq number><16 bit random> */
int32_t header_size; /* size of fixed and variable parts of header */
int32_t total_size; /* size of entire event including header */

} EmgrEventHeader_t;

• Definition of the event body:

typedef struct EmgrEvent {

/* Fixed portion of public event data
 */
EmgrEventHeader_t header;

/* Variable portion of public event data
 */
char *source; /* fully qualified local hostname */
char *appname; /* Name of application that owns this event */
char *origin; /* Name of application that logged this event */

/* Private API data is appended here
 *
* Note: Never directly allocate memory for an EmgrEvent struct.
* Always use the emgrAllocEvent() function to allocate an event struct.

 */
} EmgrEvent_t;
007-4661-001 11

2: Event Manager API
GeneralBlock Structure

The GeneralBlock structure is an abstract structure that defines data within an event
structure. The following definition in the emgrGb.h file creates the GeneralBlock
structure:

typedef struct GeneralBlock {
 int32_t type;
 int32_t length;

 void *pValue;

 char tag[1];
} GeneralBlock_t;

The GeneralBlock structure provides a way to represent (name, value) pairs for various
types of data. The structure currently supports strings, binary data, and file data;
however, it is an open structure that can support other types if needed. The event data is
a linked list of GeneralBlock structures.

When a data item in an event structure is a file, there is a GbFileValue structure that
defines it. The GbFileValue structure contains the size of the file data and related
information, the modification time of the file, the path to the file, and the raw file data.
The following definition in the emgrGb.h file creates the GbFileValue structure:

typedef struct GbFileValue {
 int32_t size; /* size of the static attributes (size and

mod time) + the length of the path and file */
 char modTime[24];
 char *path;
 int8_t *pContent;
} GbFileValue_t;
12 007-4661-001

API Functions
API Functions

The API functions have the following categories:

• Event manipulation functions:

– Creation/definition functions

– Access functions

• Subscription manipulation functions

• Transmission/execution functions

• Configuration functions

Table 2-3 lists the functions that belong to each category and the type of application
(producer, subscriber, and/or consumer) that uses each function. Descriptions of the
individual functions appear in alphabetical order after the table.

Table 2-3 API Function Categories

Category Function Used Bya

Event manipulation
(creation/definition)

emgrAddGbToEvent() P

emgrAddIntItemToEvent() P/S

emgrAddItemToEvent() P/S

emgrAddTaggedDataToEvent() P

emgrAddTaggedFileToEvent() P

emgrAddDataToEvent() P

emgrAddFileToEvent() P

emgrAllocEvent() P

emgrCloneEvent() C

emgrCloneGb() C

emgrFreeEvent() P

emgrGetEventItem() C
007-4661-001 13

2: Event Manager API
Event manipulation
(creation/definition)
(cont.)

emgrGetFirstEventGb() C

emgrGetFirstEventItem() C

emgrGetNextEventGb() C

emgrGetNextEventItem() C

emgrNewQuery() P/S

emgrSetToForward() P

emgrShmCliInitEvent() C

emgrShmInitEvent() C

Event manipulation (access) emgrBuildQSearch() C

emgrPrintEvent() P/S/C

emgrSearchGb() C

emgrCheckEvent() P/S/C

emgrAddSubscribe() S

emgrAddUnsubscribe() S

emgrNewSubscribe() S

emgrNewUnsubscribe() S

emgrSubscribeSpecCntFreq() S

emgrSubscribeSpecDsoConsumer() S

emgrSubscribeSpecExecConsumer() S

emgrSubscribeSpecExecShMemConsumer() S

emgrSubscribeSpecFacility() S

emgrSubscribeSpecForwardConsumer() S

emgrSubscribeSpecPriority() S

Table 2-3 API Function Categories (continued)

Category Function Used Bya
14 007-4661-001

API Functions
The following sections describe the API functions that are available.

Subscription manipulation
(cont.)

emgrSubscribeSpecRegexpMap() S

emgrSubscribeSpecTimeFreq() S

Transmission/execution emgrForwardEvent() P

emgrRunQuery() P/S

emgrRunSubscribe() S

emgrRunUnSubscribe() S

emgrSendEvent() P/S

Configuration emgrIsDaemonInstalled() P/S

emgrIsDaemonStarted() P/S

getConfigValue() P/S

a. The “Used By” column indicates the type of application that uses each function (P = producer, S = subscriber,
and C = consumer).

Table 2-3 API Function Categories (continued)

Category Function Used Bya
007-4661-001 15

2: Event Manager API
emgrAddDataToEvent()
int emgrAddDataToEvent(EmgrEvent_t *pEvent,

const void *databuf,
size_t size);

The emgrAddDataToEvent() function adds binary data to an event.

Parameters:

*pEvent pointer to an event structure

*databuf pointer to a data buffer (The pointer should be valid while you use the
event; producers should free the data buffer memory.)

size size of the data buffer (in bytes)

Return value:

• Success: 0

• Failure:

-1 A processing error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
16 007-4661-001

API Functions
emgrAddFileToEvent()
int emgrAddFileToEvent(EmgrEvent_t *pEvent,

const char *path);

The emgrAddFileToEvent() function adds the contents of a file to an event.

Parameters:

*pEvent pointer to an event structure

*path pointer to a character string that contains the full pathname of the file

Return value:

• Success: 0

• Failure:

-1 A processing error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.

17 The file does not exist or could not be opened.
007-4661-001 17

2: Event Manager API
emgrAddGbToEvent()
int emgrAddGbToEvent(EmgrEvent_t *pEvent,

struct GeneralBlock *pNewGB);

The emgrAddGbToEvent() function adds a GeneralBlock structure to an event.

Parameters:

*pEvent pointer to an event structure

*pNewGB pointer to a GeneralBlock structure to add to the event

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
18 007-4661-001

API Functions
emgrAddIntIemToEvent()
int emgrAddIntItemToEvent(EmgrEvent_t *pEvent,

const char *name,
long value);

The emgrAddIntItemToEvent() function converts an integer to a string and adds it to an
event.

Parameters:

*pEvent pointer to the event structure

*name pointer to a character string that contains the name of the item

value integer value to add

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 19

2: Event Manager API
emgrAddItemToEvent()
int emgrAddItemToEvent(EmgrEvent_t *pEvent,

const char *name,
const char *value);

The emgrAddItemToEvent() function adds an item (named value) to an event.

Parameters:

*pEvent pointer to the event structure

*name pointer to a character string that contains the name of the item

*value pointer to a character string that contains the value of the item

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
20 007-4661-001

API Functions
emgrAddSubscribe()
EmgrEvent_t *emgrAddSubscribe(EmgrEvent_t *pEvent,

const char *appname,
int evClass,
int evType,
const char *source,
const char *origin);

The emgrAddSubscribe() function adds the next subscription specification to an event
that was already allocated with the emgNewSubscribe() function. The
emgrAddSubscribe() function also sets specific information for batch subscription
processing.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type) (Set this
string to NULL to select events from any application.)

evClass event class to subscribe (Set this parameter to -1 to select all classes.)

evType event type to subscribe (Set this parameter to -1 to select all event types.)

*source pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events are subscribed from the localhost.)

*origin pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value or pass
an empty string or NULL character pointer to the origin parameter.)

Return value:

• Success: Pointer to the event structure

• Failure: NULL pointer
007-4661-001 21

2: Event Manager API
emgrAddTaggedDataToEvent()
int emgrAddTaggedDataToEvent(EmgrEvent_t *pEvent,

const char *tag,
const void *pBuffer,
size_t size);

The emgrAddTaggedDataToEvent() function adds the contents of a data buffer to an
event. It also names the data with a tag that you can specify to quickly access the data
again. (The tag acts as an item name.)

Parameters:

*pEvent pointer to an event structure

*tag pointer to a character string that contains the tag

*pBuffer pointer to the buffer of data (This pointer must be valid the entire time
that the event is in use.)

size number of bytes of data in the buffer

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
22 007-4661-001

API Functions
emgrAddTaggedFileToEvent()
int emgrAddTaggedFileToEvent(EmgrEvent_t *pEvent,

const char *tag,
const char *path);

The emgrAddTaggedFileToEvent() function adds the contents of a file to an event. It
also names the data block with a tag that you specify so you can quickly access the data
again. (The tag acts as an item name.)

Parameters:

*pEvent pointer to an event structure

*tag pointer to a character string that contains the file tag

*path pointer to a character string that contains the path to the file

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 23

2: Event Manager API
emgrAddUnsubscribe()
EmgrEvent_t *emgrAddUnSubscribe(EmgrEvent_t *pEvent,

const char *appname,
int evClass,
int evType,
const char *source,
const char *origin);

The emgrAddUnSubscribe() function adds the next unsubscription specification to an
event that was already allocated with the emgrNewUnSubscribe() function. The
emgrAddUnSubscribe() function also sets specific information for batch event
processing.

Parameters:

*pEvent pointer to an event structure

*appname pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type)

Note: Do not set this parameter to an empty string or a NULL character
pointer.

evClass event class to subscribe (Set this parameter to -1 to select all classes.)

evType event type to subscribe (Set this parameter to -1 to select all event types.)

*source pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events are unsubscribed from the localhost.)

*origin pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value. Set this
parameter to empty string or the NULL character pointer to specify any
application.)

Return value:

• Success: Pointer to the event structure

• Failure: NULL pointer
24 007-4661-001

API Functions
emgrAllocEvent()
EmgrEvent_t *emgrAllocEvent(const char *appname,

int evClass,
int evType,
int version,
char *origin);

The emgrAllocEvent() function allocates memory for an event.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event

evClass application-specific event class number (set to 0 if you do not want to
specify a class)

evType application-specific event type number (do not set to 0 or -1)

version application-specific event version for consumer or producer use (set to 0
if you do not want to specify a version)

*origin pointer to a character string that contains the name of the application
that logs the event (If it is the same as the application that owns the
event, set the string to the same string as appname.)

Return value:

• Success: Pointer to the event structure

• Failure: NULL pointer
007-4661-001 25

2: Event Manager API
emgrBuildQSearch()
int emgrBuildQSearch(EmgrEvent_t *pEvent);

The emgrBuildQSearch() function builds the internal search table for an event to enable
searches based on item tags. Normally, you do not need to use the function because the
Event Manager calls it when necessary on the consumer side.

Parameters:

*pEvent pointer to the event structure

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.

emgrCheckEvent()
int emgrCheckEvent(const EmgrEvent_t *pEvent);

The emgrCheckEvent() function verifies that an event structure is valid.

Parameter:

*pEvent pointer to an event structure

Return value:

• Success: 0 (event structure is valid)

• Failure:

-1 The event structure is not valid.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
26 007-4661-001

API Functions
emgrCloneEvent()
int *emgrCloneEvent(const EmgrEvent_t *pEvent);

The emgrCloneEvent() function clones all parameters and data from an event, except
the eventID, source, timestamp, and uid attributes. This function is useful for DSO
consumers that must modify an event and pass it elsewhere for further processing.

Parameters:

*pEvent pointer to the event structure

Return value:

• Success: 0

• Failure: NULL pointer (The *pEvent pointer that was passed to the function points
to corrupted memory, or a memory allocation failure occurred.)

emgrCloneGb()
GeneralBlock_t *emgrCloneGb(const EmgrEvent_t *pGb);

The emgrCloneGb() function clones the contents of a GeneralBlock structure.

Parameters:

*pGb pointer to the GeneralBlock structure

Return value:

• Success: 0

• Failure: NULL pointer (The *pGB pointer that was passed to the function points to
corrupted memory, or a memory allocation failure occurred.)
007-4661-001 27

2: Event Manager API
emgrForwardEvent()
int emgrForwardEvent(EmgrEvent_t *pEvent,

const char *forwardPath);

The emgrForwardEvent() function specifies that the Event Manager should forward an
event to one or more remote hosts; this function uses the emgrSendEvent() function to
forward the event to the first host in the forward path.

Parameters:

*pEvent pointer to the event structure

*forwardPath pointer to a character string

The character string contains the path of hosts that should receive an
event and has the following format:

hostname1[:port]>hostname2>[:port]>...hostnameN[:port]

Example: host1.sgi.com>host2.sgi.com:5553>host3.sgi.com

Return value:

• Success: 0

• Failure:

-1 The forward path is invalid or there is a communication error with
the first host in the path.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
28 007-4661-001

API Functions
emgrFreeEvent()
int emgrFreeEvent(EmgrEvent_t *pEvent);

The emgrFreeEvent() function frees up all memory resources allocated to an event.

Parameters:

*pEvent pointer to an event structure

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 29

2: Event Manager API
emgrGetEventItem()
const void *emgrGetEventItem(const EmgrEvent_t *pEvent,

const char *name,
int *pType,
int *pLength);

This emgrGetEventItem() function returns the value of an item.

Parameters:

*pEvent pointer to the event structure

*name pointer to a character string that contains the name of the requested item

*pType pointer to an integer that holds the type of data that the function
retrieves

The integer can have the following values:

1 = file data

2 = binary data

3 = string data

*pLength pointer to an integer that holds the length of the data that the function
retrieves (the length of the string if the function returns a string, the
length of the binary large object (BLOB) of data if the function returns
binary data, or the file length if the function returns a file)

Return value:

• Success: Pointer to a character array if the item is a string, pointer to a binary array if
the item is binary data, or pointer to a GbFileValue structure (type
GbFileValue_t) if the item is a file

• Failure: NULL pointer
30 007-4661-001

API Functions
emgrGetFirstEventGb()
const struct GeneralBlock *emgrGetFirstEventGb(EmgrEvent_t *pEvent);

The emgrGetFirstEventGb() function returns the first GeneralBlock structure that is
attached to an event and initializes an iterator to use with the emgrGetNextEventGb()
function.

Parameters:

*pEvent pointer to the event structure

Return value:

• Success: Pointer to the GeneralBlock structure

• Failure: NULL pointer
007-4661-001 31

2: Event Manager API
emgrGetFirstEventItem()
int emgrGetFirstEventItem(EmgrEvent_t *pEvent,

const char **pName,
const void **pValue,
int *pType,
int *pLength);

The emgrGetFirstEventItem() function traverses event data and returns the first item
and value of the event data initialized into pName and pValue. It initializes the iterator.

Parameters:

*pEvent pointer to the event structure

**pName pointer to the location where the returned item name pointer is stored

**pValue pointer to a character array if the item is a string, pointer to a binary
array if the item is binary data, or pointer to a GbFileValue structure
(type GbFileValue_t) if the item is a file

*pType pointer to an integer that holds the type of data that the function
retrieves

The integer can have the following values:

1 = file data

2 = binary data

3 = string data

*pLength pointer to an integer that holds the length of the data that the function
retrieves (the length of the string if the function returns a string, the
length of the BLOB of data if the function returns binary data, or the file
length if the function returns a file)

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
32 007-4661-001

API Functions
emgrGetNextEventGb()
const struct GeneralBlock *emgrGetNextEventGb(EmgrEvent_t *pEvent);

The emgrGetFirstEventGb() function returns the next GeneralBlock structure that is
attached to an event.

Parameters:

*pEvent pointer to the event structure

Return value:

• Success: Pointer to the GeneralBlock structure

• Failure: NULL pointer
007-4661-001 33

2: Event Manager API
emgrGetNextEventItem()
int emgrGetNextEventItem(EmgrEvent_t *pEvent,

const char **pName,
const void **pValue,
int *pType,
int *pLength);

The emgrGetNextEventItem() function traverses the event data and returns the item
and value of the next item in the event data to pName and pValue.

Parameters:

*pEvent pointer to the event structure

**pName pointer to the location where the returned item name pointer is stored

**pValue pointer to a character array if the item is a string, pointer to a binary
array if the item is binary data, or pointer to a GbFileValue structure
(type GbFileValue_t) if the item is a file

*pType pointer to an integer that holds the type of data that the function
retrieves

The integer can have the following values:

1 = file data

2 = binary data

3 = string data

*pLength pointer to an integer that holds the length of the data that the function
retrieves (the length of the string if the function returns a string, the
length of the BLOB of data if the function returns binary data, or the file
length if the function returns a file)

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
34 007-4661-001

API Functions
emgrIsDaemonInstalled()
int emgrIsDaemonInstalled();

The emgrIsDaemonInstalled() function identifies whether the Event Manager server is
installed on the local system.

Parameters: none

Return value:

• 0: Event Manager server is installed

• 1: Event Manager server is not installed

Note: This function works only with the default configuration. If you modify how the
Event Manager is configured or installed, this function fails.

emgrIsDaemonStarted()
int emgrIsDaemonStarted(const char *server);

The emgrIsDaemonStarted() function identifies whether the Event Manager daemon is
running on the specified system.

Parameters:

*server pointer to a character string that contains the name of the server to check

Return value:

• 0: Event Manager daemon is running on the specified system

• 1: Event Manager daemon is not running on the specified system

Note: This function works only with the default configuration. If you modify how the
Event Manager is configured or installed, this function fails.
007-4661-001 35

2: Event Manager API
emgrNewQuery()
EmgrEvent_t *emgrNewQuery(const char *appname,

int evClass,
int evType,
const char *source,
const char *origin);

The emgrNewQuery() function is a wrapper to the emgrAllocEvent() function. The
emgrNewQuery() function allocates an event structure and initializes the event header to
conduct a query of events that are currently subscribed.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type) Set this
parameter to the NULL character pointer to specify any application

evClass event class to match (Set this parameter to -1 to select all classes.)

evType event type to match (Set this parameter to -1 to select all event types.)

*source pointer to a character string that contains the name of the host or hosts
from which to query events (If the string contains more than one host,
separate the hosts with spaces and/or commas. If the string is empty or
NULL, events from any source are used.)

*origin pointer to a character string that contains the name of the application
that logs the event. If the string is empty or NULL, events from any
origin are used

Return value:

• Success: Pointer to the event structure

• Failure: NULL pointer
36 007-4661-001

API Functions
emgrNewSubscribe()
EmgrEvent_t *emgrNewSubscribe(const char *appname,

int evClass,
int evType,
const char *source,
const char *origin);

The emgrNewSubscribe() function is a wrapper to the emgrAllocEvent() function. The
emgrNewSubscribe() function allocates an event structure and initializes the event
header with the specified data.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type) (Set this
string to NULL to select events from any application.)

evClass event class to subscribe (Set this parameter to -1 to select all classes.)

evType event type to subscribe (Set this parameter to -1 to select all event types.)

*source pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events from any source are used.)

*origin pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value. Set this
parameter to empty string or the NULL character pointer to specify any
origin.)

Return value:

• Success: Pointer to the event structure

• Failure: NULL pointer
007-4661-001 37

2: Event Manager API
emgrNewUnsubscribe()
EmgrEvent_t *emgrNewUnSubscribe(const char *appname,

int evClass,
int evType,
const char *source,
const char *origin);

The emgrNewUnSubscribe() function is a wrapper to the emgrAllocEvent() function.
The emgrNewUnSubscribe() function allocates an event structure and initializes the
event header for unsubscription using the data provided.

Parameters:

*appname pointer to a character string that contains the name of the application
that owns the event (has domain over the event class and type)

Note: Do not set this parameter to an empty string or a NULL character
pointer.

evClass event class to subscribe (Set this parameter to -1 to select all classes.)

evType event type to subscribe (Set this parameter to -1 to select all event types.)

*source pointer to a character string that contains the name of the host or hosts
from which to subscribe events (If the string contains more than one
host, separate the hosts with spaces and/or commas. If the string is
empty or NULL, events are unsubscribed from any host.)

*origin pointer to a character string that contains the name of the application
that logs the event (If the application that sends the events also owns the
events, set the origin and appname parameters to the same value. Set this
parameter to empty string or the NULL character pointer to specify any
host.)

Note: If you want to unsubscribe an event, the specified parameters must match the
subscription parameters (including the consumer definition).
38 007-4661-001

API Functions
Return value:

• Success: Pointer to the event structure

• Failure: NULL pointer

emgrPrintEvent()
void emgrPrintEvent(const EmgrEvent_t *pEvent,

FILE *out);

The emgrPrintEvent() function prints an event to a FILE stream.

Parameters:

*pEvent pointer to the event structure

*out pointer to the FILE stream

Return value: None
007-4661-001 39

2: Event Manager API
emgrRunQuery()
int emgrRunQuery(EmgrEvent_t *pQueryEvent,

const char *host,
EmgrEvent_t ***ppRetEvents,
int *pEvCount,
int timeout);

The emgrRunQuery() function executes a subscription query.

Parameters:

*appname pointer returned by the emgrNewQuery() function

*host hostname (and optionally port number) of the system to query

evType event type to match (Set this parameter to -1 to select all event types.)

***ppRetEvents array of pointers to events that match the query

*pEvCount number of returned events

Note: The calling program must free the memory that is used to store
the number of returned events and the array of pointers.

timeout number of seconds to wait for a return from the Event Manager

Return value:

• Success: 0 (with ppRetEvents and pEvCount set to values)

• Failure:

-1 An unspecified error occurred.

4 The *pQueryEvent pointer that was passed to the function points to
corrupted memory.
40 007-4661-001

API Functions
emgrRunSubscribe()
int emgrRunSubscribe(EmgrEvent_t *pSubscrEvent,

const char *host,
int timeout,
char **pRetEventMask);

The emgrRunSubscribe() function adds subscription attributes to an event (Use this
function instead of the emgrSendEvent() function if operation completion status is
needed.) This function can subscribe multiple events at a time.

Parameters:

*pSubscrEvent pointer to the event structure

*host pointer to a character string that contains the hostname

timeout number of seconds to wait for a return from the Event Manager

**pRetEventMask address of a variable that returns the subscription status (each element
contains ‘0’ plus the subscription status)

Return value:

• Success: 0 (with pRetEventMask set to a value)

• Failure:

-1 An unspecified error occurred.

4 The *pSubscrEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 41

2: Event Manager API
emgrRunUnSubscribe()
int emgrRunUnSubscribe(EmgrEvent_t *pSubscrEvent,

const char *host,
int timeout,
char **pRetEventMask);

The emgrRunUnSubscribe() function unsubscribes events. (Use this function instead of
the emgrSendEvent() function if operation completion status is needed.) This function
can unsubscribe multiple events at a time.

Parameters:

*pSubscrEvent pointer to the event structure

*host pointer to a character string that contains the hostname

timeout number of seconds to wait for a return from the Event Manager

**pRetEventMask address of a variable that returns the subscription status (each element
contains ‘0’ plus the subscription status)

Return value:

• Success: 0 (with pRetEventMask set to a value)

• Failure:

-1 An unspecified error occurred.

4 The *pSubscrEvent pointer that was passed to the function points to
corrupted memory.
42 007-4661-001

API Functions
emgrSearchGb()
const struct GeneralBlock *emgrSearchGb(EmgrEvent_t *pEvent,

const char *tag);

The emgrSearchGb() function locates the GeneralBlock referenced by a tag that you
specify.

Parameters:

*pEvent pointer to the event structure

*tag pointer to a character string that contains the tag for the GeneralBlock
that you want to locate

Return value:

• Success: Pointer to the GeneralBlock structure

• Failure: NULL pointer
007-4661-001 43

2: Event Manager API
emgrSendEvent()
int *emgrSendEvent(EmgrEvent_t *pEvent,

const char *host);

The emgrSendEvent() sends an event to the Event Manager on the specified host.

Parameters:

*pEvent pointer to the event structure

*host pointer to a character string that contains the hostname of the Event
Manager used to subscribe events. The character string uses the
following format: <hostname>[:<port_number>]

If you specify NULL or an empty string, the function subscribes the
event with the Event Manager on the local system.

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
44 007-4661-001

API Functions
emgrSetToForward()
int emgrSetToForward(EmgrEvent_t *pEvent,

const char *forwardPath);

The emgrSetToForward() function specifies that the Event Manager should forward an
event to one or more remote hosts.

Parameters:

*pEvent pointer to the event structure

*forwardPath pointer to a character string

The character string contains the path of hosts that should receive an
event and has the following format:

hostname1[:port]>hostname2>[:port]>...hostnameN[:port]

Example: host1.sgi.com>host2.sgi.com:5553>host3.sgi.com

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 45

2: Event Manager API
emgrShmCliInitEvent()
EmgrEvent_t *emgrShmCliInitEvent(int argc,

const char *argv[],
int *pError);

The emgrShmCliInitEvent() function is a wrapper to the emgrShmInitEvent()
function. It hides the details and simplifies command-line option parsing to main(),
searches for a shared memory option, and calls the emgrShmInitEvent() function.

Parameters:

argc number of arguments

*argv[] pointer to the array of arguments

*pError pointer to the error code when an error occurs

Return value:

• Success: Pointer to the initialized event structure

• Failure: NULL pointer (*pError points to the error code.)
46 007-4661-001

API Functions
emgrShmInitEvent()
EmgrEvent_t *emgrShmInitEvent(int shmId,

int *pError);

The emgrShmInitEvent() function initializes an event from shared memory that the
Event Manager allocated.

Parameters:

shmId shared memory ID (that was passed to the consumer process as a
command-line parameter)

*pError pointer to the error code when an error occurs

Return value:

• Success: Pointer to the initialized event structure

• Failure: NULL pointer (*pError points to the error code.)

The error is the system error number from the errNO global variable. (Refer to the
/usr/include/errno.h and /usr/include/linux/errno.h files for more
information.)
007-4661-001 47

2: Event Manager API
emgrSubscribeSpecCntFreq()
int emgrSubscribeSpecCntFreq(EmgrEvent_t *pEvent,

int freq);

The emgrSubscribeSpecCntFreq() function is a wrapper to the
emgrAddItemToEvent() function. The emgrSubscribeSpecCntFreq() function adds a
tagged item to a subscription event to specify how often the Event Manager should send
a matching event to a matching subscriber.

Parameters:

*pEvent pointer to the event structure

freq count frequency value (The Event Manager sends one of this number of
events to the subscriber; for example, if you set freq to 5, the Event
Manager sends every fifth matching event to the subscriber.)

Return value:

• Success: 0

• Failure:

-1 A memory allocation failure occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
48 007-4661-001

API Functions
emgrSubscribeSpecDsoConsumer()
int emgrSubscribeSpecDsoConsumer(EmgrEvent_t *pEvent,

const char *dsoPath,
const char *callName,
const char *prmSpec);

The emgrSubscribeSpecDsoConsumer() function subscribes events from consumers
that are implemented as dynamic shared object (DSO) libraries that are called from the
Event Manager server.

Parameters:

*pEvent pointer to the event structure

*dsoPath pointer to a character string that contains the pathname of the consumer
DSO library

*callName pointer to a character string that contains the name of the main
consumer function to call

*prmSpec pointer to a character string of parameters for the consumer

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 49

2: Event Manager API
emgrSubscribeSpecExecConsumer()
int emgrSubscribeSpecExecConsumer(EmgrEvent_t *pEvent,

const char *execPath,
const char *prmSpec);

The emgrSubscribeSpecExecConsumer() function subscribes events from applications
that are launched with the fork() and exec() commands. Event parameters are passed
to the consumer on the command line.

Parameters:

*pEvent pointer to the event structure

*execPath pointer to a character string that contains the pathname of the consumer
application to launch

*prmSpec pointer to a string of parameters for the application

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
50 007-4661-001

API Functions
emgrSubscribeSpecExecShMemConsumer()
int emgrSubscribeSpecExecShMemConsumer(EmgrEvent_t *pEvent,

const char *execPath,
const char *prmSpec);

The emgrSubscribeSpecExecShMemConsumer() function subscribes events from
consumer applications that are launched via fork() and exec() commands. Event
parameters are passed to the consumer applications via shared memory handoffs
handled by the API layer.

Parameters:

*pEvent pointer to the event structure

*execPath pointer to a character string that contains the pathname of the consumer
application to launch

*prmSpec pointer to a string of parameters for the application

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 51

2: Event Manager API
emgrSubscribeSpecFacility()
int emgrSubscribeSpecFacility(EmgrEvent_t *pEvent,

int facility);

The emgrSubscribeSpecFacility() function is a wrapper to the
emgrAddItemToEvent() function. The emgrSubscribeSpecFacility() function adds a
tagged item to a subscription or unsubscription event to specify an optional event facility
filter (used for subscription matching).

Parameters:

*pEvent pointer to the event structure

facility facility ID value (same as syslog facility value)

Return value:

• Success: 0

• Failure:

-1 A memory allocation failure occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
52 007-4661-001

API Functions
emgrSubscribeSpecForwardConsumer()
int emgrSubscribeSpecForwardConsumer(EmgrEvent_t *pEvent,

const char *forwardPath);

The emgrSubscribeSpecForwardConsumer() function specifies that the Event Manager
should forward an event to another host for processing.

Parameters:

*pEvent pointer to the event structure

*forwardPath pointer to a character string

The character string contains the path of hosts that should receive an
event and has the following format:

hostname1[:port]>hostname2>[:port]>...hostnameN[:port]

Example: host1.sgi.com>host2.sgi.com:5553>host3.sgi.com

Return value:

• Success: 0

• Failure:

-1 An unspecified error occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 53

2: Event Manager API
emgrSubscribeSpecPriority()
int emgrSubscribeSpecPriority(EmgrEvent_t *pEvent,

int pri);

The emgrSubscribeSpecPriority() function is a wrapper to the
emgrAddItemToEvent() function. The emgrSubscribeSpecPriority() function adds a
tagged item to a subscription or unsubscription event to specify an optional event
priority filter for subscription matching.

Parameters:

*pEvent pointer to the event structure

pri priority value (same as syslog priority value)

Return value:

• Success: 0

• Failure:

-1 A memory allocation failure occurred.

4 The *pEvent pointer that was passed to the function points to corrupted
memory.
54 007-4661-001

API Functions
emgrSubscribeSpecRegexpMap()
int emgrSubscribeSpecRegexpMap(EmgrEvent_t *pEvent,

const char *regExp,
int evMapClass,
int evMapType);

The emgrSubscribeSpecRegexpMap() function is a wrapper to the
emgrAddItemToEvent() function. The emgrSubscribeSpecRegexpMap() function adds
a tagged item to a subscription event to specify an optional untagged event's class and
type mapping before forwarding it to a subscribed consumer.

Parameters:

*pEvent pointer to the event structure

*regExp regular expression to compare to an event’s message body

evMapClass class ID to add to the event

evMapType type ID to add to the event

Return value:

• Success: 0

• Failure:

-1 A memory allocation failure occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.
007-4661-001 55

2: Event Manager API
emgrSubscribeSpecTimeFreq()
int emgrSubscribeSpecTimeFreq(EmgrEvent_t *pEvent,

int freq);

The emgrSubscribeSpecTimeFreq() function is a wrapper to the
emgrAddItemToEvent() function. The emgrSubscribeSpecTimeFreq() function adds a
tagged item to a subscription event that specifies how often (in events/second) a
matching event should be sent to a subscribed consumer. This function enables you to
limit (or throttle) the number of events that are sent to a consumer each second.

The Event Manager divides the actual number of events that it receives in a second by
the frequency value (freq) and rounds the value down to the nearest integer value; the
Event Manager sends the resulting number of events to the subscribed consumer each
second. Table 2-3 shows the number of events that are sent to a consumer for various
example frequency (freq) values.

Table 2-4 Event Frequency Examples

Number of Events
Received by the Event
Manager (Per Second)

Number of Events
Sent to Subscribed
Consumer (Per
Second) freq = 1 freq = 2 freq = 3 freq = 4 freq = 5

0 0 0 0 0 0

1 1 0 0 0 0

2 2 1 0 0 0

3 3 1 1 0 0

4 4 2 1 1 0

5 5 2 1 1 1

6 6 3 2 1 1

7 7 3 2 1 1

8 8 4 2 2 1

9 9 4 3 2 1

10 10 5 3 2 2

11 11 5 3 2 2
56 007-4661-001

API Functions
Parameters:

*pEvent pointer to the event structure

freq frequency value

Return value:

• Success: 0

• Failure:

-1 A memory allocation failure occurred.

4 The *pEvent pointer that was passed to the function points to
corrupted memory.

12 12 6 4 3 2

13 13 6 4 3 2

14 14 7 4 3 2

15 15 7 5 3 3

16 16 8 5 4 3

17 17 8 5 4 3

18 18 9 6 4 3

19 19 9 6 4 3

20 20 10 6 5 4

Table 2-4 Event Frequency Examples (continued)

Number of Events
Received by the Event
Manager (Per Second)

Number of Events
Sent to Subscribed
Consumer (Per
Second) freq = 1 freq = 2 freq = 3 freq = 4 freq = 5
007-4661-001 57

2: Event Manager API
getConfigValue()
typedef void *SearchMarker_t;

SearchMarker_t getConfigValue(const char *key,
const char **value,
SearchMarker_t from);

The getConfigValue() function retrieves the configuration value for a specified item.

Parameters:

*key pointer to a character string that contains the search key

**value pointer to the location where the result string pointer is stored

from token that specifies where the function should begin its search (Set this
parameter to NULL for the first getConfigValue() function call and
set it to the return value from the previous getConfigValue() function
call to continue searching from the point where the previous search
ended.)

Return value:

• Success: A token that indicates the location to begin the search the next time that the
function is called.

• Failure: None
58 007-4661-001

Chapter 3

3. Creating Producer, Subscriber, and Consumer
Applications

This chapter covers the following topics:

• Creating a producer application

• Creating a subscriber application

• Creating a consumer application

Creating a Producer Application

Producer applications must include Event Manager application programming interface
(API) function calls that create and submit events to the Event Manager.

Figure 3-1 summarizes the steps necessary to create an event and send it to the Event
Manager. The text following the figure provides detailed information about each step.
Refer to Chapter 2, “Event Manager API,” for specific information about the individual
functions.
007-4661-001 59

3: Creating Producer, Subscriber, and Consumer Applications
Figure 3-1 Creating and Submitting an Event from a Producer Application

4
(Optional)

Add the event data:

 emgrAddItemToEvent()

or

 emgrAddTaggedDataToEvent()

or

 emgrAddDataToEvent()

or

 emgrAddTaggedFileToEvent()

or

 emgrAddFileToEvent()

6
Free the allocated memory:

 emgrFreeEvent()

5
Send the event to the Event Manager:

 emgrSendEvent()

or

 emgrForwardEvent()

3
 Allocate memory for the event:

 emgrAllocateEvent()

2
(Optional)

Verify that the Event Manager daemon is available:

 emgrIsDaemonInstalled()

 emgrIsDaemonStarted()

1
 Include the Event Manager API header file:

 #include <emgrapi.h>
60 007-4661-001

Creating a Producer Application
1. Include the Event Manager API header file so that you can access the Event
Manager API functions:

#include <emgrapi.h>

2. Verify that the Event Manager daemon is available:

• Use the emgrIsDaemonInstalled() function to verify that the eventmond
daemon is installed on the system.

• Use the emgrIsDaemonStarted() function to verify that the emgr daemon is
running so that the producer application can send event data to it.

Note: This step is optional. These functions work only with the default
configuration; if you modify how the Event Manager is installed or configured, these
functions may fail.

3. Use the emgrAllocEvent() function to allocate memory for the event.

4. Add information to the event:

Use the emgrAddItemToEvent() function to add a character name-value.

or

Use the emgrAddTaggedDataToEvent() or emgrAddDataToEvent() function to add
binary data to the event.

or

Use the emgrAddTaggedFileToEvent() or emgrAddFileToEvent() function to add
a file from the local filesystem.

Tips:

Normally, you should use the Tagged version of the commands because tagged data
can be accessed faster.

Be careful with data that you added to an event using the
emgrAddTaggedDataToEvent() and emgrAddDataToEvent() functions. The API
does not free any passed pointers; you must keep the pointers valid until you send
the event information and free memory.

Note: This step is optional. You can create an event that has no data; however,
normally, you should attach data to an event before you send the event to the Event
Manager.
007-4661-001 61

3: Creating Producer, Subscriber, and Consumer Applications
5. Use the emgrSendEvent() or emgrForwardEvent() function to send the event to
the Event Manager daemon (eventmond).

6. Use the emgrFreeEvent() function to free the memory that you allocated for the
event.

Example 3-1 shows an example producer that allocates an event, adds several types of
data to it, sends the event to Event Manager, and frees the memory allocated to the event.

Example 3-1 Example Producer Code

#include <stdio.h>
#include <string.h>

#include <emgrapi.h>

main()
{
 EmgrEvent_t *e;
 int ret;
 char *err, *val;

 /*--- Define data to send ---*/

 char *NAME1 = "HDSIZE", *NAME2 = "MEMSIZE";
 char *VALUE1 = "30GB", *VALUE2 = "256MB";
 int class=123,type=456,version=0;
 char *origin = "syslog";
 char *appname = "unix";
 char *databuf;
 int datasz;

 /*---- Initialize the event header and body----*/

 e = emgrAllocEvent(class,type,version,origin,appname);

/*--- Add data to event---*/

 if(emgrAddItemToEvent(e,NAME1, NULL)!= 0) {
 printf("Error.\n");
 }

 if(emgrAddItemToEvent(e,NAME2, VALUE2)!= 0) {
 printf("Error.\n");
62 007-4661-001

Creating a Producer Application
 }

 /*--- Add file to event ---*/

 if(ret = emgrAddFileToEvent(e,"/tmp/testfile"))
 printf("\n Failure adding file.\n");

 /*--- Add binary data to event ---*/

/* NOTE: databuf memory will not be freed by emgrFreeEvent()*/

 if(ret = emgrAddDataToEvent(e,databuf, datasz))
 printf("\n Failure adding binary data.\n");

 /*--- Send the event to the Event Manager ---*/

 if((err = emgrSendEvent(e,NULL)) != 0) {
 printf("\n Failure sending data: errcode %d\n",ret);

/*--- Free the memory allocated to the event ---*/

 emgrFreeEvent(e);
}

007-4661-001 63

3: Creating Producer, Subscriber, and Consumer Applications
Creating a Subscriber Application

Subscriber applications perform the following functions:

• Creating, updating, and submitting subscription events

• Creating, updating, and submitting unsubscription events

Subscription events indicate that the Event Manager should send information about a
specific event to a specific consumer application. Subscription events specify how the
Event Manager should notify the consumer about the event (load a consumer DSO, send
event information to an executable application via shared memory, send event
information to an executable application via command-line options, or forward the event
to a consumer application on another system). Several Event Manager API functions are
available to configure how and when the Event Manager should send event information
to consumer applications.

Unsubscription events indicate that a consumer no longer needs to receive information
about a specific event. When the Event Manager receives an unsubscription event, it
stops sending information about the specified event to the specified consumer.

Creating, Modifying, and Submitting Subscription Events

You must subscribe a consumer to an event to enable the consumer application to receive
event information from the eventmond daemon. You do this by creating a subscription
event and submitting it to the eventmond daemon.

Figure 3-2 summarizes the steps needed to create, modify, and submit subscription
events. The text following the figure provides detailed information about each step. Refer
to Chapter 2, “Event Manager API,” for specific information about the individual
functions.
64 007-4661-001

Creating a Subscriber Application
Figure 3-2 Creating/Updating and Submitting a Subscription Event from a Subscriber
Application

3
To create a subscription event, use the

following function:

 emgrNewSubscribe()

and then use one of the following functions:

 emgrSubscribeSpecDsoConsumer()

or

 emgrSubscribeSpecExecConsumer()

or

 emgrSubscribeExecShMemConsumer()

2
Optional:

Verify that the Event Manager is available:

 emgrIsDaemonInstalled()

 emgrIsDaemonStarted()

1
Include the Event Manager API header file:

 #include <emgrapi.h>

5
Free the allocated memory:

 emgrFreeEvent()

4
Send the event to the Event Manager:

 emgrSendEvent()

or

 emgrRunSubscribe()

To update a subscription event, use one or more

of the following functions:

 emgrSubscribeSpecPriority()

or

 emgrSubscribeSpecFacility()

or

 emgrSubscribeSpecRegexpMap()

or

 emgrSubscribeSpecTimeFreq()

or

 emgrSubscribeSpecCntFreq()

Create or update a subscription event :
007-4661-001 65

3: Creating Producer, Subscriber, and Consumer Applications
1. Include the Event Manager API header file so that you can access the Event
Manager API functions:

#include <emgrapi.h>

2. Verify that the Event Manager daemon is available:

• Use the emgrIsDaemonInstalled() function to verify that the eventmond
daemon is installed on the system.

• Use the emgrIsDaemonStarted() function to verify that the eventmond
daemon is running so the producer application can send event data to it.

Note: This step is optional. These functions work only with the default
configuration; if you modify how the Event Manager is installed or configured, these
functions may fail.

3. Create or update the subscription event:

To create a subscription event, perform the following actions:

• Use the emgrNewSubscribe() function to allocate a new subscription event
structure and initialize the event header with data.

• Perform one of the following actions to subscribe a consumer to the event:

Use the emgrSubscribeSpecDsoConsumer() function to subscribe events from
consumers that are implemented as distributed shared object (DSO) libraries
that are called from the Event Manager server.

or

Use the emgrSubscribeSpecExecConsumer() function to subscribe events
from applications that execute through the fork() or exec() command.
(Event parameters pass to the consumer through the command line.)

or

Use the emgrSubscribeExecShMemConsumer() function to subscribes events
from consumer applications that execute through the fork() or exec()
commands and use shared memory. (Event parameters pass to the consumer
applications via shared memory handoffs handled by the API layer.)
66 007-4661-001

Creating a Subscriber Application
To update a subscription event, perform one or more of the following actions:

• Use the emgrSubscribeSpecPriority() function to add a tagged item to a
subscription event to specify an optional event priority filter for subscription
matching.

• Use the emgrSubscribeSpecFacility() function to add a tagged item to a
subscription event to specify an optional event facility filter for subscription
matching.

• Use the emgrSubscribeSpecRegexpMap() function to add a tagged item to a
subscription event to specify an optional untagged event’s class and type
mapping before forwarding it to a subscribed consumer.

• Use the emgrSubscribeSpecTimeFreq() function to add a tagged item to a
subscription event that specifies how often (events/second) a matching event
should be sent to a matching subscriber.

• Use the emgrSubscribeSpecCntFreq() function to add a tagged item to a
subscription event to specify how often (one out of n events) a matching event
should be sent to a matching subscriber.

4. Use the emgrSendEvent() or emgrRunSubscribe() function to send the event to
the Event Manager daemon (eventmond).

5. Use the emgrFreeEvent() function to free the memory that you allocated for the
event.
007-4661-001 67

3: Creating Producer, Subscriber, and Consumer Applications
Examples

The following examples show how to subscribe various types of consumer applications
to events.

Example 3-2 Example Code to Subscribe a DSO Consumer

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <string.h>

#include "emgrapi.h"

main()
{
 int i = 0;

 const char *host = "localhost";

 const char *sAppName = "tstApp";
 int sClass = 123;
 int sType = 345;
 const char *sSource = NULL;
 const char *sOrigin = NULL;

 const char *sDsoPath = "./libtstdso.so";
 const char *sDsoFunc = "TstDso";
 const char *sDsoPrms = "p1,p2,p3";

 EmgrEvent_t *pSubscrEvent =
 emgrNewSubscribe(sAppName, sClass, sType, sSource, sOrigin);

 emgrSubscribeSpecDsoConsumer(pSubscrEvent,
 sDsoPath, sDsoFunc, sDsoPrms);

 emgrSendEvent(pSubscrEvent, host);

 emgrFreeEvent(pSubscrEvent);
}

68 007-4661-001

Creating a Subscriber Application
Example 3-3 Example Code to Subscribe an Executable Consumer

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <string.h>

#include <emgrapi.h>

main()
{

 int i = 0;

 const char *host = "localhost";

 const char *sAppName = "tstApp";
 int sClass = 123;
 int sType = 345;
 const char *sSource = NULL;
 const char *sOrigin = NULL;

 const char *sExecPath = "/bin/ls";
 const char *sExecPrms = "-l";

 EmgrEvent_t *pSubscrEvent =
 emgrNewSubscribe(sAppName, sClass, sType, sSource, sOrigin);

 emgrSubscribeSpecExecConsumer(pSubscrEvent, sExecPath, sExecPrms);

 emgrSendEvent(pSubscrEvent, host);

 emgrFreeEvent(pSubscrEvent);
}

007-4661-001 69

3: Creating Producer, Subscriber, and Consumer Applications
Example 3-4 Example Code to Subscribe a Shared Memory Consumer

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <string.h>

#include <emgrapi.h>

main()
{
 int i = 0;

 const char *sAppName = "tstApp";
 int sClass = 123;
 int sType = 345;
 const char *sSource = "minsk-linux.csd.sgi.com";
 const char *sOrigin = "tstApp";

 const char *sExecPath = "tstShmExec";

 EmgrEvent_t *pSubscrEvent =
 emgrNewSubscribe(sAppName, sClass, sType, sSource, sOrigin) ;
 emgrSubscribeSpecExecShMemConsumer(pSubscrEvent, sExecPath, NULL);

 emgrSendEvent(pSubscrEvent, NULL);

 emgrFreeEvent(pSubscrEvent);
}

70 007-4661-001

Creating a Subscriber Application
Creating, Modifying, and Submitting Unsubscription Events

When a consumer no longer requires information about an event from the Event
Manager, you should unsubscribe the event for that consumer. You do this by creating an
unsubscription event and sending it to the eventmond daemon.

Figure 3-3 summarizes the steps necessary to create, modify, and submit unsubscription
events. The text following the figure provides detailed information about each step. Refer
to Chapter 2, “Event Manager API,” for specific information about the individual
functions.

Figure 3-3 Creating/Updating and Submitting an Unsubscription Event from a Subscriber
Application

3
To create an unsubscription event, use the

following function:

 emgrNewUnsubscribe()

and then use one of the following functions:

 emgrSubscribeSpecDsoConsumer()

or

 emgrSubscribeSpecExecConsumer()

or

 emgrSubscribeExecShMemConsumer()

2
Optional:

Verify that the Event Manager is available:

 emgrIsDaemonInstalled()

 emgrIsDaemonStarted()

1
Include the Event Manager API header file:

 #include <emgrapi.h>

5
Free the allocated memory:

 emgrFreeEvent()

4
Send the event to the Event Manager:

 emgrSendEvent()

or

 emgrUnsubscribeEvent()

To update an unsubscription event, use one or

more of the following functions:

 emgrSubscribeSpecPriority()

or

 emgrSubscribeSpecFacility()

or

 emgrSubscribeSpecRegexpMap()

or

 emgrSubscribeSpecTimeFreq()

or

 emgrSubscribeSpecCntFreq()

Create or update an unsubscription event :
007-4661-001 71

3: Creating Producer, Subscriber, and Consumer Applications
1. Include the Event Manager API header file so that you can access the Event
Manager API functions:

#include <emgrapi.h>

2. Verify that the Event Manager daemon is available:

• Use the emgrIsDaemonInstalled() function to verify that the eventmond
daemon is installed on the system

• Use the emgrIsDaemonStarted() function to verify that the emgr daemon is
running so the producer application can send event data to it.

Note: This step is optional. These functions work only with the default
configuration; if you modify how the Event Manager is installed or configured, these
functions may fail.

3. Create/update the unsubscription event:

To create an unsubscription event, perform the following actions:

• Use the emgrNewUnsubscribe() function to allocate a new unsubscription
event structure and initialize the event header with data.

• Perform one of the following actions to unsubscribe a consumer from an event:

Use the emgrSubscribeSpecDsoConsumer() function to unsubscribe events
from consumers that are implemented as distributed shared object (DSO)
libraries that are called from the Event Manager server.

or

Use the emgrSubscribeSpecExecConsumer() function to unsubscribe events
from applications that execute through the fork() or exec() command.
(Event parameters pass to the consumer through the command line.)

or

Use the emgrSubscribeExecShMemConsumer() function to unsubscribe events
from consumer applications that execute through the fork() or exec()
commands and use shared memory. (Event parameters pass to the consumer
applications via shared memory handoffs handled by the API layer.)
72 007-4661-001

Creating a Subscriber Application
To update an unsubscription event, perform one or more of the following actions:

• Use the emgrSubscribeSpecPriority() function to add a tagged item to an
unsubscription event to specify an optional event priority filter for subscription
matching.

• Use the emgrSubscribeSpecFacility() function to add a tagged item to an
unsubscription event to specify an optional event facility filter for subscription
matching.

• Use the emgrSubscribeSpecRegexpMap() function to add a tagged item to an
unsubscription event to specify an optional untagged event’s class and type
mapping before forwarding it to a subscribed consumer.

• Use the emgrSubscribeSpecTimeFreq() function to add a tagged item to an
unsubscription event that specifies how often (events/second) a matching
event should be sent to a matching subscriber.

• Use the emgrSubscribeSpecCntFreq() function to add a tagged item to an
unsubscription event to specify how often (1/n) a matching event should be
sent to a matching subscriber.

4. Use the emgrSendEvent() or emgrRunUnsubscribe() function to send the event to
the Event Manager daemon (eventmond).
007-4661-001 73

3: Creating Producer, Subscriber, and Consumer Applications
Examples

The unsubscription code must contain the same components as the subscribe code
(except that the emgrNewUnsubscribe() function replaces the emgrNewSubscribe()
function). The following examples show how to unsubscribe various types of consumer
applications from events.

Example 3-5 Example Code to Unsubscribe a DSO Consumer

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <string.h>

#include "emgrapi.h"

main()
{
 int i = 0;

 const char *host = "localhost";

 const char *sAppName = "tstApp";
 int sClass = 123;
 int sType = 345;
 const char *sSource = NULL;
 const char *sOrigin = NULL;

 const char *sDsoPath = "./libtstdso.so";
 const char *sDsoFunc = "TstDso";
 const char *sDsoPrms = "p1,p2,p3";

EmgrEvent_t *pUnsubscrEvent =
emgrNewUnsubscribe(sAppName, sClass, sType, sSource, sOrigin);

emgrSubscribeSpecDsoConsumer(pUnsubscrEvent,
sDsoPath, sDsoFunc, sDsoPrms);

emgrSendEvent(pUnsubscrEvent, host);

emgrFreeEvent(pUnsubscrEvent);
}

74 007-4661-001

Creating a Subscriber Application
Example 3-6 Example Code to Unsubscribe an Executable Consumer

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <string.h>

#include <emgrapi.h>

main()
{

int i = 0;

const char *host = "localhost";

const char *sAppName = "tstApp";
int sClass = 123;
int sType = 345;
const char *sSource = NULL;
const char *sOrigin = NULL;

const char *sExecPath = "/bin/ls";
const char *sExecPrms = "-l";

EmgrEvent_t *pUnsubscrEvent =
emgrNewUnsubscribe(sAppName, sClass, sType, sSource, sOrigin);

emgrSubscribeSpecExecConsumer(pUnsubscrEvent, sExecPath, sExecPrms);

emgrSendEvent(pUnsubscrEvent, host);

emgrFreeEvent(pUnsubscrEvent);

}

007-4661-001 75

3: Creating Producer, Subscriber, and Consumer Applications
Example 3-7 Example Code to Unsubscribe a Shared Memory Consumer

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <string.h>

#include <emgrapi.h>

main()
{

int i = 0;

const char *sAppName = "tstApp";
int sClass = 123;
int sType = 345;
const char *sSource = "minsk-linux.csd.sgi.com";
const char *sOrigin = "tstApp";

const char *sExecPath = "tstShmExec";

EmgrEvent_t *pUnsubscrEvent =
emgrNewUnsubscribe(sAppName, sClass, sType, sSource, sOrigin) ;
emgrSubscribeSpecExecShMemConsumer(pUnsubscrEvent, sExecPath, NULL);

emgrSendEvent(pUnsubscrEvent, NULL);

emgrFreeEvent(pUnsubscrEvent);

}

76 007-4661-001

Creating a Consumer Application
Creating a Consumer Application

When the Event Manager detects an event, it compares the event with the current
subscription parameters; if there is a match, the Event Manager executes the proper
consumer (using the method specified in the subscription event for the consumer) to
send the event to it. Then, the consumer can use API functions to access the event
payload (data).

Figure 3-4 summarizes the steps necessary to access the event payload. The text
following the figure provides detailed information about each step. Refer to Chapter 2,
“Event Manager API,” for specific information about the individual functions.

Figure 3-4 Accessing an Event from a Consumer Application

4

2

1
Include the Event Manager API header file:

 #include <emgrapi.h>

5 Process the event

3 If it is a shared memory consumer, initilialize the event structure in shared memory:

 emgrShmCliInitEvent() and/or emgrShmInitEvent()

If it is a shared library consumer, the function prototype should have the same

format as the following ConsumerEntry_t protoype:

 typedef int ConsumerEntry_t(EmgrEvent_t *event,

 int argc, const char *argv[]);

Retrieve the data:

Get the desired (name, value) pair:

 emgrGetEventItem()

If you know the name of the item:

Get the first (name, value) pair:

 emgrGetFirstEventItem()

If it exists, get the next (name, value) pair:

 emgrGetNextEventItem()

If you do not know the name of the item:

Note: Use a loop, if necessary, to retrieve all items.
007-4661-001 77

3: Creating Producer, Subscriber, and Consumer Applications
1. Include the Event Manager API header file so that you can access the Event
Manager API functions:

#include <emgrapi.h>

2. If the consumer is a shared library consumer, the function prototype must use the
same format as the following ConsumerEntry_t prototype to enable the Event
Manager to call it:

typedef int ConsumerEntry_t(EmgrEvent_t *event,
int argc,
const char *argv[]);

For example:

int TstDso(EmgrEvent_t *event,
int argc,
char *argv[]);

3. If the consumer is a shared memory consumer, use the emgrShmInitEvent() or
emgrShmCliInitEvent() function to initialize the event structure from shared
memory.

4. Retrieve the data using one of the following methods:

• If you know the name of the item:

Use the emgrGetEventItem() function to get the value of the item. You must
specify the name of the item as a parameter to the function.

• If you do not know the name of the item:

Use the emgrGetFirstEventItem() function to get a (name, value) pair. If there
is more than one (name, value) pair, use the emgrGetNextItem() function in a
loop to load all of the (name, value) pairs.

5. Process the event.
78 007-4661-001

Creating a Consumer Application
Example

The following example shows shared library consumer code that accesses all (name,
value) pairs in an event.

Example 3-8 Example Code to Access Event Data from a Shared Library Consumer
Application

<#include emgrapi.h>

int TstDso(EmgrEvent_t *event, int argc, char *argv[]) {
 int i;
 const char *name;
 const void *value;
 int type = 0, length = 0;

 printf("consumer_main\n");
 printf(" type=%d;class=%d;version=%d",
 event->header.evType,event->header.evClass,event->header.version);

 printf(" ORIGIN=%s;APPNAME=%s;SOURCE=%s\n",
 event->origin,event->appname,event->source);

 i = emgrGetFirstEventItem(event, &name, &value, &type, &length);
 while (i == 0) {
 printf(" %s=[%s];\n",name,(char *) value);
 i = emgrGetNextEventItem(event, &name, &value, &type, &length);
 }

 printf(" Number of args: %d\n",argc-1);
 for(i=0; i< argc; i++)
 printf(" arg[%d] = '%s'\n",i,argv[i]);

 return 0;
}

007-4661-001 79

3: Creating Producer, Subscriber, and Consumer Applications
The following example code accesses event data from a shared memory consumer.

Example 3-9 Example Code to Access Event Data from a Shared Memory Consumer

int main(int argc, const char *argv[]) {

 int i = 0;

 for(i = 0; i < argc; i++) {
 printf("Arg[%d] = `%s'\n", i, argv[i]);
 }

 {
 int error = 0;
 EmgrEvent_t *pEvent = emgrShmCliInitEvent(argc, argv, &error);

 if (pEvent != NULL) {
 emgrPrintEvent(pEvent, stdout);

 emgrFreeEvent(pEvent);
 } else {
 fprintf(stderr,
 "Error %d initializing event from the shared memory\n",
 error);
 }

 }
 return 0;
}

80 007-4661-001

Chapter 4

4. eventmond Command-line Options

Use the eventmond command to configure the eventmond daemon or to send commands
to tasks that eventmond is running.

Note: The task interface is complex and remains proprietary until SGI thoroughly tests
it. When the task interface becomes available for general use, this document will be
revised to provide more information about the task interface and how to write tasks that
use it. SGI recommends that you do not attempt to create and load custom tasks at this
time.

Configuring the Daemon

Use the following command-line options to configure how the eventmond daemon
behaves:

eventmond [-p <port_number>] [-s <socket_name>] [-c <subscription_file_name>]
[-B-]

Table 4-1 eventmond Command-line Options to Configure the Daemon

Option Description

-p <port_number> Specifies the TCP/IP port that eventmond uses to send and
receive event information (default: 5553)

-s <socket_name> Specifies the UNIX domain socket that eventmond uses for
the command execution interface (load task, run task, and so
on) (default: /tmp/s.eventmond)

-c <subscription_file_name> Specifies a file in which eventmond saves the current
subscription data so consumers do not have to resubscribe
events if the eventmond daemon is stopped and restarted

-B- Specifies that eventmond should not run as a daemon
007-4661-001 81

4: eventmond Command-line Options
Sending Commands to Tasks

Use the following command-line options to send commands to tasks that the Event
Manager is running:

eventmond [-L <taskname> -P <parameters>] [-U <taskname> -P <parameters>]
[-S <taskname> -P <parameters>] [-Q <taskname> -P <parameters>]
[-I <taskname> -P <parameters>] [-C <taskname> -P <parameters>]
[-M <taskname> -P <parameters>] [-T [A|I]]

Displaying Help

Use the -h command-line option to display information about the command-line options
that are available:

eventmond -h

Table 4-2 eventmond Command-line Options to Start and Stop Tasks

Optiona

a. <taskname> is either the name of the task (for example, syslog) or the full DSO name (for example,
libsyslog.so). The full pathname (for example, /usr/lib/syslog) of the DSO is not required.

Descriptionb

b. The commands are not applicable to all tasks. For example, the syslog task uses only the load task and un-
load task commands.

-C <taskname> -P <parameters> Sends a command to a running task

-I <taskname> -P <parameters> Returns information about a running task

-L <taskname> -P <parameters> Loads a task into the Event Manager and starts it

-M <taskname> -P <parameters> Sends a message to a running task

-Q <taskname> -P <parameters> Stops a running task

-S <taskname> -P <parameters> Starts a loaded task

-T [A|I] Lists the loaded tasks and shows the current status of
each task

Use -T A to show all active tasks. Use -T I to show
all idle tasks. Use -T to show all tasks.

-U <taskname> -P <parameters> Stops a running task and unloads it
82 007-4661-001

	Record of Revision
	Figures
	Tables
	Examples
	About This Document
	Obtaining Publications
	Conventions
	Reader Comments

	Overview
	Event Manager
	Event Producer
	Event Subscriber
	Event Consumer
	Event Manager API

	Event Manager API
	API Data Structures
	Event Structure
	GeneralBlock Structure

	API Functions
	emgrAddDataToEvent()
	emgrAddFileToEvent()
	emgrAddGbToEvent()
	emgrAddIntIemToEvent()
	emgrAddItemToEvent()
	emgrAddSubscribe()
	emgrAddTaggedDataToEvent()
	emgrAddTaggedFileToEvent()
	emgrAddUnsubscribe()
	emgrAllocEvent()
	emgrBuildQSearch()
	emgrCheckEvent()
	emgrCloneEvent()
	emgrCloneGb()
	emgrForwardEvent()
	emgrFreeEvent()
	emgrGetEventItem()
	emgrGetFirstEventGb()
	emgrGetFirstEventItem()
	emgrGetNextEventGb()
	emgrGetNextEventItem()
	emgrIsDaemonInstalled()
	emgrIsDaemonStarted()
	emgrNewQuery()
	emgrNewSubscribe()
	emgrNewUnsubscribe()
	emgrPrintEvent()
	emgrRunQuery()
	emgrRunSubscribe()
	emgrRunUnSubscribe()
	emgrSearchGb()
	emgrSendEvent()
	emgrSetToForward()
	emgrShmCliInitEvent()
	emgrShmInitEvent()
	emgrSubscribeSpecCntFreq()
	emgrSubscribeSpecDsoConsumer()
	emgrSubscribeSpecExecConsumer()
	emgrSubscribeSpecExecShMemConsumer()
	emgrSubscribeSpecFacility()
	emgrSubscribeSpecForwardConsumer()
	emgrSubscribeSpecPriority()
	emgrSubscribeSpecRegexpMap()
	emgrSubscribeSpecTimeFreq()
	getConfigValue()

	Creating Producer, Subscriber, and Consumer Applications
	Creating a Producer Application
	Creating a Subscriber Application
	Creating, Modifying, and Submitting Subscription Events
	Examples

	Creating, Modifying, and Submitting Unsubscription Events
	Examples

	Creating a Consumer Application
	Example

	eventmond Command-line Options
	Configuring the Daemon
	Sending Commands to Tasks
	Displaying Help

