
Intel® Math Kernel Library
for Linux* OS
User’s Guide

July 2010

Document Number: 314774-012US

World Wide Web: http://www.intel.com/software/products/

http://www.intel.com/software/products/

ii

Version Version Information Date

-001 Original issue. Documents Intel® Math Kernel Library (Intel® MKL) 9.0 gold
release.

September 2006

-002 Documents Intel® MKL 9.1 beta release. "Getting Started", "LINPACK and MP
LINPACK Benchmarks" chapters and "Support for Third-Party and Removed
Interfaces" appendix added. Existing chapters extended. Document
restructured. List of examples added.

January 2007

-003 Documents Intel® MKL 9.1 gold release. Existing chapters extended.
Document restructured. More aspects of ILP64 interface discussed. Section
"Configuring the Eclipse* IDE CDT to Link with Intel MKL" added to chapter 3.
Cluster content is organized into one separate chapter 9 "Working with Intel®
Math Kernel Library Cluster Software" and restructured, appropriate links
added.

June 2007

-004 Documents Intel® MKL 10.0 Beta release. Layered design model has been
described in chapter 3 and the content of the entire book adjusted to the
model. Automation of setting environment variables at startup has been
described in chapter 4. New Intel MKL threading controls have been described
in chapter 6. The User’s Guide for Intel MKL merged with the one for Intel MKL
Cluster Edition to reflect consolidation of the respective products.

September 2007

-005 Documents Intel® MKL 10.0 Gold release. Configuring of Eclipse CDT 4.0 to
link with Intel MKL has been described in chapter 3. Compatibility OpenMP*

run-time library (libiomp) has been described.

October 2007

-006 Documents Intel® MKL 10.1 beta release. Information on dummy libraries in
Table "High-level directory structure" has been further detailed. Information
on the Intel MKL configuration file removed. Section “Accessing Man Pages”
has been added to chapter 3. Section "Support for Boost uBLAS Matrix-Matrix
Multiplication" has been added to chapter 7. Chapter “Getting Assistance for
Programming in the Eclipse* IDE” has been added.

May 2008

-007 Documents Intel® MKL 10.1 gold release. Linking examples for IA-32
architecture and section "Linking with Computational Libraries" have been
added to chapter 5. Integration of DSS/PARDISO into the layered structure
has been documented. Two Fortran code examples have been added.

August 2008

-008 Documents Intel® MKL 10.2 beta release. Prebuilt Fortran 95 interface
libraries and modules for BLAS and LAPACK have been described. Support for
Intel® Advanced Vector Extensions (Intel® AVX) has been documented.
Discontinuation of support for dummy libraries and legacy linking model has
been also documented. Chapter 5 has been restructured.

January 2009

-009 Documents Intel® MKL 10.2 gold release. The document has been
considerably restructured. The "Getting Started" chapter has been enhanced,
as well as the description of the layered model concept. Description of the
SP2DP interface has been added to Chapter 3. The Web-based linking advisor
has been described and referenced in chapters 2 and 5.

March 2009

iii

-010 Documents Intel® MKL 10.2 update release 4. The list of FFT threaded
problems has been added to chapter 6.

January 2010

-012 Documents Intel® MKL 10.2 update release 6. Bug fixes have been done,
some feature descriptions extended and improved.

July 2010

Version Version Information Date

iv

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or go to

http://www.intel.com/design/literature.htm.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge,
Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium,
Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside,
VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

Copyright © 2006 - 2010, Intel Corporation. All rights reserved.

v

Contents

Chapter 1 Overview
Technical Support ... 1-1
About This Document .. 1-1

Related Information .. 1-2
Document Organization ... 1-2
Notational Conventions.. 1-3

Chapter 2 Getting Started
Checking Your Installation.. 2-1
Setting Environment Variables.. 2-2

Using the Web-based Linking Advisor .. 2-2
Using Intel MKL Code Examples .. 2-2
Compiler Support ... 2-3
Before You Begin Using Intel MKL ... 2-3

Chapter 3 Intel® Math Kernel Library Structure
Architecture Support ... 3-1
High-level Directory Structure .. 3-1
Layered Model Concept.. 3-3
Sequential Mode of the Library ... 3-5
Support for ILP64 Programming.. 3-6
Directory Structure in Detail... 3-8
Accessing the Intel® MKL Documentation 3-20

Contents of the Documentation Directory................................. 3-20
Viewing Man Pages ... 3-20

vi

Intel® Math Kernel Library User’s Guide

Chapter 4 Configuring Your Development Environment
Automating Setting of Environment Variables 4-1

 Configuring the Eclipse* IDE CDT to Link with Intel MKL 4-2
Configuring the Eclipse* IDE CDT 4.0 .. 4-2
Configuring the Eclipse* IDE CDT 3.x .. 4-3

Configuring the Out-of-Core (OOC) DSS/PARDISO* Solver 4-4

Chapter 5 Linking Your Application with the Intel® Math Kernel Library
Listing Libraries on a Link Line ... 5-2
Selecting Libraries to Link.. 5-3

Linking with Fortran 95 Interface Libraries 5-3
Linking with Threading Libraries ... 5-3
Linking with Computational Libraries ... 5-4
Linking with Compiler Support RTLs .. 5-6
Linking with System Libraries... 5-6
Linking Examples ... 5-6

Building Custom Shared Objects... 5-9
Intel MKL Custom Shared Object Builder.................................... 5-9
Using the Builder.. 5-10
Specifying a List of Functions ... 5-11
Distributing Your Custom Shared Object 5-11

Chapter 6 Managing Performance and Memory
Using the Intel® MKL Parallelism.. 6-1

Techniques to Set the Number of Threads 6-4
Avoiding Conflicts in the Execution Environment 6-4
Setting the Number of Threads Using an OpenMP* Environment

Variable .. 6-6
Changing the Number of Threads at Run Time............................ 6-6
Using Additional Threading Control ... 6-9

Dispatching Intel® Advanced Vector Extensions (Intel® AVX) 6-14
Tips and Techniques to Improve Performance 6-15

Coding Techniques.. 6-15
Hardware Configuration Tips .. 6-16
Managing Multi-core Performance ... 6-16

Contents

vii

Operating on Denormals... 6-18
FFT Optimized Radices ... 6-18

Using the Intel® MKL Memory Management.................................. 6-19
Redefining Memory Functions.. 6-19

Chapter 7 Language-specific Usage Options
Using Language-Specific Interfaces with Intel® MKL 7-1

 Fortran 95 Interfaces to LAPACK and BLAS................................ 7-3
Compiler-dependent Functions and Fortran 90 Modules 7-4

Mixed-language Programming with Intel® MKL 7-5
Calling LAPACK, BLAS, and CBLAS Routines from C Language

Environments .. 7-5
Using Complex Types in C/C++ .. 7-7
Calling BLAS Functions that Return the Complex Values in C/C++

Code .. 7-7
Support for Boost uBLAS Matrix-matrix Multiplication 7-10
Invoking Intel® MKL Functions from Java* Applications.............. 7-12

Chapter 8 Coding Tips
Aligning Data for Consistent Results.. 8-1

Chapter 9 Working with the Intel® Math Kernel Library Cluster Soft-
ware
Linking with ScaLAPACK and Cluster FFTs 9-1
Setting the Number of Threads .. 9-3
Using Shared Libraries .. 9-3
Building ScaLAPACK Tests.. 9-4
Examples for Linking with ScaLAPACK and Cluster FFT 9-4

Examples for Linking a C Application ... 9-4
Examples for Linking a Fortran Application 9-5

Chapter 10 Getting Assistance for Programming in the Eclipse* IDE
Viewing the Intel® MKL Reference Manual in the Eclipse* IDE......... 10-1
Searching the Intel Web Site from the Eclipse* IDE........................ 10-3
Using Context-Sensitive Help in the Eclipse* IDE CDT 10-4

viii

Intel® Math Kernel Library User’s Guide

Chapter 11 LINPACK and MP LINPACK Benchmarks
Intel® Optimized LINPACK Benchmark for Linux OS* 11-1

Contents ... 11-1
Running the Software ... 11-2
Known Limitations .. 11-3

Intel® Optimized MP LINPACK Benchmark for Clusters 11-4
Contents ... 11-5
Building the MP LINPACK ... 11-8
New Features... 11-9
Benchmarking a Cluster .. 11-9

Appendix A Intel® Math Kernel Library Language Interfaces Support

Appendix B Support for Third-Party Interfaces
GMP* Functions ... B-1
FFTW Interface Support .. B-1

Index

List of Tables
Table 1-1 Notational Conventions... 1-3

Table 2-1 Scripts to Set the Environment Variables 2-2

Table 2-2 What You Need to Know Before You Begin....................... 2-3

Table 3-1 Architecture-specific Implementations 3-1

Table 3-2 High-level Directory Structure 3-2

Table 3-3 Intel® MKL Layers... 3-4

Table 3-4 Compiling for the ILP64 and LP64 Interfaces 3-6

Table 3-5 Integer Types.. 3-7

Table 3-6 Detailed Structure of the IA-32 Architecture Directory lib/32 3-9

Table 3-7 Detailed Structure of the Intel® 64 Architecture Directory
lib/em64t .. 3-12

Table 3-8 Detailed Structure of the IA-64 Architecture Directory
lib/64 .. 3-17

Contents

ix

Table 3-9 Contents of the doc Directory....................................... 3-20

Table 5-1 Typical Libraries to List on a Link Line............................. 5-1

Table 5-2 Selecting Threading Libraries .. 5-4

Table 5-3 Computational Libraries to Link, by Function Domain........ 5-5

Table 6-1 Threaded 1D c2c Transforms with Interleaved Complex
Data Layout.. 6-2

Table 6-2 How to Avoid Conflicts in the Execution Environment for
Your Threading Model .. 6-5

Table 6-3 Environment Variables for Threading Controls................. 6-10

Table 6-4 Interpretation of MKL_DOMAIN_NUM_THREADS Values ... 6-13

Table 7-1 Interface Libraries and Modules 7-1

Table 11-1 Contents of the LINPACK Benchmark 11-2

Table 11-2 Contents of the MP LINPACK Benchmark 11-5

List of Examples
Example 6-1 Changing the Number of Threads 6-6

Example 6-2 Setting the Number of Threads to One...................... 6-11

Example 6-3 Setting An affinity Mask by Operating System Means
Using the Intel® Compiler ... 6-17

Example 6-4 Redefining Memory Functions 6-20

Example 7-1 Calling a Complex BLAS Level 1 Function from C 7-8

Example 7-2 Calling a Complex BLAS Level 1 Function from C++..... 7-9

Example 7-3 Using CBLAS Interface Instead of Calling BLAS Directly
from C .. 7-10

Example 8-1 Aligning Addresses at 16-byte Boundaries 8-2

x

Intel® Math Kernel Library User’s Guide

List of Figures
Figure 7-1 Column-major Order versus Row-major Order................ 7-6

Figure 10-1 Intel® MKL Help in the Eclipse* IDE 10-2

Figure 10-2 Hits to the Intel Web Site in the Eclipse* IDE Help
Search ... 10-3

Figure 10-3 Infopop Window with an Intel® MKL Function
Description ... 10-4

Figure 10-4 F1 Help in the Eclipse* IDE...................................... 10-5

Figure 10-5 F1 Help Search in the Eclipse* IDE CDT..................... 10-6

1-1

Overview 1
The Intel® Math Kernel Library (Intel® MKL) offers highly optimized, thread-safe math
routines for science, engineering, and financial applications that require maximum
performance.

Technical Support
Intel provides a support web site, which contains a rich repository of self help information,
including getting started tips, known product issues, product errata, license information,
user forums, and more. Visit the Intel® MKL support website at
http://www.intel.com/software/products/support/ .

About This Document
Read this document after you have installed Intel MKL on your system. If you have not
completed the installation, see the Intel® Math Kernel Library Installation Guide (file
Install.txt).

The Intel MKL User's Guide provides usage information for the library. The usage
information covers the organization, configuration, performance, and accuracy of Intel
MKL, specifics of routine calls in mixed-language programming, linking, and more.

This guide describes OS-specific usage of Intel MKL, along with OS-independent features.
It contains usage information for all Intel MKL function domains, listed in Table A-1 (in
Appendix A).

This User’s Guide provides the following information:

• Describes post-installation steps to help you start using the library

• Shows you how to configure the library with your development environment

• Acquaints you with the library structure

• Explains how to link your application to the library and provides simple usage scenarios

http://www.intel.com/software/products/support/

1-2

1 Intel® Math Kernel Library User’s Guide

• Describes how to code, compile, and run your application with Intel MKL.

This guide is intended for Linux OS programmers with beginner to advanced experience in
software development.

Related Information
To reference how to use the library in your application, use this guide in conjunction with
the following documents:

• The Intel MKL Reference Manual, which provides reference information on routine
functionalities, parameter descriptions, interfaces, calling syntaxes, and return values.

• The Intel® Math Kernel Library for Linux* OS Release Notes.

Document Organization
The document contains the following chapters and appendices:

Chapter 1 Overview. Introduces the Intel MKL usage information and
describes this document’s notational conventions.

Chapter 2 Getting Started. Describes post-installation steps and gives
information needed to start using Intel MKL after its installation.

Chapter 3 Intel® Math Kernel Library Structure. Discusses the structure of
the Intel MKL directory after installation.

Chapter 4 Configuring Your Development Environment. Explains how to
configure Intel MKL with your development environment.

Chapter 5 Linking Your Application with the Intel® Math Kernel Library.
Explains which libraries should be linked with your application for
your particular platform; discusses how to build custom dynamic
libraries.

Chapter 6 Managing Performance and Memory. Discusses Intel MKL
threading; shows coding techniques and gives hardware
configuration tips for improving performance of the library;
explains features of the Intel MKL memory management.

Chapter 7 Language-specific Usage Options. Discusses mixed-language
programming and the use of language-specific interfaces.

Chapter 8 Coding Tips. Presents coding tips that may be helpful to your
specific needs.

Overview 1

1-3

Chapter 9 Working with the Intel® Math Kernel Library Cluster Software.
Discusses usage of ScaLAPACK and Cluster FFTs: explains linking
of your application with these function domains, including C- and
Fortran-specific linking examples, and describes the supported
MPI.

Chapter 10 Getting Assistance for Programming in the Eclipse* IDE. Discusses
Intel MKL features that assist you while programming in the
Eclipse* IDE.

Chapter 11 LINPACK and MP LINPACK Benchmarks. Describes the Intel®
Optimized LINPACK Benchmark for Linux* OS and Intel®
Optimized MP LINPACK Benchmark for Clusters.

Appendix A Intel® Math Kernel Library Language Interfaces Support.
Summarizes information on language interfaces that Intel MKL
provides for each function domain, including the respective header
files.

Appendix B Support for Third-Party Interfaces. Describes some interfaces that
Intel MKL supports.

The document also includes an Index.

Notational Conventions
The following term is used to refer to the operating system:

Linux* OS This term refers to information that is valid on all
supported Linux* operating systems.

The following notation is used in reference to Intel MKL directories:

<mkl_directory> The main directory where Intel MKL is installed.
Replace this placeholder with the specific pathname in
the configuring, linking, and building instructions. For
more information, see Getting Started.

<Intel Compiler Pro directory> The installation directory for the Intel® C++ Compiler
Professional Edition or Intel® Fortran Compiler
Professional Edition. For more information, see Getting
Started.

Table 1-1 lists the other notational conventions:

Table 1-1 Notational Conventions

Italic Italic is used for emphasis and also indicates document names in body text, for
example:
see Intel MKL Reference Manual

1-4

1 Intel® Math Kernel Library User’s Guide

Monospace
lowercase

Indicates filenames, directory names and pathnames, for example:
 libmkl_core.a , /opt/intel/mkl/10.2.0.004

Monospace
lowercase mixed
with uppercase

Indicates commands and command-line options, for example:

icc myprog.c -L$MKLPATH -I$MKLINCLUDE -lmkl -lguide -lpthread ;

C/C++ code fragments, for example:

a = new double [SIZE*SIZE];

UPPERCASE
MONOSPACE

Indicates system variables, for example, $MKLPATH

Monospace italic Indicates a parameter in discussions: routine parameters, for example, lda;
makefile parameters, for example, functions_list; etc.
When enclosed in angle brackets, indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value, for example, <mkl directory>.
Substitute one of these items for the placeholder.

[items] Square brackets indicate that the items enclosed in brackets are optional.

{ item | item } Braces indicate that only one of the items listed between braces should be
selected. A vertical bar (|) separates the items

Table 1-1 Notational Conventions (continued)

2-1

Getting Started 2
This chapter helps you get started with the Intel® Math Kernel Library (Intel® MKL) on
Linux* OS by providing the basic information needed to start using the library, including
post-installation steps.

Checking Your Installation
After installing Intel MKL, verify that the library is properly installed and configured:

1. Check that your installation directory was created. By default, Intel MKL installs in one
of the following directories:

— /opt/intel/mkl/RR.r.y.xxx, where RR.r is the version number, y is the
release-update number, and xxx is the package number, for example,
/opt/intel/mkl/10.2.0.004

— <Intel Compiler Pro directory>/mkl, for example,
/opt/intel/Compiler/11.1/015/mkl.

2. If you want to keep multiple versions of Intel MKL installed on your system, update
your build scripts to point to the correct Intel MKL version.

3. Check that the following six files appear in the tools/environment directory:

mklvars32.sh

mklvars32.csh

mklvarsem64t.sh

mklvarsem64t.csh

mklvars64.sh

mklvars64.csh

Use these files to assign Intel MKL-specific values to several environment variables
(see Setting Environment Variables on how to do it).

4. To understand how the Intel MKL directories are structured, see Chapter 3.

2-2

2 Intel® Math Kernel Library User’s Guide

Setting Environment Variables
When the installation of Intel MKL for Linux* OS is complete, set the INCLUDE, MKLROOT,
LD_LIBRARY_PATH, MANPATH, LIBRARY_PATH, CPATH, FPATH, and NLSPATH environment
variables in the command shell using one of the script files in the tools/environment
directory. Choose the script corresponding to your system architecture and command shell
as explained in Table 2-1:

For further configuring the library, see Chapter 4.

Using the Web-based Linking Advisor
Use the Intel MKL Linking Advisor to determine the libraries and options to specify on your
link or compilation line.

The tool is available at http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor.

The Linking Advisor requests information about your system and on how you intend to use
Intel MKL (link dynamically or statically, use threaded or sequential mode, etc.). The tool
automatically generates the appropriate link line for your application.

For more information on linking with Intel MKL, see Chapter 5 and specifically Table 5-1 for
a list of non-cluster Intel MKL libraries to link against.

Using Intel MKL Code Examples
Intel MKL package includes code examples, located in the examples subdirectory of the
installation directory. Use the examples to determine:

• Whether Intel MKL is working on your system

• How you should call the library

• How to link the library

Table 2-1 Scripts to Set the Environment Variables

Architecture Shell Script File

IA-32 C mklvars32.csh

IA-32 Bash and Bourne (sh) mklvars32.sh

Intel® 64 C mklvarsem64t.csh

Intel® 64 Bash and Bourne (sh) mklvarsem64t.sh

IA-64 C mklvars64.csh

IA-64 Bash and Bourne (sh) mklvars64.sh

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Getting Started 2

2-3

The examples are grouped in subdirectories mainly by Intel MKL function domains and
programming languages. For example, the examples/spblas subdirectory contains a
makefile to build the Sparse BLAS examples, and the examples/vmlc subdirectory
contains the makefile to build the C VML examples. Source code for the examples is in the
next-level sources subdirectory.

See also:

High-level Directory Structure.

Compiler Support
Intel MKL supports compilers identified in the Release Notes. However, the library has been
successfully used with other compilers as well.

Intel MKL provides a set of include files to simplify program development by specifying
enumerated values and prototypes for the respective functions (for the list of include files,
see Table A-2). Calling Intel MKL functions from your application without an appropriate
include file may lead to incorrect behavior of the functions.

Before You Begin Using Intel MKL
Before you begin using Intel MKL, learning a few important concepts will help you get off to
a good start, as shown in Table 2-2.

Table 2-2 What You Need to Know Before You Begin

Target platform Identify the architecture of your target machine:
• IA-32 or compatible
• Intel® 64 or compatible
• IA-64 (Itanium® processor family)
Reason: Because Intel MKL libraries are located in directories corresponding to
your particular architecture (see Architecture Support), you should provide proper
paths on your link lines (see Linking Examples). To configure your development
environment for the use with Intel MKL, set your environment variables using the
script corresponding to your architecture (see Setting Environment Variables for
details).

2-4

2 Intel® Math Kernel Library User’s Guide

Mathematical
problem

Identify all Intel MKL function domains that you require:
• BLAS
• Sparse BLAS
• LAPACK
• PBLAS
• ScaLAPACK
• Sparse Solver routines
• Vector Mathematical Library functions
• Vector Statistical Library functions
• Fourier Transform functions (FFT)
• Cluster FFT
• Trigonometric Transform routines
• Poisson, Laplace, and Helmholtz Solver routines
• Optimization (Trust-Region) Solver routines
• GMP* arithmetic functions
Reason: The function domain you intend to use narrows the search in the
Reference Manual for specific routines you need. Additionally, if you are using the
Intel MKL cluster software, your link line is function-domain specific (see Working
with the Intel® Math Kernel Library Cluster Software). Coding tips may also depend
on the function domain (see Tips and Techniques to Improve Performance).

Programming
language

Though Intel MKL provides support for both Fortran and C/C++ programming, not
all the function domains support a particular language environment, for example,
C/C++ or Fortran 90/95. Identify the language interfaces that your function
domains support (see Intel® Math Kernel Library Language Interfaces Support).
Reason: In case your function domain does not directly support the needed
environment, you can use mixed-language programming (see Mixed-language
Programming with Intel® MKL).
For a list of language-specific interface libraries and modules and an example how
to generate them, see also Using Language-Specific Interfaces with Intel® MKL.

Range of integer data If your system is based on the Intel 64 or IA-64 architecture, identify whether your
application performs calculations with huge data arrays (of more than 231-1
elements).
Reason: To operate on huge data arrays, you need to select the ILP64 interface,
where integers are 64-bit; otherwise, use the default, LP64, interface, where
integers are 32-bit (see Support for ILP64 Programming).

Threading model Identify whether and how your application is threaded:
• Threaded with the Intel® compiler
• Threaded with a third-party compiler
• Not threaded
Reason: The compiler you use to thread your application determines which
threading library you should link with your application. For applications threaded
with a third-party compiler you may need to use Intel MKL in the sequential mode
(for more information, see Sequential Mode of the Library and Linking with
Threading Libraries).

Table 2-2 What You Need to Know Before You Begin (continued)

Getting Started 2

2-5

Number of threads Determine the number of threads you want Intel MKL to use.
Reason: Intel MKL is based on the OpenMP* threading. By default, the OpenMP*
software sets the number of threads that Intel MKL uses. If you need a different
number, you have to set it yourself using one of the available mechanisms. For
more information, see Using the Intel® MKL Parallelism.

Linking model Decide which linking model is appropriate for linking your application with Intel MKL
libraries:
• Static
• Dynamic
Reason: The link line syntax and libraries for static and dynamic linking are
different. For the list of link libraries for static and dynamic models, linking
examples, and other relevant topics, like how to save disk space by creating a
custom dynamic library, see Linking Your Application with the Intel® Math Kernel
Library.

MPI used Decide what MPI you will use with the Intel MKL cluster software. You are strongly
encouraged to use Intel® MPI 3.x.
Reason: To link your application with ScaLAPACK and/or Cluster FFT, the libraries
corresponding to your particular MPI should be listed on the link line (see Working
with the Intel® Math Kernel Library Cluster Software).

Table 2-2 What You Need to Know Before You Begin (continued)

3-1

Intel® Math Kernel Library
Structure 3

The chapter discusses the structure of the Intel® Math Kernel Library (Intel® MKL),
including the Intel MKL directory structure, architecture-specific implementations,
supported programming interfaces, and more.

Starting with version 10.0, Intel MKL uses a layered model to streamline the library
structure, reduce its size, and add usage flexibility.

See also: Layered Model Concept.

Architecture Support
Intel MKL for Linux* OS provides three architecture-specific implementations. Table 3-1
lists the supported architectures and directories where each architecture-specific
implementation is located.

See a detailed structure of these directories in Table 3-6, Table 3-7, and Table 3-8.

See also: High-level Directory Structure.

High-level Directory Structure
Table 3-2 shows a high-level directory structure of Intel MKL after installation.

Table 3-1 Architecture-specific Implementations

Architecture Location

IA-32 or compatible <mkl directory>/lib/32

Intel® 64 or compatible <mkl directory>/lib/em64t

IA-64 <mkl directory>/lib/64

3-2

3 Intel® Math Kernel Library User’s Guide

Table 3-2 High-level Directory Structure

Directory Contents

<mkl directory> Intel MKL main directory. For the default installation
directory, see Checking Your Installation.

<mkl directory>/benchmarks/linpack Shared-memory (SMP) version of the LINPACK
benchmark

<mkl
directory>/benchmarks/mp_linpack

Message-passing interface (MPI) version of the LINPACK
benchmark

<mkl directory>/doc Documentation for the stand-alone Intel MKL

<mkl directory>/examples Examples directory. Each subdirectory has source and
data files

<mkl directory>/include INCLUDE files for the library routines, as well as for
tests and examples

<mkl directory>/include/32 BLAS951 and LAPACK952 .mod files for the IA-32
architecture and Intel® Fortran compiler

<mkl directory>/include/64/ilp64 BLAS95 and LAPACK95 .mod files for the IA-64
architecture, Intel Fortran compiler, and ILP64 interface

<mkl directory>/include/64/lp64 BLAS95 and LAPACK95 .mod files for the IA-64
architecture, Intel Fortran compiler, and LP64 interface

<mkl directory>/include/em64t/ilp64 BLAS95 and LAPACK95 .mod files for the Intel® 64
architecture (formerly, Intel® EM64T), Intel Fortran
compiler, and ILP64 interface

<mkl directory>/include/em64t/lp64 BLAS95 and LAPACK95 .mod files for the Intel® 64
architecture, Intel Fortran compiler, and LP64 interface

<mkl directory>/interfaces/blas95 Fortran 95 interfaces to BLAS and a makefile to build the
library

<mkl directory>/interfaces/
fftw2x_cdft

MPI FFTW 2.x interfaces to the Intel MKL Cluster FFTs

<mkl directory>/interfaces/fftw2xc FFTW 2.x interfaces to the Intel MKL FFTs (C interface)

<mkl directory>/interfaces/fftw2xf FFTW 2.x interfaces to the Intel MKL FFTs (Fortran
interface)

<mkl directory>/interfaces/fftw3xc FFTW 3.x interfaces to the Intel MKL FFTs (C interface)

<mkl directory>/interfaces/fftw3xf FFTW 3.x interfaces to the Intel MKL FFTs (Fortran
interface)

<mkl directory>/interfaces/lapack95 Fortran 95 interfaces to LAPACK and a makefile to build
the library

<mkl directory>/lib/32 Static libraries and shared objects for the IA-32
architecture

Intel® Math Kernel Library Structure 3

3-3

Layered Model Concept
Starting with release 10.0, Intel MKL uses a layered model.

There are four essential parts of the library:

1. Interface layer

2. Threading layer

3. Computational layer

4. Compiler Support Run-time libraries.

Each part consists of several libraries that process independent cases in this part. For
example:

• On systems based on the Intel 64 or IA-64 architecture, the libmkl_intel_lp64.a
library in the Interface layer adapts Intel MKL to the use of 32-bit integer types and
the way how Intel® compilers return function values.

<mkl directory>/lib/64 Static libraries and shared objects for the IA-64
architecture (Itanium® processor family)

<mkl directory>/lib/em64t Static libraries and shared objects for the Intel® 64
architecture

<mkl directory>/man/en_US/man3 Man pages for Intel MKL functions for the stand-alone
Intel MKL

<mkl directory>/tests Source and data files for tests

<mkl directory>/tools/builder Tools for creating custom dynamically linkable libraries

<mkl directory>/tools/environment Shell scripts to set environmental variables in the user
shell

<mkl directory>/tools/plugins/

com.intel.mkl.help

Eclipse* IDE plug-in with Intel MKL Reference Manual in
WebHelp format. See mkl_documentation.htm for
more information.

<Intel Compiler Pro directory>/
documentation/en_US/mkl

Documentation for Intel MKL included in the Intel® C++
Compiler Professional Edition or Intel® Fortran Compiler
Professional Edition.

<Intel Compiler Pro directory>/
man/en_US/man3

Man pages for Intel MKL functions in the Intel C++
Compiler Professional Edition or Intel Fortran Compiler
Professional Edition.

1. Fortran 95 interface to BLAS
2. Fortran 95 interface to LAPACK

Table 3-2 High-level Directory Structure (continued)

Directory Contents

3-4

3 Intel® Math Kernel Library User’s Guide

• The libmkl_intel_thread.a library in the Threading layer adapts Intel MKL to the
OpenMP* implementation used by Intel compilers, and the libmkl_sequential.a
library adapts Intel MKL to the non-threaded mode.

The Computational layer is the bulk of Intel MKL. The library in this layer contains only
code needed for pure computations, without adaptation to interfaces or OpenMP threading.

Being organized this way, Intel MKL avoids duplication of the same code in different
libraries and thus considerably saves space.

You can combine Intel MKL independent libraries to meet your needs by linking with one
library in each part layer-by-layer. Once the interface library is selected, the threading
library you select picks up the chosen interface, and the computational library uses
interfaces and OpenMP implementation (or non-threaded mode) chosen in the first two
layers. To learn which libraries to link with your application, see Chapter 5.

Table 3-3 provides more details of each layer.

Table 3-3 Intel® MKL Layers

Layer Description

Interface Layer Matches compiled code of your application with the threading and/or
computational parts of the library. This layer provides:
• LP64 and ILP64 interfaces

(see Support for ILP64 Programming for details).
• Compatibility with compilers that return function values differently.
• A mapping between single-precision names and double-precision

names for applications using Cray*-style naming (SP2DP
interface).
SP2DP interface supports Cray-style naming in applications
targeted for the Intel 64 or IA-64 architecture and using the ILP64
interface. SP2DP interface provides a mapping between
single-precision names (for both real and complex types) in the
application and double-precision names in Intel MKL BLAS and
LAPACK. Function names are mapped as shown in the following
example for BLAS functions *GEMM:
SGEMM -> DGEMM
DGEMM -> DGEMM
CGEMM -> ZGEMM
ZGEMM -> ZGEMM
Mind that no changes are made to double-precision names.

Threading Layer This layer:
• Provides a way to link threaded Intel MKL with different threading

compilers.
• Enables you to link with a threaded or sequential mode of the

library.
This layer is compiled for different environments (threaded or
sequential) and compilers (from Intel, GNU*, and so on).

Intel® Math Kernel Library Structure 3

3-5

Sequential Mode of the Library
You can use Intel MKL in a sequential (non-threaded) mode. In this mode, Intel MKL runs
unthreaded code. However, it is thread-safe1, which means that you can use it in a parallel
region in your OpenMP* code. The sequential mode requires no compatibility OpenMP* or
legacy OpenMP* run-time library and does not respond to the environment variable
OMP_NUM_THREADS or its Intel MKL equivalents.

You should use the library in the sequential mode only if you have a particular reason not
to use Intel MKL threading. The sequential mode may be helpful when using Intel MKL with
programs threaded with some non-Intel compilers or in other situations where you need a
non-threaded version of the library (for instance, in some MPI cases). To set the sequential
mode, in the Threading layer, choose the *sequential.* library.

Add the POSIX threads library (pthread) to your link line for the sequential mode because
the *sequential.* library depends on pthread.

See also:

Directory Structure in Detail

Using the Intel® MKL Parallelism

Avoiding Conflicts in the Execution Environment

Linking Examples.

Computational Layer Heart of Intel MKL. This layer has only one library for each combination
of architecture and supported OS. The Computational layer
accommodates multiple architectures through identification of
architecture features and chooses the appropriate binary code at run
time.

Compiler Support Run-time
Libraries (RTL)

Intel MKL provides compiler support RTLs only for Intel compilers:
compatibility OpenMP* run-time library (libiomp) and legacy
OpenMP* run-time library (libguide). To thread using third-party
threading compilers, use libraries in the Threading layer or an
appropriate compatibility library (for more information, see Linking with
Threading Libraries).

1. Except the LAPACK deprecated routine ?lacon.

Table 3-3 Intel® MKL Layers (continued)

Layer Description

3-6

3 Intel® Math Kernel Library User’s Guide

Support for ILP64 Programming
The Intel MKL ILP64 libraries use the 64-bit integer type (necessary for indexing huge
arrays, with more than 231-1 elements), whereas the LP64 libraries index arrays with the
32-bit integer type.

The LP64 and ILP64 interfaces are implemented in the Interface layer (see Layered Model
Concept and Directory Structure in Detail for more information).

The ILP64 interface provides for the following:

• Support huge data arrays (with more than 231-1 elements)

• Enable compiling your Fortran code with the -i8 compiler option

The LP64 interface provides compatibility with the previous Intel MKL versions because
"LP64" is just a new name for the only interface that the Intel MKL versions lower than 9.1
provided. Choose the ILP64 interface if your application uses Intel MKL for calculations with
huge data arrays or the library may be used so in future.

Intel MKL provides the same include directory for the ILP64 and LP64 interfaces.

Compiling for LP64/ILP64

Table 3-4 shows how to compile for the ILP64 and LP64 interfaces:

Coding for ILP64

You do not need to change existing code if you are not using the ILP64 interface.

Table 3-4 Compiling for the ILP64 and LP64 Interfaces

Fortran

Compiling for ILP64 ifort -i8 -I<mkl drectory>/include …

Compiling for LP64 ifort -I<mkl drectory>/include …

C or C++

Compiling for ILP64 icc -DMKL_ILP64 -I<mkl directory>/include …

Compiling for LP64 icc -I<mkl directory>/include …

CAUTION. Linking of the application compiled with the -i8 or
-DMKL_ILP64 option to the LP64 libraries may result in unpredictable
consequences and erroneous output.

Intel® Math Kernel Library Structure 3

3-7

To migrate to ILP64 or write new code for ILP64, use appropriate types for parameters of
the Intel MKL functions and subroutines (see Table 3-5):

Browsing the Intel MKL Include Files

The Reference Manual does not explain which integer parameters of a function become
64-bit and which remain 32-bit for ILP64. To get to know this, browse the include files,
examples, and tests for the ILP64 interface details. For the location of these files, see
Table 3-2. Start with browsing the include files, listed in Table A-2.

Some function domains that support only a Fortran interface (see Table A-1) provide
header files for C/C++ in the include directory. Such *.h files enable using a Fortran binary
interface from C/C++ code. These files can also be used to understand the ILP64 usage.

Limitations

All Intel MKL function domains support ILP64 programming with the following exceptions:

• FFTW interfaces to Intel MKL:

— FFTW 2.x wrappers do not support ILP64.

— FFTW 3.2 wrappers support ILP64 by a dedicated set of functions plan_guru64.

• GMP* arithmetic functions do not support ILP64.

Table 3-5 Integer Types

Fortran C or C++

32-bit integers INTEGER*4 or
INTEGER(KIND=4)

int

Universal integers for ILP64/LP64:
• 64-bit for ILP64
• 32-bit otherwise

INTEGER
without specifying KIND

MKL_INT

Universal integers for ILP64/LP64:
• 64-bit integers

INTEGER*8 or

INTEGER(KIND=8)
MKL_INT64

FFT interface integers for ILP64/LP64 INTEGER
without specifying KIND

MKL_LONG

3-8

3 Intel® Math Kernel Library User’s Guide

Directory Structure in Detail
The information in the tables below shows a detailed structure of the Intel MKL
architecture-specific directories. For the list of additional interface libraries that can be
generated in these directories using makefiles in the interfaces directory, see Using
Language-Specific Interfaces with Intel® MKL. For the contents of the doc directory, see
Contents of the Documentation Directory. For the contents of subdirectories in the
benchmarks directory, see LINPACK and MP LINPACK Benchmarks. Note that in MKL 10.2,
libraries that provided link line compatibility with the Intel MKL versions 9.x and lower were
removed.

Intel® Math Kernel Library Structure 3

3-9

Table 3-6 Detailed Structure of the IA-32 Architecture Directory lib/32

File Contents

Static Libraries

Interface layer

libmkl_blas95.a Fortran 95 interface library for BLAS for the Intel® Fortran compiler

libmkl_gf.a Interface library for the GNU* Fortran compiler

libmkl_intel.a Interface library for the Intel® compilers1

libmkl_lapack95.a Fortran 95 interface library for LAPACK for the Intel Fortran compiler

Threading layer

libmkl_gnu_thread.a Threading library for the GNU Fortran and C compilers

libmkl_intel_thread.a Threading library for the Intel compilers

libmkl_pgi_thread.a Threading library for the PGI* compiler

libmkl_sequential.a Sequential library

Computational layer

libmkl_cdft_core.a Cluster version of FFTs

libmkl_core.a Kernel library for the IA-32 architecture

libmkl_scalapack_
core.a

ScaLAPACK routines

libmkl_solver.a Deprecated. Empty library for backward compatibility

libmkl_solver_
sequential.a

Deprecated. Empty library for backward compatibility

RTL

libguide.a Legacy OpenMP* run-time library for static linking

libiomp5.a Compatibility OpenMP* run-time library for static linking

libmkl_blacs.a BLACS routines supporting the following MPICH versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
intelmpi.a

BLACS routines supporting Intel MPI 2.0/3.x and MPICH2

libmkl_blacs_
intelmpi20.a

A soft link to lib/32/libmkl_blacs_intelmpi.a

libmkl_blacs_openmpi.a BLACS routines supporting OpenMPI

3-10

3 Intel® Math Kernel Library User’s Guide

Dynamic Libraries

Interface layer

libmkl_gf.so Interface library for the GNU Fortran compiler

libmkl_intel.so Interface library for the Intel compilers1

Threading layer

libmkl_gnu_thread.so Threading library for the GNU Fortran and C compilers

libmkl_intel_thread.so Threading library for the Intel compilers

libmkl_pgi_thread.so Threading library for the PGI* compiler

libmkl_sequential.so Sequential library

Computational layer

libmkl_core.so Library dispatcher for dynamic load of processor-specific kernel library

libmkl_def.so Default kernel library (Intel® Pentium®, Pentium® Pro, Pentium® II,
and Pentium® III processors)

libmkl_p4.so Pentium® 4 processor kernel library

libmkl_p4m.so Kernel library for processors based on the Intel® Core™
microarchitecture (except Intel® Core™ Duo and Intel® Core™ Solo
processors, for which mkl_p4p.so is intended)

libmkl_p4m3.so Kernel library for the Intel® Core™ i7 processors

libmkl_p4p.so Kernel library for the Intel® Pentium® 4 processor with Streaming
SIMD Extensions 3 (SSE3), including Intel® Core™ Duo and Intel®
Core™ Solo processors.

libmkl_scalapack_
core.so

 ScaLAPACK routines.

libmkl_vml_def.so VML/VSL part of default kernel for old Intel® Pentium® processors

libmkl_vml_ia.so VML/VSL default kernel for newer Intel® architecture processors

libmkl_vml_p4.so VML/VSL part of Pentium® 4 processor kernel

libmkl_vml_p4m.so VML/VSL for processors based on the Intel® Core™ microarchitecture

libmkl_vml_p4m2.so VML/VSL for 45nm Hi-k Intel® Core™2 and Intel Xeon® processor
families

libmkl_vml_p4m3.so VML/VSL for the Intel® Core™ i7 processors

libmkl_vml_p4p.so VML/VSL for Pentium® 4 processor with Streaming SIMD Extensions 3
(SSE3)

Table 3-6 Detailed Structure of the IA-32 Architecture Directory lib/32
 (continued)

File Contents

Intel® Math Kernel Library Structure 3

3-11

RTL

libguide.so Legacy OpenMP* run-time library for dynamic linking

libiomp5.so Compatibility OpenMP* run-time library for dynamic linking

libmkl_blacs_
intelmpi.so

BLACS routines supporting Intel MPI 2.0/3.x and MPICH2

locale/en_US/
mkl_msg.cat

Catalog of Intel MKL messages in English

locale/ja_JP/
mkl_msg.cat

Catalog of Intel MKL messages in Japanese

1. To be used for linking with the Absoft* compilers, as well.

Table 3-6 Detailed Structure of the IA-32 Architecture Directory lib/32
 (continued)

File Contents

3-12

3 Intel® Math Kernel Library User’s Guide

Table 3-7 Detailed Structure of the Intel® 64 Architecture Directory lib/em64t

File Contents

Static Libraries

Interface layer

libmkl_blas95_
ilp64.a

Fortran 95 interface library for BLAS for the Intel® Fortran
compiler. Supports the ILP64 interface

libmkl_blas95_
lp64.a

Fortran 95 interface library for BLAS for the Intel® Fortran
compiler. Supports the LP64 interface

libmkl_gf_ilp64.a ILP64 interface library for the GNU Fortran and Absoft* compilers

libmkl_gf_lp64.a LP64 interface library for the GNU Fortran and Absoft compilers

libmkl_intel_ilp64.a ILP64 interface library for the Intel compilers

libmkl_intel_lp64.a LP64 interface library for the Intel compilers

libmkl_intel_sp2dp.a SP2DP interface library for the Intel compilers

libmkl_lapack95_
ilp64.a

Fortran 95 interface library for LAPACK for the Intel® Fortran
compiler. Supports the ILP64 interface

libmkl_lapack95_
lp64.a

Fortran 95 interface library for LAPACK for the Intel® Fortran
compiler. Supports the LP64 interface

Threading layer

libmkl_gnu_thread.a Threading library for the GNU Fortran and C compilers

libmkl_intel_thread.a Threading library for the Intel compilers

libmkl_pgi_thread.a Threading library for the PGI compiler

libmkl_sequential.a Sequential library

Intel® Math Kernel Library Structure 3

3-13

Computational layer

libmkl_cdft_core.a Cluster version of FFTs

libmkl_core.a Kernel library for the Intel® 64 architecture

libmkl_scalapack_
ilp64.a

ScaLAPACK routine library supporting the ILP64 interface

libmkl_scalapack_
lp64.a

ScaLAPACK routine library supporting the LP64 interface

libmkl_solver_
ilp64.a

Deprecated. Empty library for backward compatibility

libmkl_solver_ilp64_
sequential.a

Deprecated. Empty library for backward compatibility

libmkl_solver_lp64.a Deprecated. Empty library for backward compatibility

libmkl_solver_lp64_
sequential.a

Deprecated. Empty library for backward compatibility

Table 3-7 Detailed Structure of the Intel® 64 Architecture Directory lib/em64t

File Contents

3-14

3 Intel® Math Kernel Library User’s Guide

RTL

libguide.a Legacy OpenMP* run-time library for static linking

libiomp5.a Compatibility OpenMP* run-time library for static linking

libmkl_blacs_ilp64.a ILP64 version of BLACS routines supporting the following MPICH
versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
intelmpi_ilp64.a

ILP64 version of BLACS routines supporting Intel MPI 2.0/3.x and
MPICH2

libmkl_blacs_
intelmpi_lp64.a

LP64 version of BLACS routines supporting Intel MPI 2.0/3.x
MPICH2

libmkl_blacs_
intelmpi20_ilp64.a

A soft link to
lib/em64t/libmkl_blacs_intelmpi_ilp64.a

libmkl_blacs_
intelmpi20_lp64.a

A soft link to
lib/em64t/libmkl_blacs_intelmpi_lp64.a

libmkl_blacs_lp64.a LP64 version of BLACS routines supporting the following MPICH
versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
openmpi_ilp64.a

ILP64 version of BLACS routines supporting OpenMPI.

libmkl_blacs_
openmpi_lp64.a

LP64 version of BLACS routines supporting OpenMPI.

libmkl_blacs_
sgimpt_ilp64.a

ILP64 version of BLACS routines supporting SGI MPT.

libmkl_blacs_
sgimpt_lp64.a

LP64 version of BLACS routines supporting SGI MPT.

Table 3-7 Detailed Structure of the Intel® 64 Architecture Directory lib/em64t

File Contents

Intel® Math Kernel Library Structure 3

3-15

Dynamic Libraries

Interface layer

libmkl_gf_ilp64.so ILP64 interface library for the GNU Fortran and Absoft compilers

libmkl_gf_lp64.so LP64 interface library for the GNU Fortran and Absoft compilers

libmkl_intel_ilp64.so ILP64 interface library for the Intel compilers

libmkl_intel_lp64.so LP64 interface library for the Intel compilers

libmkl_intel_sp2dp.so SP2DP interface library for the Intel compilers

Threading layer

libmkl_gnu_thread.so Threading library for the GNU Fortran and C compilers

libmkl_intel_
thread.so

Threading library for the Intel compilers

libmkl_pgi_thread.so Threading library for the PGI* compiler

libmkl_sequential.so Sequential library

Table 3-7 Detailed Structure of the Intel® 64 Architecture Directory lib/em64t

File Contents

3-16

3 Intel® Math Kernel Library User’s Guide

Computational layer

libmkl_avx.so Kernel optimized for the Intel® Advanced Vector Extensions
(Intel® AVX).

libmkl_core.so Library dispatcher for dynamic load of processor-specific kernel

libmkl_def.so Default kernel library

libmkl_mc.so Kernel library for processors based on the Intel® Core™
microarchitecture

libmkl_mc3.so Kernel library for the Intel® Core™ i7 processors

libmkl_scalapack_
ilp64.so

ScaLAPACK routine library supporting the ILP64 interface

libmkl_scalapack_
lp64.so

ScaLAPACK routine library supporting the LP64 interface

libmkl_vml_avx.so VML/VSL optimized for the Intel® Advanced Vector Extensions
(Intel® AVX).

libmkl_vml_def.so VML/VSL part of default kernels

libmkl_vml_mc.so VML/VSL for processors based on the Intel® Core™
microarchitecture

libmkl_vml_mc3.so VML/VSL for the Intel® Core™ i7 processors

libmkl_vml_p4n.so VML/VSL for the Intel® Xeon® processor using the Intel® 64
architecture

libmkl_vml_mc2.so VML/VSL for 45nm Hi-k Intel® Core™2 and Intel Xeon® proces-
sor families

RTL

libguide.so Legacy OpenMP* run-time library for dynamic linking

libiomp5.so Compatibility OpenMP* run-time library for dynamic linking

libmkl_intelmpi_
ilp64.so

ILP64 version of BLACS routines supporting Intel MPI 2.0/3.x and
MPICH2

libmkl_intelmpi_
lp64.so

LP64 version of BLACS routines supporting Intel MPI 2.0 and 3.x,
and MPICH2

locale/en_US/
mkl_msg.cat

Catalog of Intel MKL messages in English

locale/ja_JP/
mkl_msg.cat

Catalog of Intel MKL messages in Japanese

Table 3-7 Detailed Structure of the Intel® 64 Architecture Directory lib/em64t

File Contents

Intel® Math Kernel Library Structure 3

3-17

Table 3-8 Detailed Structure of the IA-64 Architecture Directory lib/64

File Contents

Static Libraries

Interface layer

libmkl_blas95_ilp64.a Fortran 95 interface library for BLAS for the Intel® Fortran
compiler. Supports the ILP64 interface

libmkl_blas95_lp64.a Fortran 95 interface library for BLAS for the Intel® Fortran
compiler. Supports the LP64 interface

libmkl_intel_ilp64.a ILP64 interface library for the Intel compilers

libmkl_intel_lp64.a LP64 interface library for the Intel compilers

libmkl_intel_sp2dp.a SP2DP interface library for the Intel compilers

libmkl_gf_ilp64.a ILP64 interface library for the GNU Fortran compiler

libmkl_gf_lp64.a LP64 interface library for the GNU Fortran compiler

libmkl_lapack95_ilp64.a Fortran 95 interface library for LAPACK for the Intel® Fortran
compiler. Supports the ILP64 interface

libmkl_lapack95_lp64.a Fortran 95 interface library for LAPACK for the Intel® Fortran
compiler. Supports the LP64 interface

Threading layer

libmkl_intel_thread.a Threading library for the Intel compilers

libmkl_gnu_thread.a Threading library for the GNU Fortran and C compilers

libmkl_sequential.a Sequential library

Computational layer

libmkl_cdft_core.a Cluster version of FFTs

libmkl_core.a Kernel library for the IA-64 architecture

libmkl_scalapack_ilp64.a ScaLAPACK routine library supporting the ILP64 interface

libmkl_scalapack_lp64.a ScaLAPACK routine library supporting the LP64 interface

libmkl_solver_ilp64.a Deprecated. Empty library for backward compatibility

libmkl_solver_ilp64_
sequential.a

Deprecated. Empty library for backward compatibility

libmkl_solver_lp64.a Deprecated. Empty library for backward compatibility

libmkl_solver_lp64_
sequential.a

Deprecated. Empty library for backward compatibility

3-18

3 Intel® Math Kernel Library User’s Guide

RTL

libguide.a Legacy OpenMP* run-time library for static linking

libiomp5.a Compatibility OpenMP* run-time library for static linking

libmkl_blacs_ilp64.a ILP64 version of BLACS routines supporting the following MPICH
versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
intelmpi_ilp64.a

ILP64 version of BLACS routines supporting Intel MPI 2.0/3.x and
MPICH2

libmkl_blacs_
intelmpi_lp64.a

LP64 version of BLACS routines supporting Intel MPI 2.0/3.x and
MPICH2

libmkl_blacs_
intelmpi20_ilp64.a

A soft link to lib/64/libmkl_blacs_intelmpi_ilp64.a

libmkl_blacs_
intelmpi20_lp64.a

A soft link to lib/64/libmkl_blacs_intelmpi_lp64.a

libmkl_blacs_lp64.a LP64 version of BLACS routines supporting the following MPICH
versions:
• Myricom* MPICH version 1.2.5.10
• ANL* MPICH version 1.2.5.2

libmkl_blacs_
openmpi_ilp64.a

ILP64 version of BLACS routines supporting OpenMPI.

libmkl_blacs_
openmpi_lp64.a

LP64 version of BLACS routines supporting OpenMPI.

libmkl_blacs_
sgimpt_ilp64.a

ILP64 version of BLACS routines supporting SGI MPT.

libmkl_blacs_
sgimpt_lp64.a

LP64 version of BLACS routines supporting SGI MPT.

Table 3-8 Detailed Structure of the IA-64 Architecture Directory lib/64
 (continued)

File Contents

Intel® Math Kernel Library Structure 3

3-19

Dynamic Libraries

Interface layer

libmkl_gf_ilp64.so ILP64 interface library for the GNU Fortran compiler

libmkl_gf_lp64.so LP64 interface library for the GNU Fortran compiler

libmkl_intel_ilp64.so ILP64 interface library for the Intel compilers

libmkl_intel_lp64.so LP64 interface library for the Intel compilers

libmkl_intel_sp2dp.so SP2DP interface library for the Intel compilers

Threading layer

libmkl_gnu_thread.so Threading library for the GNU Fortran and C compilers

libmkl_intel_
thread.so

Threading library for the Intel compilers

libmkl_sequential.so Sequential library

Computational layer

libmkl_core.so Library dispatcher for dynamic load of processor-specific kernel
library

libmkl_i2p.so Kernel library for the IA-64 architecture

libmkl_scalapack_
ilp64.so

ScaLAPACK routine library supporting the ILP64 interface

libmkl_scalapack_
lp64.so

ScaLAPACK routine library supporting the LP64 interface

libmkl_vml_i2p.so VML kernel for the IA-64 architecture

RTL

libguide.so Legacy OpenMP* run-time library for dynamic linking

libiomp5.so Compatibility OpenMP* run-time library for dynamic linking

libmkl_blacs_
intelmpi_ilp64.so

ILP64 version of BLACS routines supporting Intel MPI 2.0/3.x and
MPICH2

libmkl_blacs_
intelmpi_lp64.so

LP64 version of BLACS routines supporting Intel MPI 2.0 and 3.x
and MPICH2

locale/en_US/mkl_msg.cat Catalog of Intel MKL messages in English

locale/ja_JP/mkl_msg.cat Catalog of Intel MKL messages in Japanese

Table 3-8 Detailed Structure of the IA-64 Architecture Directory lib/64
 (continued)

File Contents

3-20

3 Intel® Math Kernel Library User’s Guide

Accessing the Intel® MKL Documentation
This section details the contents of the Intel MKL documentation directory and explains
how to access man pages for the library.

Contents of the Documentation Directory
Table 3-9 shows the contents of the doc subdirectory in the Intel MKL installation
directory:

Viewing Man Pages
The Intel MKL man pages are located in the directory specified in Table 3-2. To access man
pages, add this directory to the MANPATH environment variable. If you performed the
Setting Environment Variables step of the Getting Started process, this is done
automatically.

To view the man page for an Intel MKL function, enter the following command in your
command shell:

man <function base name>

In this release, <function base name> is the function name with omitted prefixes
denoting data type, precision, or function domain.

Examples:

• For the BLAS function ddot, enter man dot

Table 3-9 Contents of the doc Directory

File name Comment

Install.txt Intel MKL Installation Guide

mkl_documentation.htm Overview and links for the Intel MKL documentation

mklEULA.txt Intel MKL end user license

mklman.pdf Intel MKL Reference Manual

mklman90_j.pdf Intel MKL 9.0 Reference Manual in Japanese

mklsupport.txt Information on package number for customer support reference

redist.txt List of redistributable files

Release_Notes.pdf Intel MKL Release Notes

userguide.pdf Intel MKL User’s Guide, this document.

Intel® Math Kernel Library Structure 3

3-21

• For the ScaLAPACK function pzgeql2, enter man pgeql2

• For the FFT function DftiCommitDescriptor, enter man CommitDescriptor

NOTE. Function names in the man command are case-sensitive.

4-1

Configuring Your
Development Environment 4

This chapter explains how to configure your development environment for the use with the
Intel® Math Kernel Library (Intel® MKL).

Chapter 2 explains how to set environment variables INCLUDE, MKLROOT,
LD_LIBRARY_PATH, MANPATH, LIBRARY_PATH, CPATH, FPATH, and NLSPATH. Section
Automating Setting of Environment Variables explains how to automate setting of these
variables at startup.

For information on how to set up environment variables for threading, see Setting the
Number of Threads Using an OpenMP* Environment Variable.

Automating Setting of Environment Variables
To automate setting of the INCLUDE, MKLROOT, LD_LIBRARY_PATH, MANPATH,
LIBRARY_PATH, CPATH, FPATH, and NLSPATH environment variables, add mklvars*.*sh
to your shell profile so that each time you login, the script automatically executes and sets
the path to the appropriate Intel MKL directories. To do this, with a local user account, edit
the following files by adding the appropriate script to the path manipulation section right
before exporting variables:

• bash:

~/.bash_profile, ~/.bash_login or ~/.profile

setting up MKL environment for bash

. <absolute_path_to_installed_MKL>/tools/environment/mklvars<arch>.sh

• sh:

~/.profile

setting up MKL environment for sh

. <absolute_path_to_installed_MKL>/tools/environment/mklvars<arch>.sh

4-2

4 Intel® Math Kernel Library User’s Guide

• csh:

~/.login

setting up MKL environment for csh

. <absolute_path_to_installed_MKL>/tools/environment/mklvars<arch>.csh

In the above commands, replace mklvars<arch> with mklvars32, mklvarsem64t, or
mklvars64.

If you have super user permissions, you can add the same commands to a general-system
file in /etc/profile (for bash and sh) or in /etc/csh.login (for csh).

Before uninstalling Intel MKL, to avoid problems logging in later, remove the above
commands from all profile files where the script execution was added.

 Configuring the Eclipse* IDE CDT to Link with Intel MKL
This section describes how to configure the Eclipse* Integrated Development Environment
(IDE) C/C++ Development Tools (CDT) 3.x and 4.0 to link with Intel MKL.

Configuring the Eclipse* IDE CDT 4.0
Before configuring Eclipse IDE CDT 4.0, make sure to turn on the automatic makefile
generation.

To configure Eclipse CDT 4.0 to link with Intel MKL, follow the instructions below:

1. If the tool-chain/compiler integration supports include path options, go to C/C++
General > Paths and Symbols > Includes and set the Intel MKL include path, that
is, <mkl directory>/include.

2. If the tool-chain/compiler integration supports library path options, go to C/C++
General > Paths and Symbols > Library Paths and set the Intel MKL library path
for the target architecture, such as <mkl directory>/lib/em64t.

TIP. After linking your CDT with Intel MKL, you can benefit from the
Eclipse-provided code assist feature. See Code/Context Assist description
in Eclipse Help.

Configuring Your Development Environment 4

4-3

3. Go C/C++ Build > Settings > Tool Settings and specify the names of the Intel MKL
libraries to link with your application, for example, mkl_intel_lp64,
mkl_intel_thread_lp64, mkl_core, and iomp5 (compilers typically require library
names rather than library file names, so omit the "lib" prefix and "a" extension). To
learn how to choose the libraries, see Selecting Libraries to Link. The name of the
particular setting where libraries are specified depends upon the compiler integration.

Configuring the Eclipse* IDE CDT 3.x
To configure Eclipse IDE CDT 3.x to link with Intel MKL, follow the instructions below:

• For Standard Make projects:

1. Go to C/C++ Include Paths and Symbols property page and set the Intel MKL
include path to <mkl directory>/include.

2. Go to C/C++ Project Paths > Libraries and set the Intel MKL libraries to link
with your applications, for example,
<mkl directory>/lib/em64t/libmkl_intel_lp64.a,
<mkl directory>/lib/em64t/libmkl_intel_thread.a, and
<mkl directory>/lib/em64t/libmkl_core.a.
To learn how to choose the libraries, see Selecting Libraries to Link.

Note that with the Standard Make, the above settings are needed for the CDT internal
functionality only. The compiler/linker will not automatically pick up these settings and
you will still have to specify them directly in the makefile.

• For Managed Make projects, you can specify settings for a particular build. To do this:

1. Go to C/C++ Build > Tool Settings. All the settings you need to specify are on
this page. Names of the particular settings depend upon the compiler integration
and therefore are not given below.

2. If the compiler integration supports include path options, set the Intel MKL include
path to <mkl_directory>/include.

3. If the compiler integration supports library path options, set a path to the Intel
MKL libraries for the target architecture, such as <mkl directory>/lib/em64t.

4. Specify the names of the Intel MKL libraries to link with your application, for
example, mkl_intel_lp64, mkl_intel_thread_lp64, mkl_core, and iomp5
(compilers typically require library names rather than library file names, so omit
the “lib” prefix and “a” extension). To learn how to choose the libraries, see
Selecting Libraries to Link.

5-1

Linking Your Application
with the Intel® Math
Kernel Library 5

This chapter discusses linking your applications with the Intel® Math Kernel Library
(Intel® MKL) for the Linux* OS. The chapter provides information on the libraries that
should be linked with your application, presents linking examples, and explains how to
build custom shared objects.

To link with Intel MKL, choose one library from the Interface layer, one library from the
Threading layer, one (and typically the only) library from the Computational layer, and, if
necessary, add run-time libraries. Table 5-1 lists typical sets of Intel MKL libraries to link
with your application.

For exceptions and alternatives to the libraries listed above, see Selecting Libraries to Link.

Table 5-1 Typical Libraries to List on a Link Line

Interface layer Threading layer
Computational
layer RTL

IA-32
architecture,
static linking

libmkl_intel.a libmkl_intel_
thread.a

libmkl_core.a libiomp5.so

IA-32
architecture,
dynamic linking

libmkl_intel.
so

libmkl_intel_
thread.so

libmkl_core.so libiomp5.so

Intel® 64 and
IA-64
architectures,
static linking

libmkl_intel_
lp64.a

libmkl_intel_
thread.a

libmkl_core.a libiomp5.so

Intel® 64 and
IA-64
architectures,
dynamic linking

libmkl_intel_
lp64.so

libmkl_intel_
thread.so

libmkl_core.so libiomp5.so

5-2

5 Intel® Math Kernel Library User’s Guide

See also:

Listing Libraries on a Link Line

Working with the Intel® Math Kernel Library Cluster Software.

Listing Libraries on a Link Line
To link with Intel MKL libraries, specify paths and libraries on the link line as shown below.

<files to link>

-L<MKL path> -I<MKL include>
[-I<MKL include>/{32|em64t|{ilp64|lp64}|64/{ilp64|lp64}}]

[-lmkl_blas{95|95_ilp64|95_lp64}]
[-lmkl_lapack{95|95_ilp64|95_lp64}]

[<cluster components>]

-lmkl_{intel|intel_ilp64|intel_lp64|intel_sp2dp|gf|gf_ilp64|gf_lp64}

-lmkl_{intel_thread|gnu_thread|pgi_thread|sequential}

-lmkl_core

{-liomp5|-lguide} [-lpthread] [-lm]

See Selecting Libraries to Link for details of this syntax usage and specific
recommendations on which libraries to link depending on your Intel MKL usage scenario.

See Working with the Intel® Math Kernel Library Cluster Software on linking with libraries
denoted as <cluster components>.

In case of static linking, enclose the cluster components, interface, threading, and
computational libraries in grouping symbols (for example, -Wl,--start-group
$MKLPATH/libmkl_cdft_core.a $MKLPATH/libmkl_blacs_intelmpi_ilp64.a
$MKLPATH/libmkl_intel_ilp64.a $MKLPATH/libmkl_intel_thread.a
$MKLPATH/libmkl_core.a -Wl,--end-group). See specific examples in the Linking
Examples section.

NOTE. The syntax below is for dynamic linking. For static linking, replace
each library name preceded with "-l" with the path to the library file, for
example, replace -lmkl_core with $MKLPATH/libmkl_core.a, where
$MKLPATH is the appropriate user-defined environment variable. See
specific examples in the Linking Examples section.

Linking Your Application with the Intel® Math Kernel Library 5

5-3

The order of listing libraries on the link line is essential, except for the libraries enclosed in
the grouping symbols above.

Selecting Libraries to Link
This section recommends which libraries to link depending on your Intel MKL usage
scenario and provides details of the linking in subsections:

Linking with Fortran 95 Interface Libraries

Linking with Threading Libraries

Linking with Computational Libraries

Linking with Compiler Support RTLs

Linking with System Libraries

Linking Examples

Linking with Fortran 95 Interface Libraries
The libmkl_blas95*.a and libmkl_lapack95*.a libraries contain Fortran 95 interfaces
for BLAS and LAPACK, respectively, which are compiler-dependent. In the Intel MKL
package, they are prebuilt for the Intel® Fortran compiler. If you are using a different
compiler, build these libraries before using the interface. See Fortran 95 Interfaces to
LAPACK and BLAS and Compiler-dependent Functions and Fortran 90 Modules for more
information.

Linking with Threading Libraries
Several compilers that Intel MKL supports use the OpenMP* threading technology. Starting
with version 10.0, Intel MKL supports implementations of the OpenMP* technology that
these compilers provide. To make use of this support, you need to link with the appropriate
library in the Threading Layer and Compiler Support Run-time Library (RTL).

Threading Layer. Each Intel MKL threading library contains the same code, compiled by the
respective compiler (Intel, gnu and PGI* compilers on Linux OS).

RTL. This layer includes run-time libraries of the Intel compiler: the compatibility OpenMP*
run-time library libiomp and legacy OpenMP* run-time library libguide. The
compatibility library libiomp is an extension of libguide that provides support for one
additional threading compiler on Linux OS (GNU). That is, a program threaded with a GNU
compiler can safely be linked with Intel MKL and libiomp. So, you are encouraged to use
libiomp rather than libguide.

5-4

5 Intel® Math Kernel Library User’s Guide

Table 5-2 shows different scenarios, depending on the threading compiler used, and the
possibilities for each scenario to choose the threading libraries and RTL when using Intel
MKL (static cases only):

Linking with Computational Libraries
Typically, with the layered linking model, you must link your application with only one
computational library. However, certain Intel MKL function domains require several
computational link libraries.

For each Intel MKL function domain, Table 5-3 lists computational libraries that you must
include in the link line. For more information on linking with ScaLAPACK and Cluster FFTs,
see also Linking with ScaLAPACK and Cluster FFTs.

Table 5-2 Selecting Threading Libraries

Compiler
Application
Threaded? Threading Layer

RTL
Recommended Comment

Intel Does not
matter

libmkl_intel_thread.a libiomp5.so

PGI Yes libmkl_pgi_thread.a or
libmkl_sequential.a

PGI* supplied Use of libmkl_
sequential.a
removes threading
from Intel MKL calls.

PGI No libmkl_intel_thread.a libiomp5.so

PGI No libmkl_pgi_thread.a PGI* supplied

PGI No libmkl_sequential.a None

gnu Yes libmkl_gnu_thread.a libiomp5.so or
GNU OpenMP
run-time library

libiomp5 offers
superior scaling
performance.

gnu Yes libmkl_sequential.a None

gnu No libmkl_intel_thread.a libiomp5.so

other Yes libmkl_sequential.a None

other No libmkl_intel_thread.a libiomp5.so

Linking Your Application with the Intel® Math Kernel Library 5

5-5

See also:

Linking with Compiler Support RTLs.

Table 5-3 Computational Libraries to Link, by Function Domain

Function
domain

IA-32 Architecture Intel® 64 or IA-64 Architecture

Static Dynamic Static Dynamic

BLAS,
CBLAS,
Sparse BLAS,
LAPACK,
VML, VSL,
Iterative
Sparse
Solvers,
Trust Region
Solver,
FFT,
Trigonometric
Transform
Functions,
Poisson
Library

libmkl_core.a libmkl_core.so libmkl_core.a libmkl_core.so

ScaLAPACK1

1. Add also the library with BLACS routines corresponding to the used MPI. For details, see Linking with ScaLAPACK and Cluster FFTs.

libmkl_scalapack
_core.a

libmkl_core.a

libmkl_scalapack
_core.so

libmkl_core.so

See below See below

ScaLAPACK,
LP64
interface1

n/a n/a libmkl_scalapack
_lp64.a

libmkl_core.a

libmkl_scalapack
_lp64.so

libmkl_core.so

ScaLAPACK,
ILP64
interface1

n/a n/a libmkl_scalapack
_ilp64.a

libmkl_core.a

libmkl_scalapack_
ilp64.so

libmkl_core.so

Cluster
Fourier
Transform
Functions1

libmkl_cdft_
core.a

libmkl_core.a

n/a libmkl_cdft_
core.a

libmkl_core.a

n/a

5-6

5 Intel® Math Kernel Library User’s Guide

Linking with Compiler Support RTLs
You are strongly encouraged to dynamically link in the compatibility OpenMP* run-time
library libiomp or legacy OpenMP* run-time library libguide. Link with libiomp and
libguide dynamically even if other libraries are linked statically.

Linking to static OpenMP* run-time library is not recommended because it is very easy with
complex software to link in more than one copy of the library. This causes performance
problems (too many threads) and may cause correctness problems if more than one copy
is initialized.

If you link with libiomp/libguide statically, the version of libiomp/libguide you link
with depends on which compiler you use:

• If you use the Intel compiler, link in the libiomp/libguide version that comes with
the compiler, that is, use the -openmp option.

• If you do not use the Intel compiler, link in the libiomp/libguide version that
comes with Intel MKL.

If you link with dynamic versions of libiomp/libguide (recommended), that is, use
libiomp5.so or libguide.so, make sure LD_LIBRARY_PATH is defined correctly. See
Setting Environment Variables for details.

Linking with System Libraries
To use the Intel MKL FFT, Trigonometric Transform, or Poisson, Laplace, and Helmholtz
Solver routines, link in the math support system library by adding "-lm" to the link line.

On Linux OS, libiomp/libguide both rely on the native pthread library for
multi-threading. Any time libiomp/libguide is required, add -lpthread to your link line
afterwards (the order of listing libraries is important).

Linking Examples
The section provides specific linking examples that use Intel® compilers on systems based
on the IA-32, Intel® 64, and IA-64 architectures.

The following examples use the .f Fortran source file. C/C++ users should instead specify
a .cpp (C++) or .c (C) file and replace the ifort linker with icc.

Linking Your Application with the Intel® Math Kernel Library 5

5-7

See also Examples for Linking with ScaLAPACK and Cluster FFT.

For assistance in finding the right link line, use the Web-based linking advisor available
from http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor.

Linking on IA-32 Architecture Systems

In these examples,
MKLPATH=$MKLROOT/lib/ia32,
MKLINCLUDE=$MKLROOT/include.

1. Static linking of myprog.f and parallel Intel MKL:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

2. Dynamic linking of myprog.f and parallel Intel MKL:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel -lmkl_intel_thread -lmkl_core -liomp5 -lpthread

3. Static linking of myprog.f and sequential version of Intel MKL:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel.a
$MKLPATH/libmkl_sequential.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lpthread

4. Dynamic linking of myprog.f and sequential version of Intel MKL:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel -lmkl_sequential -lmkl_core -lpthread

5. Static linking of myprog.f, Fortran 95 LAPACK interface1, and parallel Intel MKL:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -I$MKLINCLUDE/32 -lmkl_lapack95
-Wl,--start-group $MKLPATH/libmkl_intel.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

NOTE. If you successfully completed the Setting Environment Variables
step of the Getting Started process, you can omit -I$MKLINCLUDE in all
the examples and omit -L$MKLPATH in the examples for dynamic linking.

1. See Fortran 95 Interfaces to LAPACK and BLAS for information on how to build Fortran 95 LAPACK and
BLAS interface libraries.

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

5-8

5 Intel® Math Kernel Library User’s Guide

6. Static linking of myprog.f, Fortran 95 BLAS interface1, and parallel Intel MKL:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -I$MKLINCLUDE/32 -lmkl_blas95
-Wl,--start-group $MKLPATH/libmkl_intel.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

Linking on Intel® 64 and IA-64 Architecture Systems

In these examples,
MKLPATH=$MKLROOT/lib/em64t for the Intel® 64 architecture,
MKLPATH=$MKLROOT/lib/ia64 for the IA-64 architecture,
MKLINCLUDE=$MKLROOT/include.

1. Static linking of myprog.f and parallel Intel MKL supporting the LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

2. Dynamic linking of myprog.f and parallel Intel MKL supporting the LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread

3. Static linking of myprog.f and sequential version of Intel MKL supporting the LP64
interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_sequential.a $MKLPATH/libmkl_core.a -Wl,--end-group
-lpthread

4. Dynamic linking of myprog.f and sequential version of Intel MKL supporting the LP64
interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread

5. Static linking of myprog.f and parallel Intel MKL supporting the ILP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel_ilp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

6. Dynamic linking of myprog.f and parallel Intel MKL supporting the ILP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread

7. Static linking of myprog.f, Fortran 95 LAPACK interface1, and parallel Intel MKL
supporting the LP64 interface:

Linking Your Application with the Intel® Math Kernel Library 5

5-9

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -I$MKLINCLUDE/em64t/lp64
-lmkl_lapack95_lp64
-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

8. Static linking of myprog.f, Fortran 95 BLAS interface1, and parallel Intel MKL
supporting the LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -I$MKLINCLUDE/em64t/lp64
-lmkl_blas95_lp64
-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a
$MKLPATH/libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group
-liomp5 -lpthread

Building Custom Shared Objects
Custom shared objects enable you to reduce the collection of functions available in Intel
MKL libraries to those required to solve your particular problems, which helps to save disk
space and build your own dynamic libraries for distribution.

Intel MKL Custom Shared Object Builder
The custom shared object builder enables you to create a dynamic library (shared object)
containing the selected functions and located in the tools/builder directory. The builder
contains a makefile and a definition file with the list of functions.

1. See Fortran 95 Interfaces to LAPACK and BLAS for information on how to build Fortran 95 LAPACK and
BLAS interface libraries.

NOTE. The objects in Intel MKL static libraries are position-independent
code (PIC), which is not typical for static libraries. Therefore, the custom
shared object builder can create a shared object from a subset of Intel
MKL functions by picking the respective object files from the static
libraries.

5-10

5 Intel® Math Kernel Library User’s Guide

Using the Builder
To build a custom shared object, use the following command:

make target [<options>]

Possible values for target:

• ia32 - processors that use the IA-32 architecture

• em64t - processors that use the Intel® 64 architecture

• ipf - processors that use the IA-64 architecture

The <options> placeholder stands for the list of parameters that define macros to be used
by the makefile:

interface = {lp64|ilp64}

Defines whether to use LP64 or ILP64 programming interface for the Intel 64 or IA-64
architecture. The default value is lp64.

threading = {parallel|sequential}

Defines whether to use the Intel MKL functions in the threaded or sequential mode.
The default value is parallel.

export = <file_name>

Specifies the full name of the file that contains the list of entry-point functions to be
included in the shared object. The default name is user_list (no extension).

name = <so_name>

Specifies the name of the library to be created. By default, the name of the created
library is mkl_custom.so.

xerbla = <error_handler>

Specifies the name of the object file <user_xerbla>.o that contains the user's error
handler. The makefile adds this error handler to the library for use instead of the
default Intel MKL error handler xerbla. If you omit this parameter, the native Intel
MKL xerbla is used. See the description of the xerbla function in the Intel MKL
Reference Manual on how to develop your own error handler.

MKLROOT = <MKL_directory>

Specifies the location of Intel MKL libraries used to build the custom shared object. By
default, the builder uses the Intel MKL installation directory.

All the above parameters are optional.

In the simplest case, the command line is make ia32, and the missing parameters have
default values. This command creates the mkl_custom.so library for processors using the
IA-32 architecture. The command takes the list of functions from the user_list file and
uses the native Intel MKL error handler xerbla.

An example of a more complex case follows:

Linking Your Application with the Intel® Math Kernel Library 5

5-11

make ia32 export=my_func_list.txt name=mkl_small xerbla=my_xerbla.o

In this case, the command creates the mkl_small.so library for processors using the
IA-32 architecture. The command takes the list of functions from my_func_list.txt file
and uses the user's error handler my_xerbla.o.

The process is similar for processors using the Intel® 64 or IA-64 architecture.

Specifying a List of Functions
In the list of functions provided in the user_list file, adjust function names to the
required interface. For example, for Fortran functions append an underscore character "_"
to the names as a suffix:

dgemm_

ddot_

dgetrf_

If selected functions have several processor-specific versions, they all will be automatically
included in the custom library and managed by the dispatcher.

See the <mkl directory>/tools/builder folder for complete lists of functions in
different function domains.

Distributing Your Custom Shared Object
To enable use of your custom shared object in a threaded mode, distribute libiomp5.so
along with the custom shared object.

6-1

Managing Performance and
Memory 6

This chapter shows different ways to get the best performance with the Intel® Math Kernel
Library (Intel® MKL): it first discusses Intel MKL parallelism, then explains coding
techniques and finally provides hardware configuration tips to improve the performance of
the library. The chapter also explains the Intel MKL memory management and shows how
to replace the memory functions that Intel MKL uses by default with your own functions.

Using the Intel® MKL Parallelism
Intel MKL is extensively parallelized. The following function domains are threaded:

• Direct sparse solver.

• LAPACK

— Linear equations, computational routines:

- factorization: *getrf1, *gbtrf, *potrf, *pptrf, *sytrf, *hetrf, *sptrf, *hptrf

- solving: *gbtrs, *gttrs, *pptrs, *pbtrs, *pttrs, *sytrs, *sptrs, *hptrs,
*tptrs, *tbtrs.

— Orthogonal factorization, computational routines:
*geqrf, *ormqr, *unmqr, *ormlq, *unmlq, *ormql, *unmql, *ormrq, *unmrq.

— Singular Value Decomposition, computational routines: *gebrd, *bdsqr.

— Symmetric Eigenvalue Problems, computational routines:
*sytrd, *hetrd, *sptrd, *hptrd, *steqr, *stedc.

— Generalized Nonsymmetric Eigenvalue Problems, computational routines:
chgeqz/zhgeqz.

Note that a number of other LAPACK routines, which are based on threaded LAPACK or
BLAS routines, make effective use of parallelism: *gesv, *posv, *gels, *gesvd,
*syev, *heev, cgges/zgges, cggesx/zggesx, cggev/zggev, cggevx/zggevx,
and so on.

1 An asterisk stands for a prefix of each flavor of the respective function.

6-2

6 Intel® Math Kernel Library User’s Guide

• Level1 and Level2 BLAS functions:

— Level1 BLAS: *axpy, *copy, *swap, ddot/sdot, cdotc, drot/srot

— Level2 BLAS: *gemv, *trmv, dsyr/ssyr, dsyr2/ssyr2, dsymv/ssymv

Note that these functions are threaded only for:

— IA-32 and Intel® 64 architectures

— Intel® Core™2 Duo and Intel® Core™ i7 processors.

• All Level 3 BLAS and all Sparse BLAS routines except Level 2 Sparse Triangular solvers.

• VML.

• FFT

A specific problem, rather than a function called, determines whether your FFT
computation may be threaded.

Most FFT problems are threaded. In particular, computation of multiple transforms in
one call (number of transforms > 1) is threaded. Further discussion explains which
transforms of different ranks are threaded.

One-dimensional (1D) transforms

1D transforms are threaded in many cases.

1D complex-to-complex (c2c) transforms of size N with interleaved complex data
layout are threaded under the following conditions depending on the architecture:

1D real-to-complex and complex-to-real transforms are not threaded.

1D complex-to-complex transforms using split-complex layout are not threaded.

Prime-size complex-to-complex 1D transforms are not threaded.

Note that 1D real-to-complex and complex-to-real transforms using split-complex
layout are not implemented.

Two-dimensional (2D) transforms

2D transforms of sizes N-by-M are threaded except when N*M < 2048 and the
transform is in-place complex-to-complex or out-of-place
real-to-complex/complex-to-real.

Note that 2D transforms using split-complex layout are not implemented.

Table 6-1 Threaded 1D c2c Transforms with Interleaved Complex Data Layout

Architecture Conditions

Intel(R) 64 N is a power of 2, log2(N) > 9, the transform is double-precision
out-of-place, and input/output strides equal 1

IA-32 N is a power of 2, log2(N) > 13, and the transform is single-precision

N is a power of 2, log2(N) > 14, and the transform is
double-precision

Any N is composite, log2(N) > 16, and input/output strides equal 1

Managing Performance and Memory 6

6-3

Multidimensional transforms

All the implemented multidimensional transforms are threaded.

Note that three-dimensional transforms using split-complex layout are not
implemented. Real-to-complex and complex-to-real transforms of rank > 3 are not
implemented either.

Intel MKL is thread-safe, which means that all Intel MKL functions1 work correctly during
simultaneous execution by multiple threads. In particular, any chunk of threaded Intel MKL
code provides access for multiple threads to the same shared data, while permitting only
one thread at any given time to access a shared piece of data. Therefore, you can call Intel
MKL from multiple threads and not worry about the function instances interfering with each
other.

The library uses OpenMP* threading software, so you can use the environment variable
OMP_NUM_THREADS to specify the number of threads or the equivalent OpenMP run-time
function calls. Intel MKL also offers variables that are independent of OpenMP, such as
MKL_NUM_THREADS, and equivalent Intel MKL functions for thread management. The Intel
MKL variables are always inspected first, then the OpenMP variables are examined, and if
neither are used, the OpenMP software chooses the default number of threads.

Starting with Intel MKL 10.0, the OpenMP* software determines the default number of
threads. For Intel OpenMP* libraries, the default number of threads is equal to the number
of logical processors in your system.

To achieve higher performance, set the number of threads to the number of real processors
or physical cores, as summarized in Techniques to Set the Number of Threads.

See also:

Setting the Number of Threads Using an OpenMP* Environment Variable

Changing the Number of Threads at Run Time

Using Additional Threading Control

1. Except the LAPACK deprecated routine ?lacon.

NOTE. DftiComputeForward and DftiComputeBackward functions are
thread-safe provided they use properly set descriptors. The Intel MKL
Reference Manual explains how the descriptor that FFT functions use can
be shared among multiple threads (see FFT Functions > Configuration
Settings > Number of User Threads).

6-4

6 Intel® Math Kernel Library User’s Guide

Managing Multi-core Performance

Techniques to Set the Number of Threads
Use one of the following techniques to change the number of threads to use in Intel MKL:

• Set one of the OpenMP or Intel MKL environment variables:

— OMP_NUM_THREADS

— MKL_NUM_THREADS

— MKL_DOMAIN_NUM_THREADS

• Call one of the OpenMP or Intel MKL functions:

— omp_set_num_threads()

— mkl_set_num_threads()

— mkl_domain_set_num_threads()

When choosing the appropriate technique, take into account the following rules:

• The Intel MKL threading controls take precedence over the OpenMP controls.

• A function call takes precedence over any environment variables. The exception, which
is a consequence of the previous rule, is the OpenMP subroutine
omp_set_num_threads(), which does not have precedence over Intel MKL
environment variables, such as MKL_NUM_THREADS. See Using Additional Threading
Control for more details.

• The environment variables cannot be used to change run-time behavior in the course
of the run, because they are read only once at the first call to Intel MKL.

Avoiding Conflicts in the Execution Environment
Certain situations can cause conflicts in the execution environment that make the use of
threads in Intel MKL problematic. This section briefly discusses why these problems exist
and how to avoid them.

If you thread the program using OpenMP directives and compile the program with Intel®
compilers, Intel MKL and the program will both use the same threading library. Intel MKL
tries to determine if it is in a parallel region in the program, and if it is, it does not spread
its operations over multiple threads unless you specifically request Intel MKL to do so via
the MKL_DYNAMIC functionality. However, Intel MKL can be aware that it is in a parallel
region only if the threaded program and Intel MKL are using the same threading library. If
your program is threaded by some other means, Intel MKL may operate in multithreaded
mode, and the performance may suffer due to overuse of the resources.

Managing Performance and Memory 6

6-5

Here are several cases with recommendations depending on the threading model you
employ:

See also:

Using Additional Threading Control

Linking with Compiler Support RTLs.

Table 6-2 How to Avoid Conflicts in the Execution Environment for Your Threading
Model

Threading model Discussion

You thread the program using OS threads
(pthreads on Linux* OS).

If more than one thread calls Intel MKL, and the
function being called is threaded, it may be
important that you turn off Intel MKL threading. Set
the number of threads to one by any of the available
means (see Techniques to Set the Number of
Threads).

You thread the program using OpenMP directives
and/or pragmas and compile the program using a
compiler other than a compiler from Intel.

This is more problematic because setting of the
OMP_NUM_THREADS environment variable affects
both the compiler's threading library and libiomp
(libguide). In this case, choose the threading
library that matches the layered Intel MKL with the
OpenMP compiler you employ (see Linking Examples
on how to do this). If this is not possible, use Intel
MKL in the sequential mode. To do this, you should
link with the appropriate threading library:
libmkl_sequential.a or
libmkl_sequential.so (see High-level
Directory Structure).

There are multiple programs running on a
multiple-cpu system, for example, a parallelized
program that runs using MPI for communication in
which each processor is treated as a node.

The threading software will see multiple processors
on the system even though each processor has a
separate MPI process running on it. In this case, one
of the solutions is to set the number of threads to
one by any of the available means (see Techniques to
Set the Number of Threads). Section Intel®
Optimized MP LINPACK Benchmark for Clusters
discusses another solution for a Hybrid (OpenMP* +
MPI) mode.

6-6

6 Intel® Math Kernel Library User’s Guide

Setting the Number of Threads Using an OpenMP* Environment
Variable

You can set the number of threads using the environment variable OMP_NUM_THREADS. To
change the number of threads, use the appropriate command in the command shell in
which the program is going to run, for example:

• For the bash shell, enter: export OMP_NUM_THREADS=<number of threads to
use>

• For the csh or tcsh shell, enter: set OMP_NUM_THREADS=<number of threads to
use>.

See Using Additional Threading Control on how to set the number of threads using Intel
MKL environment variables, for example, MKL_NUM_THREADS.

Changing the Number of Threads at Run Time
You cannot change the number of threads during run time using the environment variables.
However, you can call OpenMP API functions from your program to change the number of
threads during run time. The following sample code shows how to change the number of
threads during run time using the omp_set_num_threads() routine. See also Techniques
to Set the Number of Threads.

The following example shows both C and Fortran code examples. To run this example in the
C language, use the omp.h header file from the Intel® compiler package. If you do not
have the Intel compiler but wish to explore the functionality in the example, use Fortran
API for omp_set_num_threads() rather than the C version. For example,
omp_set_num_threads_(&i_one);

Example 6-1 Changing the Number of Threads

// ******* C language *******

#include "omp.h"
#include "mkl.h"
#include <stdio.h>

#define SIZE 1000

void main(int args, char *argv[]){

 double *a, *b, *c;
 a = new double [SIZE*SIZE];
 b = new double [SIZE*SIZE];
 c = new double [SIZE*SIZE];

Managing Performance and Memory 6

6-7

 double alpha=1, beta=1;
 int m=SIZE, n=SIZE, k=SIZE, lda=SIZE, ldb=SIZE, ldc=SIZE, i=0, j=0;
 char transa='n', transb='n';
 for(i=0; i<SIZE; i++){
 for(j=0; j<SIZE; j++){
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
 }
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
 printf("row\ta\tc\n");
 for (i=0;i<10;i++){
 printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);
 }

 omp_set_num_threads(1);

 for(i=0; i<SIZE; i++){
 for(j=0; j<SIZE; j++){
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
 }
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");
 for (i=0;i<10;i++){
 printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);
 }
 omp_set_num_threads(2);
 for(i=0; i<SIZE; i++){
 for(j=0; j<SIZE; j++){
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
 }
 cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
 m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 printf("row\ta\tc\n");
 for (i=0;i<10;i++){
 printf("%d:\t%f\t%f\n", i, a[i*SIZE],
c[i*SIZE]);
 }

Example 6-1 Changing the Number of Threads (continued)

6-8

6 Intel® Math Kernel Library User’s Guide

 delete [] a;
 delete [] b;
 delete [] c;
}

// ******* Fortran language *******

 PROGRAM DGEMM_DIFF_THREADS

 INTEGER N, I, J
 PARAMETER (N=1000)

 REAL*8 A(N,N),B(N,N),C(N,N)
 REAL*8 ALPHA, BETA

 INTEGER*8 MKL_MALLOC
 integer ALLOC_SIZE

 integer NTHRS

 ALLOC_SIZE = 8*N*N
 A_PTR = MKL_MALLOC(ALLOC_SIZE,128)
 B_PTR = MKL_MALLOC(ALLOC_SIZE,128)
 C_PTR = MKL_MALLOC(ALLOC_SIZE,128)

 ALPHA = 1.1
 BETA = -1.2

 DO I=1,N
 DO J=1,N
 A(I,J) = I+J
 B(I,J) = I*j
 C(I,J) = 0.0
 END DO
 END DO

 CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)

 print *,'Row A C'
 DO i=1,10
 write(*,'(I4,F20.8,F20.8)') I, A(1,I),C(1,I)
 END DO

 CALL OMP_SET_NUM_THREADS(1);

 DO I=1,N
 DO J=1,N
 A(I,J) = I+J
 B(I,J) = I*j
 C(I,J) = 0.0

Example 6-1 Changing the Number of Threads (continued)

Managing Performance and Memory 6

6-9

Using Additional Threading Control
Intel MKL provides optional threading controls, that is, the environment variables and
service functions that are independent of OpenMP. They behave similar to their OpenMP
equivalents, but take precedence over them in the meaning that the MKL-specific threading
controls are inspected first. By using these controls along with OpenMP variables, you can
thread the part of the application that does not call Intel MKL and the library independently
from each other.

These controls enable you to specify the number of threads for Intel MKL independently of
the OpenMP settings. Although Intel MKL may actually use a different number of threads
from the number suggested, the controls will also enable you to instruct the library to try
using the suggested number when the number used in the calling application is
unavailable.

 END DO
 END DO

 CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)

 print *,'Row A C'
 DO i=1,10
 write(*,'(I4,F20.8,F20.8)') I, A(1,I),C(1,I)
 END DO

 CALL OMP_SET_NUM_THREADS(2);

 DO I=1,N
 DO J=1,N
 A(I,J) = I+J
 B(I,J) = I*j
 C(I,J) = 0.0
 END DO
 END DO

 CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)

 print *,'Row A C'
 DO i=1,10
 write(*,'(I4,F20.8,F20.8)') I, A(1,I),C(1,I)
 END DO

 STOP
 END

Example 6-1 Changing the Number of Threads (continued)

6-10

6 Intel® Math Kernel Library User’s Guide

Use of the Intel MKL threading controls in your application is optional. If you do not use
them, the library will mainly behave the same way as Intel MKL 9.1 in what relates to
threading with the possible exception of a different default number of threads.

Section "Number of User Threads" in the "Fourier Transform Functions" chapter of the Intel
MKL Reference Manual shows how the Intel MKL threading controls help to set the number
of threads for the FFT computation.

Table 6-3 lists the Intel MKL environment variables for threading control, their equivalent
functions, and OMP counterparts:

NOTE. Intel MKL does not always have a choice on the number of
threads for certain reasons, such as system resources.

Table 6-3 Environment Variables for Threading Controls

Environment Variable Service Function Comment

Equivalent
OpenMP*
Environment
Variable

MKL_NUM_THREADS mkl_set_num_threads Suggests the number of
threads to use.

OMP_NUM_THREADS

MKL_DOMAIN_NUM_
THREADS

mkl_domain_set_num_
threads

Suggests the number of
threads for a particular
function domain.

MKL_DYNAMIC mkl_set_dynamic Enables Intel MKL to
dynamically change the
number of threads.

OMP_DYNAMIC

NOTE. The functions take precedence over the respective environment
variables.
In particular, if in your application, you want Intel MKL to use a given
number of threads and do not want users of your application to change
this via environment variables, set this number of threads by a call to
mkl_set_num_threads(), which will have full precedence over any
environment variables being set.

Managing Performance and Memory 6

6-11

The example below illustrates the use of the Intel MKL function mkl_set_num_threads()
to set one thread.

The section further explains the Intel MKL environment variables for threading control. See
the Intel MKL Reference Manual for the detailed description of the threading control
functions, their parameters, calling syntax, and more code examples.

MKL_DYNAMIC

The MKL_DYNAMIC environment variable enables Intel MKL to dynamically change the
number of threads.

The default value of MKL_DYNAMIC is TRUE, regardless of OMP_DYNAMIC, whose default
value may be FALSE.

When MKL_DYNAMIC is TRUE, Intel MKL tries to use what it considers the best number of
threads, up to the maximum number you specify.

For example, MKL_DYNAMIC set to TRUE enables optimal choice of the number of threads in
the following cases:

• If the requested number of threads exceeds the number of physical cores (perhaps
because of hyper-threading), and MKL_DYNAMIC is not changed from its default value
of TRUE, Intel MKL will scale down the number of threads to the number of physical
cores.

• If you are able to detect the presence of MPI, but cannot determine if it has been
called in a thread-safe mode (it is impossible to detect this with MPICH 1.2.x, for
instance), and MKL_DYNAMIC has not been changed from its default value of TRUE,
Intel MKL will run one thread.

When MKL_DYNAMIC is FALSE, Intel MKL tries not to deviate from the number of threads
the user requested. However, setting MKL_DYNAMIC=FALSE does not ensure that Intel MKL
will use the number of threads that you request. The library may have no choice on this

Example 6-2 Setting the Number of Threads to One

// ******* C language *******

#include <omp.h>

#include <mkl.h>

…

mkl_set_num_threads (1);

// ******* Fortran language *******

…

call mkl_set_num_threads(1)

6-12

6 Intel® Math Kernel Library User’s Guide

number for such reasons as system resources. Additionally, the library may examine the
problem and use a different number of threads than the value suggested. For example, if
you attempt to do a size one matrix-matrix multiply across eight threads, the library may
instead choose to use only one thread because it is impractical to use eight threads in this
event.

Note also that if Intel MKL is called in a parallel region, it will use only one thread by
default. If you want the library to use nested parallelism, and the thread within a parallel
region is compiled with the same OpenMP compiler as Intel MKL is using, you may
experiment with setting MKL_DYNAMIC to FALSE and manually increasing the number of
threads.

In general, set MKL_DYNAMIC to FALSE only under circumstances that Intel MKL is unable
to detect, for example, to use nested parallelism where the library is already called from a
parallel section.

MKL_DOMAIN_NUM_THREADS

The MKL_DOMAIN_NUM_THREADS environment variable suggests the number of threads for
a particular function domain.

MKL_DOMAIN_NUM_THREADS accepts a string value <MKL-env-string>, which must have
the following format:

<MKL-env-string> ::= <MKL-domain-env-string> { <delimiter>
<MKL-domain-env-string> }

<delimiter> ::= [<space-symbol>*] (<space-symbol> | <comma-symbol> |
<semicolon-symbol> | <colon-symbol>) [<space-symbol>*]

<MKL-domain-env-string> ::= <MKL-domain-env-name> <uses>
<number-of-threads>

<MKL-domain-env-name> ::= MKL_ALL | MKL_BLAS | MKL_FFT | MKL_VML

<uses> ::= [<space-symbol>*] (<space-symbol> | <equality-sign> |
<comma-symbol>) [<space-symbol>*]

<number-of-threads> ::= <positive-number>

<positive-number> ::= <decimal-positive-number> | <octal-number> |
<hexadecimal-number>

In the syntax above, MKL_BLAS indicates the BLAS function domain, MKL_FFT indicates
non-cluster FFTs, and MKL_VML indicates the Vector Mathematics Library.

For example,

MKL_ALL 2 : MKL_BLAS 1 : MKL_FFT 4

MKL_ALL=2 : MKL_BLAS=1 : MKL_FFT=4

MKL_ALL=2, MKL_BLAS=1, MKL_FFT=4

Managing Performance and Memory 6

6-13

MKL_ALL=2; MKL_BLAS=1; MKL_FFT=4

MKL_ALL = 2 MKL_BLAS 1 , MKL_FFT 4

MKL_ALL,2: MKL_BLAS 1, MKL_FFT,4 .

The global variables MKL_ALL, MKL_BLAS, MKL_FFT, and MKL_VML, as well as the
interface for the Intel MKL threading control functions, can be found in the mkl.h header
file.

Table 6-4 illustrates how values of MKL_DOMAIN_NUM_THREADS are interpreted.

Be aware that the domain-specific settings take precedence over the overall ones. For
example, the "MKL_BLAS=4" value of MKL_DOMAIN_NUM_THREADS suggests trying four
threads for BLAS, regardless of later setting MKL_NUM_THREADS, and a function call
"mkl_domain_set_num_threads (4, MKL_BLAS);" suggests the same, regardless of
later calls to mkl_set_num_threads().
However, a function call with input "MKL_ALL", such as "mkl_domain_set_num_threads
(4, MKL_ALL);" is equivalent to "mkl_set_num_threads(4)", and thus it will be
overwritten by later calls to mkl_set_num_threads. Similarly, the environment setting of
MKL_DOMAIN_NUM_THREADS with "MKL_ALL=4" will be overwritten with MKL_NUM_THREADS
= 2.

Whereas the MKL_DOMAIN_NUM_THREADS environment variable enables you set several
variables at once, for example, "MKL_BLAS=4,MKL_FFT=2", the corresponding function
does not take string syntax. So, to do the same with the function calls, you may need to
make several calls, which in this example are as follows:

mkl_domain_set_num_threads (4, MKL_BLAS);

mkl_domain_set_num_threads (2, MKL_FFT);

Table 6-4 Interpretation of MKL_DOMAIN_NUM_THREADS Values

Value of
MKL_DOMAIN_NUM_THREADS Interpretation

MKL_ALL=4 All parts of Intel MKL should try four threads. The actual number of
threads may be still different because of the MKL_DYNAMIC setting or
system resource issues. The setting is equivalent to
MKL_NUM_THREADS = 4.

MKL_ALL=1, MKL_BLAS=4 All parts of Intel MKL should try one thread, except for BLAS, which is
suggested to try four threads.

MKL_VML = 2 VML should try two threads. The setting affects no other part of Intel
MKL.

6-14

6 Intel® Math Kernel Library User’s Guide

Setting the Environment Variables for Threading Control

To set the environment variables used for threading control, in the command shell in which
the program is going to run, enter the export or set commands, depending on the shell
you use. For example, for a bash shell, use the export commands:

export <VARIABLE NAME>=<value>

For example:

export MKL_NUM_THREADS=4

export MKL_DOMAIN_NUM_THREADS="MKL_ALL=1, MKL_BLAS=4"

export MKL_DYNAMIC=FALSE

For the csh or tcsh shell, use the set commands.

set <VARIABLE NAME>=<value> .

For example:

set MKL_NUM_THREADS=4

set MKL_DOMAIN_NUM_THREADS="MKL_ALL=1, MKL_BLAS=4"

set MKL_DYNAMIC=FALSE

Dispatching Intel® Advanced Vector Extensions (Intel®
AVX)

Intel MKL provides optimized kernels for Intel® AVX. To have the Intel AVX instructions
dispatched on Intel AVX-enabled hardware (or simulation), use the Intel MKL service
function mkl_enable_instructions(). This function enables dispatching new Intel AVX
instructions. Call this function before any other Intel MKL function call. For the function
description, see the Intel MKL Reference Manual.

NOTE. Successful execution of this function does not guarantee new
instructions to be dispatched. A particular instruction will be dispatched if
the hardware is Intel AVX-enabled and the function is already optimized
to dispatch this instruction. However, if you do not call this function, new
instructions will not be dispatched.

Managing Performance and Memory 6

6-15

As the Intel AVX instruction set is evolving, the behavior of
mkl_enable_instructions() may change with future Intel MKL releases. Refer to the
Release Notes for release-specific details of the function behavior.

Tips and Techniques to Improve Performance
This section provides some tips and techniques for improving performance.

Coding Techniques
To obtain the best performance with Intel MKL, ensure the following data alignment in your
source code:

• Align arrays on 16-byte boundaries.

• Make sure leading dimension values (n*element_size) of two-dimensional arrays are
divisible by 16.

• For two-dimensional arrays, avoid leading dimension values divisible by 2048.

LAPACK Packed Routines

The routines with the names that contain the letters HP, OP, PP, SP, TP, UP in the matrix
type and storage position (the second and third letters respectively) operate on the
matrices in the packed format (see LAPACK "Routine Naming Conventions" sections in the
Intel MKL Reference Manual). Their functionality is strictly equivalent to the functionality of
the unpacked routines with the names containing the letters HE, OR, PO, SY, TR, UN in the
same positions, but the performance is significantly lower.

If the memory restriction is not too tight, use an unpacked routine for better performance.
In this case, you need to allocate N2/2 more memory than the memory required by a
respective packed routine, where N is the problem size (the number of equations).

For example, to speed up solving a symmetric eigenproblem with an expert driver, use the
unpacked routine:

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w,
z, ldz, work, lwork, iwork, ifail, info),

where a is the dimension lda-by-n, which is at least N2 elements,
instead of the packed routine:

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info),

where ap is the dimension N*(N+1)/2.

6-16

6 Intel® Math Kernel Library User’s Guide

FFT Functions

Additional conditions can improve performance of the FFT functions.

Applications based on the IA-32 or Intel® 64 architecture. The addresses of the first
elements of arrays and the leading dimension values, in bytes (n*element_size), of
two-dimensional arrays should be divisible by cache line size, which equals:

• 32 bytes for the Intel® Pentium® III processors

• 64 bytes for the Intel® Pentium® 4 processors and processors using Intel® 64
architecture

Applications based on the IA-64 architecture. Leading dimension values, in bytes
(n*element_size), of two-dimensional arrays should not be a power of two.

Hardware Configuration Tips

Dual-Core Intel® Xeon® processor 5100 series systems. To get the best Intel MKL
performance on Dual-Core Intel® Xeon® processor 5100 series systems, enable the
Hardware DPL (streaming data) Prefetcher functionality of this processor. To configure this
functionality, use the appropriate BIOS settings, as described in your BIOS documentation.

The use of Hyper-Threading Technology. Hyper-Threading Technology (HT Technology) is
especially effective when each thread performs different types of operations and when
there are under-utilized resources on the processor. However, Intel MKL fits neither of
these criteria because the threaded portions of the library execute at high efficiencies using
most of the available resources and perform identical operations on each thread. You may
obtain higher performance by disabling HT Technology. See Using the Intel® MKL
Parallelism for information on the default number of threads, changing this number, and
other relevant details.
If you run with HT enabled, performance may be especially impacted if you run on fewer
threads than physical cores. Moreover, if, for example, there are two threads to every
physical core, the thread scheduler may assign two threads to some cores and ignore the
other cores altogether. If you are using the OpenMP* library of the Intel Compiler, read the
respective User Guide on how to best set the thread affinity interface to avoid this
situation. For Intel MKL, you are recommended to set
KMP_AFFINITY=granularity=fine,compact,1,0.

Managing Multi-core Performance
You can obtain best performance on systems with multi-core processors by requiring that
threads do not migrate from core to core. To do this, bind threads to the CPU cores by
setting an affinity mask to threads. Use one of the following options:

Managing Performance and Memory 6

6-17

• OpenMP facilities (recommended, if available), for example, the KMP_AFFINITY
environment variable using the Intel OpenMP library

• A system function, as explained below

Consider the following performance issue:

• The system has two sockets with two cores each, for a total of four cores (CPUs).

• The two-thread parallel application that calls the Intel MKL FFT happens to run faster
than in four threads, but the performance in two threads is very unstable

Example 6-3 resolves this issue. The code example calls the system function
sched_setaffinity to bind the threads to the cores on different sockets. Then the Intel
MKL FFT function is called.

Compile your application with the Intel compiler using the following command:

icc test_application.c –openmp

where test_application.c is the filename for the application.

Build the application. Run it in two threads, for example, by using the environment variable
to set the number of threads:

env OMP_NUM_THREADS=2 ./a.out

Example 6-3 Setting An affinity Mask by Operating System Means Using the Intel® Compiler

#define _GNU_SOURCE //for using the GNU CPU affinity
 // (works with the appropriate kernel and glibc)

// Set affinity mask
#include <sched.h>
#include <stdio.h>
#include <unistd.h>
#include <omp.h>

int main(void) {
 int NCPUs = sysconf(_SC_NPROCESSORS_CONF);

 printf("Using thread affinity on %i NCPUs\n", NCPUs);

#pragma omp parallel default(shared)
 {
 cpu_set_t new_mask;
 cpu_set_t was_mask;
 int tid = omp_get_thread_num();

 CPU_ZERO(&new_mask);

 // 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)
 CPU_SET(tid==0 ? 0 : 2, &new_mask);

6-18

6 Intel® Math Kernel Library User’s Guide

See the Linux Programmer's Manual (in man pages format) for particulars of the
sched_setaffinity function used in the above example.

Operating on Denormals
The IEEE 754-2008 standard, "An IEEE Standard for Binary Floating-Point Arithmetic",
defines denormal (or subnormal) numbers as non-zero numbers smaller than the smallest
possible normalized numbers for a specific floating-point format. Floating-point operations
on denormals are slower than on normalized operands because denormal operands and
results are usually handled through a software assist mechanism rather than directly in
hardware. This software processing causes Intel MKL functions that consume denormals to
run slower than with normalized floating-point numbers.

You can mitigate this performance issue by setting the appropriate bit fields in the MXCSR
floating-point control register to flush denormals to zero (FTZ) or to replace any denormals
loaded from memory with zero (DAZ). Check your compiler documentation to determine
whether it has options to control FTZ and DAZ. Note that these compiler options may
slightly affect accuracy.

FFT Optimized Radices
You can improve the performance of Intel MKL FFT if the length of your data vector permits
factorization into powers of optimized radices.

In Intel MKL, the optimized radices are 2, 3, 5, 7, and 11.

 if (sched_getaffinity(0, sizeof(was_mask), &was_mask) == -1) {
 printf("Error: sched_getaffinity(%d, sizeof(was_mask), &was_mask)\n", tid);
 }
 if (sched_setaffinity(0, sizeof(new_mask), &new_mask) == -1) {
 printf("Error: sched_setaffinity(%d, sizeof(new_mask), &new_mask)\n", tid);
 }
 printf("tid=%d new_mask=%08X was_mask=%08X\n", tid,
 (unsigned int)(&new_mask), *(unsigned int*)(&was_mask));
 }

 // Call Intel MKL FFT function

 return 0;
}

Example 6-3 Setting An affinity Mask by Operating System Means Using the Intel® Compiler
(continued)

Managing Performance and Memory 6

6-19

Using the Intel® MKL Memory Management
Intel MKL has memory management software that controls memory buffers for the use by
the library functions. New buffers that the library allocates when your application calls Intel
MKL are not deallocated until the program ends. To get the amount of memory allocated by
the memory management software, call the mkl_mem_stat() function. If your program
needs to free memory, call mkl_free_buffers(). If another call is made to a library
function that needs a memory buffer, the memory manager again allocates the buffers and
they again remain allocated until either the program ends or the program deallocates the
memory. This behavior facilitates better performance. However, some tools may report this
behavior as a memory leak.

The memory management software is turned on by default, which leaves memory
allocated by calls to Intel MKL until the program ends. To disable this behavior of the
memory management software, set the MKL_DISABLE_FAST_MM environment variable to
any value. This configures the memory management software to allocate and free memory
from call to call. Disabling this feature will negatively impact performance of some Intel
MKL routines, especially for small problem sizes.

Redefining Memory Functions
In C/C++ programs, you can replace Intel MKL memory functions that the library uses by
default with their own functions. To do this, use the memory renaming feature.

Memory Renaming

Intel MKL memory management by default uses standard C run-time memory functions to
allocate or free memory. These functions can be replaced using memory renaming.

Intel MKL accesses the memory functions by pointers i_malloc, i_free, i_calloc, and
i_realloc, which are visible at the application level. These pointers initially hold
addresses of the standard C run-time memory functions malloc, free, calloc, and
realloc, respectively. You can programmatically redefine values of these pointers to the
addresses of your application's memory management functions.

Redirecting the pointers is the only correct way to use your own set of memory
management functions. If you call your own memory functions without redirecting the
pointers, the memory will get managed by two independent memory management
packages, which may cause unexpected memory issues.

How to Redefine Memory Functions

To redefine memory functions, use the following procedure:

6-20

6 Intel® Math Kernel Library User’s Guide

1. Include the i_malloc.h header file in your code.
This header file contains all declarations required for replacing the memory allocation
functions. The header file also describes how memory allocation can be replaced in
those Intel libraries that support this feature.

2. Redefine values of pointers i_malloc, i_free, i_calloc, i_realloc prior to the
first call to MKL functions:

Example 6-4 Redefining Memory Functions

#include "i_malloc.h"

 . . .

 i_malloc = my_malloc;

 i_calloc = my_calloc;

 i_realloc = my_realloc;

 i_free = my_free;

 . . .

// Now you may call Intel MKL functions

7-1

Language-specific Usage
Options 7

The Intel® Math Kernel Library (Intel® MKL) provides broad support for Fortran and
C/C++ programming. However, not all function domains support both Fortran and C
interfaces (see Table A-1 in Appendix A). For example, LAPACK has no C interface. You can
call functions comprising such domains from C using mixed-language programming.

If you want to use LAPACK or BLAS, which support Fortran, in the Fortran 95 environment,
additional effort may be initially required to build compiler-specific interface libraries and
modules from the source code provided with Intel MKL.

This chapter focuses on mixed-language programming and the use of language-specific
interfaces. It explains the use of Intel MKL in C language environments for function
domains that provide only Fortran interfaces, as well as explains usage of language-specific
interfaces, specifically the Fortran 95 interfaces to LAPACK and BLAS. The chapter also
discusses compiler-dependent functions to explain why Fortran 90 modules are supplied as
sources. A separate section guides you through the process of running examples to invoke
Intel MKL functions from Java*.

Using Language-Specific Interfaces with Intel® MKL
You can create the following interface libraries and modules using the respective makefiles
located in the interfaces directory.

Table 7-1 Interface Libraries and Modules

File name Contains

Libraries, in Intel MKL architecture-specific directories

libmkl_blas95.a1 Fortran 95 wrappers for BLAS (BLAS95) for IA-32
architecture.

libmkl_blas95_ilp64.a1 Fortran 95 wrappers for BLAS (BLAS95) supporting LP64
interface.

7-2

7 Intel® Math Kernel Library User’s Guide

libmkl_blas95_lp64.a1 Fortran 95 wrappers for BLAS (BLAS95) supporting ILP64
interface.

libmkl_lapack95.a1 Fortran 95 wrappers for LAPACK (LAPACK95) for IA-32
architecture.

libmkl_lapack95_lp64.a1 Fortran 95 wrappers for LAPACK (LAPACK95) supporting
LP64 interface.

libmkl_lapack95_ilp64.a1 Fortran 95 wrappers for LAPACK (LAPACK95) supporting
ILP64 interface.

libfftw2xc_intel.a1 Interfaces for FFTW version 2.x (C interface for Intel®
compiler) to call Intel MKL FFTs.

libfftw2xc_gnu.a Interfaces for FFTW version 2.x (C interface for GNU
compiler) to call Intel MKL FFTs.

libfftw2xf_intel.a Interfaces for FFTW version 2.x (Fortran interface for
Intel compiler) to call Intel MKL FFTs.

libfftw2xf_gnu.a Interfaces for FFTW version 2.x (Fortran interface for
GNU compiler) to call Intel MKL FFTs.

libfftw3xc_intel.a2 Interfaces for FFTW version 3.x (C interface for Intel
compiler) to call Intel MKL FFTs.

libfftw3xc_gnu.a Interfaces for FFTW version 3.x (C interface for GNU
compiler) to call Intel MKL FFTs.

libfftw3xf_intel.a2 Interfaces for FFTW version 3.x (Fortran interface for
Intel compiler) to call Intel MKL FFTs.

libfftw3xf_gnu.a Interfaces for FFTW version 3.x (Fortran interface for
GNU compiler) to call Intel MKL FFTs.

libfftw2x_cdft_SINGLE.a Single-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel MKL cluster FFTs.

libfftw2x_cdft_DOUBLE.a Double-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel MKL cluster FFTs.

Modules, in architecture- and interface-specific subdirectories of the Intel MKL include directory

blas95.mod1 Fortran 95 interface module for BLAS (BLAS95).

lapack95.mod1 Fortran 95 interface module for LAPACK (LAPACK95).

f95_precision.mod1 Fortran 95 definition of precision parameters for BLAS95
and LAPACK95.

mkl95_blas.mod1 Fortran 95 interface module for BLAS (BLAS95), identical
to blas95.mod. To be removed in one of the future
releases.

mkl95_lapack.mod1 Fortran 95 interface module for LAPACK (LAPACK95),
identical to lapack95.mod. To be removed in one of
the future releases.

Table 7-1 Interface Libraries and Modules (continued)

File name Contains

Language-specific Usage Options 7

7-3

See Fortran 95 Interfaces to LAPACK and BLAS for an example of how to generate these
libraries and modules.

See Appendix G in the Intel MKL Reference Manual for details of FFTW to Intel MKL
wrappers.

 Fortran 95 Interfaces to LAPACK and BLAS
Fortran 95 interfaces are compiler-dependent. Intel MKL provides the interface libraries
and modules precompiled with the Intel® Fortran compiler. Additionally, the Fortran 95
interfaces and wrappers are delivered as sources. (For more information, see
Compiler-dependent Functions and Fortran 90 Modules). If you are using a different
compiler, build the appropriate library and modules with your compiler and link the library
as a user's library:

1. Go to the respective directory <mkl_directory>/interfaces/blas95 or
<mkl_directory>/interfaces/lapack95

2. Type one of the following commands:

As a result, the required library is built and installed in the
<user dir>/lib/<arch> directory, and the .mod files will be built and installed in the
<user dir>/include/<arch>[/{lp64 | ilp64}] directory, where <arch> is one of
{32, em64t, 64}.

mkl95_precision.mod1 Fortran 95 definition of precision parameters for BLAS95
and LAPACK95, identical to f95_precision.mod. To
be removed in one of the future releases.

1. Prebuilt for the Intel® Fortran compiler
2. FFTW3 interfaces are integrated with Intel MKL. Look into <mkl directory>/interfaces/fftw3x*/makefile for options

defining how to build and where to place the standalone library with the wrappers.

make lib32 INSTALL_DIR=<user_dir> for the IA-32 architecture.

make libem64t [interface=lp64|ilp64]
INSTALL_DIR=<user_dir>

for the Intel® 64 architecture.

make lib64 [interface=lp64|ilp64]
INSTALL_DIR=<user_dir>

for the IA-64 architecture.

NOTE. Parameter INSTALL_DIR is required.

Table 7-1 Interface Libraries and Modules (continued)

File name Contains

7-4

7 Intel® Math Kernel Library User’s Guide

By default, the ifort compiler is assumed. You may change the compiler command name
with an additional parameter of make: FC=<compiler>.

For example, command

make libem64t FC=pgf95 INSTALL_DIR=<user_pgf95_dir> interface=lp64

builds the required library and .mod files and installs them in subdirectories of
<user_pgf95_dir>.

To delete the library from the building directory, use the following commands:

Compiler-dependent Functions and Fortran 90 Modules
Compiler-dependent functions occur whenever the compiler inserts into the object code
function calls that are resolved in its run-time library (RTL). Linking of such code without
the appropriate RTL will result in undefined symbols. Intel MKL has been designed to
minimize RTL dependencies.

Where dependencies occur, a supporting RTL is shipped with Intel MKL. The only examples
of such RTLs, except those that are relevant to the Intel MKL cluster software, are libiomp
and libguide, which are the libraries for the OpenMP* code compiled with an Intel®
compiler. Both libiomp and libguide support the threaded code in Intel MKL.

In other cases where RTL dependencies might arise, the functions are delivered as source
code and you need to compile the code with whatever compiler you are using for your
application.

In particular, Fortran 90 modules result in the compiler-specific code generation requiring
RTL support, so, Intel MKL delivers these modules as source code.

make clean32 INSTALL_DIR=<user_dir> for the IA-32 architecture.

make cleanem64t INSTALL_DIR=<user_dir> for the Intel® 64 architecture.

make clean64 INSTALL_DIR=<user_dir> for the IA-64 architecture.

make clean INSTALL_DIR=<user_dir> for all the architectures.

NOTE. Setting INSTALL_DIR=../.. or
INSTALL_DIR=<mkl_directory> in a build or clean command above will
replace or delete the Intel MKL prebuilt Fortran 95 library and modules.
Though this is possible only if you have administrative rights, you are
strongly discouraged from doing this.

Language-specific Usage Options 7

7-5

Mixed-language Programming with Intel® MKL
Appendix A lists the programming languages supported for each Intel MKL function
domain. However, you can call Intel MKL routines from different language environments.
This section explains how to do this using mixed-language programming.

Calling LAPACK, BLAS, and CBLAS Routines from C Language
Environments

Not all Intel MKL function domains support both C and Fortran environments. To use Intel
MKL Fortran-style functions in C/C++ environments, you should observe certain
conventions, which are discussed for LAPACK and BLAS in the subsections below.

LAPACK and BLAS

Because LAPACK and BLAS routines are Fortran-style, when calling them from C-language
programs, follow the Fortran-style calling conventions:

• Pass variables by address, not by value.

Function calls in Example 7-2 and Example 7-3 illustrate this.

• Store your data in Fortran style, that is, column-major rather than row-major order.

With row-major order, adopted in C, the last array index changes most quickly and the
first one changes most slowly when traversing the memory segment where the array is
stored. With Fortran-style column-major order, the last index changes most slowly
whereas the first one changes most quickly (as illustrated by Figure 7-1 for a
two-dimensional array).

CAUTION. Avoid calling BLAS95/LAPACK95 from C/C++. Such calls
require skills in manipulating the descriptor of a deferred-shape array,
which is the Fortran 90 type. Moreover, BLAS95/LAPACK95 routines
contain links to a Fortran RTL.

7-6

7 Intel® Math Kernel Library User’s Guide

Figure 7-1 Column-major Order versus Row-major Order

For example, if a two-dimensional matrix A of size m x n is stored densely in a
one-dimensional array B, you can access a matrix element like this:

A[i][j] = B[i*n+j] in C (i=0, ... , m-1, j=0, ... , n-1)

A(i,j) = B(j*m+i) in Fortran (i=1, ... , m, j=1, ... , n).

When calling LAPACK or BLAS routines from C, be aware that because the Fortran language
is case-insensitive, the routine names can be both upper-case or lower-case, with or
without the trailing underscore. For example, these names are equivalent:

• LAPACK: dgetrf, DGETRF, dgetrf_, DGETRF_

• BLAS: dgemm, DGEMM, dgemm_, DGEMM_

See Example 7-2 on how to call BLAS routines from C.

CBLAS

Instead of calling BLAS routines from a C-language program, you can use the CBLAS
interface.

CBLAS is a C-style interface to the BLAS routines. You can call CBLAS routines using
regular C-style calls. When using the CBLAS interface, the header file mkl.h will simplify
the program development because it specifies enumerated values as well as prototypes of
all the functions. The header determines if the program is being compiled with a C++
compiler, and if it is, the included file will be correct for use with C++ compilation.
Example 7-3 illustrates the use of the CBLAS interface.

Language-specific Usage Options 7

7-7

Using Complex Types in C/C++
As described in the Building Applications document for the Intel® Fortran Compiler, C/C++
does not directly implement the Fortran types COMPLEX(4) and COMPLEX(8). However, you
can write equivalent structures. The type COMPLEX(4)consists of two 4-byte floating-point
numbers. The first of them is the real-number component, and the second one is the
imaginary-number component. The type COMPLEX(8) is similar to COMPLEX(4) except that
it contains two 8-byte floating-point numbers.

Intel MKL provides complex types MKL_Complex8 and MKL_Complex16, which are
structures equivalent to the Fortran complex types COMPLEX(4) and COMPLEX(8),
respectively. These types are defined in the mkl_types.h header file. You can use these
types to define complex data. You can also redefine the types with your own types before
including the mkl_types.h header file. The only requirement is that the types must be
compatible with the Fortran complex layout, that is, the complex type must be a pair of
real numbers for the values of real and imaginary parts.

For example, you can use the following definitions in your C++ code:

#define MKL_Complex8 std::complex<float>

and

#define MKL_Complex16 std::complex<double> .

See Example 7-2 for details. You can also define these types in the command line:
-DMKL_Complex8="std::complex<float>"
-DMKL_Complex16="std::complex<double>".

Calling BLAS Functions that Return the Complex Values in
C/C++ Code

Complex values that functions return are handled differently in C and Fortran. Because
BLAS is Fortran-style, you need to be careful when handling a call from C to a BLAS
function that returns complex values. However, in addition to normal function calls, Fortran
enables calling functions as though they were subroutines, which provides a mechanism for
returning the complex value correctly when the function is called from a C program. When
a Fortran function is called as a subroutine, the return value is the first parameter in the
calling sequence. You can use this feature to call a BLAS function from C.

The following example shows how a call to a Fortran function as a subroutine converts to a
call from C and the hidden parameter result gets exposed:

Normal Fortran function call: result = cdotc(n, x, 1, y, 1)

A call to the function as a

subroutine: call cdotc(result, n, x, 1, y, 1)

7-8

7 Intel® Math Kernel Library User’s Guide

A call to the function from C: cdotc(&result, &n, x, &one, y, &one)

The above example shows one of the ways to call several level 1 BLAS functions that return
complex values from your C and C++ applications. An easier way is to use the CBLAS
interface. For instance, you can call the same function using the CBLAS interface as
follows:

cblas_cdotu(n, x, 1, y, 1, &result)

The following examples show use of the Fortran-style BLAS interface from C and C++, as
well as the CBLAS (C language) interface.

The example below illustrates a call from a C program to the complex BLAS Level 1
function zdotc(). This function computes the dot product of two double-precision complex
vectors.

In this example, the complex dot product is returned in the structure c.

NOTE. Intel MKL has both upper-case and lower-case entry points in the
Fortran-style (case-insensitive) BLAS, with or without the trailing
underscore. So, all these names are equivalent and acceptable: cdotc,
CDOTC, cdotc_, CDOTC_.

NOTE. The complex value comes last on the argument list in this case.

Example 7-1 Calling a Complex BLAS Level 1 Function from C

#include "mkl.h"

#define N 5

void main()

{

 MKL_int n = N, inca = 1, incb = 1, i;

 MKL_Complex16 a[N], b[N], c;

Language-specific Usage Options 7

7-9

Below is the C++ implementation:

 for(i = 0; i < n; i++){

 a[i].re = (double)i; a[i].im = (double)i * 2.0;

 b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}

zdotc(&c, &n, a, &inca, b, &incb);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);

}

Example 7-2 Calling a Complex BLAS Level 1 Function from C++

#include <complex>

#include <iostream>

#define MKL_Complex16 std::complex<double>

#include "mkl.h"

#define N 5

int main()

{

int n, inca = 1, incb = 1, i;

std::complex<double> a[N], b[N], c;

n = N;
for(i = 0; i < n; i++){

a[i] = std::complex<double>(i,i*2.0);

b[i] = std::complex<double>(n-i,i*2.0);

}

zdotc(&c, &n, a, &inca, b, &incb);

std::cout << "The complex dot product is: " << c << std::endl;

return 0;

}

Example 7-1 Calling a Complex BLAS Level 1 Function from C (continued)

7-10

7 Intel® Math Kernel Library User’s Guide

The example below uses CBLAS:

Support for Boost uBLAS Matrix-matrix Multiplication
If you are used to uBLAS, you can perform BLAS matrix-matrix multiplication in C++ using
Intel MKL substitution of Boost uBLAS functions. uBLAS is the Boost C++ open-source
library that provides BLAS functionality for dense, packed, and sparse matrices. The library

Example 7-3 Using CBLAS Interface Instead of Calling BLAS Directly from C

#include "mkl.h"

typedef struct{ double re; double im; } complex16;

extern "C" void cblas_zdotc_sub (const int , const complex16 *,

 const int , const complex16 *, const int, const complex16*);

#define N 5

void main()

{

int n, inca = 1, incb = 1, i;

complex16 a[N], b[N], c;

n = N;

for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;

b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}

cblas_zdotc_sub(n, a, inca, b, incb,&c);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);

}

Language-specific Usage Options 7

7-11

uses an expression template technique for passing expressions as function arguments,
which enables evaluating vector and matrix expressions in one pass without temporary
matrices. uBLAS provides two modes:

• Debug (safe) mode, default.
Checks types and conformance.

• Release (fast) mode.
Does not check types and conformance. To enable this mode, use the NDEBUG
preprocessor symbol.

The documentation for the Boost uBLAS is available at www.boost.org.

Intel MKL provides overloaded prod() functions for substituting uBLAS dense
matrix-matrix multiplication with the Intel MKL gemm calls. Though these functions break
uBLAS expression templates and introduce temporary matrices, the performance
advantage can be considerable for matrix sizes that are not too small (roughly, over 50).

You do not need to change your source code to use the functions. To call them:

• Include the header file mkl_boost_ublas_matrix_prod.hpp in your code (from the
Intel MKL include directory).

• Add appropriate Intel MKL libraries to the link line (see Linking Your Application with
the Intel® Math Kernel Library).

The list of expressions that are substituted follows:

prod(m1, m2)

prod(trans(m1), m2)

prod(trans(conj(m1)), m2)

prod(conj(trans(m1)), m2)

prod(m1, trans(m2))

prod(trans(m1), trans(m2))

prod(trans(conj(m1)), trans(m2))

prod(conj(trans(m1)), trans(m2))

prod(m1, trans(conj(m2)))

prod(trans(m1), trans(conj(m2)))

prod(trans(conj(m1)), trans(conj(m2)))

prod(conj(trans(m1)), trans(conj(m2)))

prod(m1, conj(trans(m2)))

prod(trans(m1), conj(trans(m2)))

7-12

7 Intel® Math Kernel Library User’s Guide

prod(trans(conj(m1)), conj(trans(m2)))

prod(conj(trans(m1)), conj(trans(m2)))

These expressions are substituted in the release mode only (with NDEBUG preprocessor
symbol defined). Supported uBLAS versions are Boost 1.34.1, 1.35.0, 1.36.0, and 1.37.0.
To get them, visit www.boost.org.

A code example provided in the
<mkl_directory>/examples/ublas/source/sylvester.cpp file illustrates usage of
the Intel MKL uBLAS header file for solving a special case of the Sylvester equation.

To run the Intel MKL ublas examples, specify the BOOST_ROOT parameter in the make
command, for instance, when using Boost version 1.37.0:

make lib32 BOOST_ROOT=<your_path>/boost_1_37_0

Invoking Intel® MKL Functions from Java* Applications
This section describes examples that are provided with the Intel MKL package and illustrate
calling the library functions from Java.

Intel MKL Java Examples

To demonstrate binding with Java, Intel MKL includes a set of Java examples in the
following directory:

<mkl directory>/examples/java .

The examples are provided for the following MKL functions:

• ?gemm, ?gemv, and ?dot families from CBLAS

• The complete set of non-cluster FFT functions

• ESSL1-like functions for one-dimensional convolution and correlation

• VSL Random Number Generators (RNG), except user-defined ones and file subroutines

• VML functions, except GetErrorCallBack, SetErrorCallBack, and
ClearErrorCallBack

You can see the example sources in the following directory:

<mkl directory>/examples/java/examples .

The examples are written in Java. They demonstrate usage of the MKL functions with the
following variety of data:

• 1- and 2-dimensional data sequences

1. IBM Engineering Scientific Subroutine Library (ESSL*).

Language-specific Usage Options 7

7-13

• real and complex types of the data

• single and double precision

However, the wrappers, used in the examples, do not:

• Demonstrate the use of huge arrays (>2 billion elements)

• Demonstrate processing of arrays in native memory

• Check correctness of function parameters

• Demonstrate performance optimizations

The examples use the Java Native Interface (JNI* developer framework) to bind with Intel
MKL. The JNI documentation is available from
http://java.sun.com/javase/6/docs/technotes/guides/jni/ .

The Java example set includes JNI wrappers that perform the binding. The wrappers do not
depend on the examples and may be used in your Java applications. The wrappers for
CBLAS, FFT, VML, VSL RNG, and ESSL-like convolution and correlation functions do not
depend on each other.

To build the wrappers, just run the examples (see Running the Examples for details). The
makefile builds the wrapper binaries. After running the makefile, you can run the
examples, which will determine whether the wrappers were built correctly. As a result of
running the examples, the following directories will be created in
<mkl directory>/examples/java:

• docs

• include

• classes

• bin

• _results

The directories docs, include, classes, and bin will contain the wrapper binaries and
documentation; the directory _results will contain the testing results.

For a Java programmer, the wrappers are the following Java classes:

• com.intel.mkl.CBLAS

• com.intel.mkl.DFTI

• com.intel.mkl.ESSL

• com.intel.mkl.VML

• com.intel.mkl.VSL

Documentation for the particular wrapper and example classes will be generated from the
Java sources while building and running the examples. To browse the documentation, open
the index file in the docs directory (created by the build script):

7-14

7 Intel® Math Kernel Library User’s Guide

<mkl directory>/examples/java/docs/index.html .

The Java wrappers for CBLAS, VML, VSL RNG, and FFT establish the interface that directly
corresponds to the underlying native functions, so you can refer to the Intel MKL Reference
Manual for their functionality and parameters. Interfaces for the ESSL-like functions are
described in the generated documentation for the com.intel.mkl.ESSL class.

Each wrapper consists of the interface part for Java and JNI stub written in C. You can find
the sources in the following directory:

<mkl directory>/examples/java/wrappers .

Both Java and C parts of the wrapper for CBLAS and VML demonstrate the straightforward
approach, which you may use to cover additional CBLAS functions.

The wrapper for FFT is more complicated because it needs to support the lifecycle for FFT
descriptor objects. To compute a single Fourier transform, an application needs to call the
FFT software several times with the same copy of the native FFT descriptor. The wrapper
provides the handler class to hold the native descriptor, while the virtual machine runs Java
bytecode.

The wrapper for VSL RNG is similar to the one for FFT. The wrapper provides the handler
class to hold the native descriptor of the stream state.

The wrapper for the convolution and correlation functions mitigates the same difficulty of
the VSL interface, which assumes a similar lifecycle for "task descriptors". The wrapper
utilizes the ESSL-like interface for those functions, which is simpler for the case of
1-dimensional data. The JNI stub additionally encapsulates the MKL functions into the
ESSL-like wrappers written in C and so "packs" the lifecycle of a task descriptor into a
single call to the native method.

The wrappers meet the JNI Specification versions 1.1 and 5.0 and should work with
virtually every modern implementation of Java.

The examples and the Java part of the wrappers are written for the Java language
described in “The Java Language Specification (First Edition)” and extended with the
feature of "inner classes" (this refers to late 1990s). This level of language version is
supported by all versions of the Sun Java Development Kit* (JDK*) developer toolkit and
compatible implementations starting from version 1.1.5, or by all modern versions of Java.

The level of C language is "Standard C" (that is, C89) with additional assumptions about
integer and floating-point data types required by the Intel MKL interfaces and the JNI
header files. That is, the native float and double data types must be the same as JNI
jfloat and jdouble data types, respectively, and the native int must be 4 bytes long.

Running the Examples

The Java examples support all the C and C++ compilers that the Intel MKL does. The
makefile intended to run the examples also needs the make utility, which is typically
provided with the Linux* OS distribution.

Language-specific Usage Options 7

7-15

To run Java examples, the JDK* developer toolkit is required for compiling and running
Java code. A Java implementation must be installed on the computer or available via the
network. You may download the JDK from the vendor website.

The examples should work for all versions of JDK. However, they were tested only with the
following Java implementations for all the supported architectures:

• J2SE* SDK 1.4.2, JDK 5.0 and 6.0 from Sun Microsystems, Inc. (http://sun.com/)

• JRockit* JDK 1.4.2 and 5.0 from Oracle Corporation (http ://oracle .com/)

Note that the Java run-time environment* (JRE*) system, which may be pre-installed on
your computer, is not enough. You need the JDK* developer toolkit that supports the
following set of tools:

• java

• javac

• javah

• javadoc

To make these tools available for the examples makefile, set the JAVA_HOME environment
variable and add the JDK binaries directory to the system PATH, for example, using the
bash shell:

export JAVA_HOME=/home/<user name>/jdk1.5.0_09

export PATH=${JAVA_HOME}/bin:${PATH}

You may also need to clear the JDK_HOME environment variable, if it is assigned a value:

unset JDK_HOME

To start the examples, use the makefile found in the Intel MKL Java examples directory:

make {so32|soem64t|so64|lib32|libem64t|lib64} [function=…] [compiler=…]

If you type the make command and omit the target (for example, so32), the makefile
prints the help info, which explains the targets and parameters.

For the examples list, see the examples.lst file in the Java examples directory.

Known Limitations

This section explains limitations of Java examples.

Functionality. It is possible that some MKL functions will not work if called from the Java
environment by using a wrapper, like those provided with the Intel MKL Java examples.
Only those specific CBLAS, FFT, VML, VSL RNG, and the convolution/correlation functions
listed in the Intel MKL Java Examples section were tested with the Java environment. So,
you may use the Java wrappers for these CBLAS, FFT, VML, VSL RNG, and
convolution/correlation functions in your Java applications.

7-16

7 Intel® Math Kernel Library User’s Guide

Performance. The functions from Intel MKL must work faster than similar functions written
in pure Java. However, the main goal of these wrappers is to provide code examples, not
maximum performance. So, an Intel MKL function called from a Java application will
probably work slower than the same function called from a program written in C/C++ or
Fortran.

Known bugs. There are a number of known bugs in Intel MKL (identified in the Release
Notes), as well as incompatibilities between different versions of JDK. The examples and
wrappers include workarounds for these problems. Look at the source code in the
examples and wrappers for comments that describe the workarounds.

8-1

Coding Tips 8
This chapter discusses programming with the Intel® Math Kernel Library (Intel® MKL) to
provide coding tips that meet certain, specific needs, such as numerical stability. Similarly,
Chapter 7 focuses on general language-specific programming options, and Chapter 6
provides tips relevant to performance and memory management.

Aligning Data for Consistent Results
Routines in Intel MKL may return different results from run-to-run on the same system.
This is usually due to a change in the order in which floating-point operations are
performed. The two most influential factors are array alignment and parallelism. Array
alignment can determine how internal loops order floating-point operations.
Non-deterministic parallelism may change the order in which computational tasks are
executed. While these results may differ, they should still fall within acceptable
computational error bounds. To better assure identical results from run-to-run, do the
following:

• Align input arrays on 16-byte boundaries

• Run Intel MKL in the sequential mode

To align input arrays on 16-byte boundaries, use mkl_malloc() in place of system
provided memory allocators, as shown in the code example below. Sequential mode of
Intel MKL removes the influence of non-deterministic parallelism.

8-2

8 Intel® Math Kernel Library User’s Guide

Example 8-1 Aligning Addresses at 16-byte Boundaries

// ******* C language *******

...

#include <stdlib.h>

...

void *darray;

int workspace;

...

// Allocate workspace aligned on 16-bit boundary

darray = mkl_malloc(sizeof(double)*workspace, 16);

...

// call the program using MKL

mkl_app(darray);

...

// Free workspace

mkl_free(darray);

! ******* Fortran language *******

...

double precision darray

pointer (p_wrk,darray(1))

integer workspace

...

! Allocate workspace aligned on 16-bit boundary

p_wrk = mkl_malloc(8*workspace, 16)

...

! call the program using MKL

call mkl_app(darray)

...

! Free workspace

call mkl_free(p_wrk)

9-1

Working with the Intel®
Math Kernel Library Cluster
Software 9

This chapter discusses the usage of the Intel® Math Kernel Library (Intel® MKL)
ScaLAPACK and Cluster FFTs.

See Chapter 3 for details about the Intel MKL directory structure, including the available
documentation in the doc directory.

For information on MP LINPACK Benchmark for Clusters, see Chapter 11.

Intel MKL ScaLAPACK and Cluster FFTs support MPI implementations identified in the Intel
MKL Release Notes.

Linking with ScaLAPACK and Cluster FFTs
To link a program that calls ScaLAPACK and/or Cluster FFTs, you need to know how to link
a message-passing interface (MPI) application first.

Use mpi scripts to do this. For example, mpicc and mpif77 are C and FORTRAN 77scripts,
respectively, that use the correct MPI header files. The location of these scripts and the MPI
library depends on your MPI implementation. For example, for the default installation of
MPICH, /opt/mpich/bin/mpicc and /opt/mpich/bin/mpif77 are the compiler scripts
and /opt/mpich/lib/libmpich.a is the MPI library.

Check the documentation that comes with your MPI implementation for
implementation-specific details of linking.

To link with the Intel MKL ScaLAPACK and/or Cluster FFTs, use the following general form:

<<MPI> linker script> <files to link> \

-L<MKL path> [-Wl,--start-group] <MKL cluster library> \
<BLACS> <MKL core libraries> [-Wl,--end-group]

where:

<MPI> is one of several MPI implementations (MPICH, Intel MPI 2.x/3.x, and so on).

9-2

9 Intel® Math Kernel Library User’s Guide

<MKL cluster library> is one of ScaLAPACK or Cluster FFT libraries for the
appropriate architecture, which are listed in Table 3-6, Table 3-7, or Table 3-8. For
example, for IA-32 architecture, it is one of -lmkl_scalapack_core or
-lmkl_cdft_core.

<BLACS> is the BLACS library corresponding to your architecture, programming
interface (LP64 or ILP64), and MPI version. These libraries are listed in Table 3-6,
Table 3-7, or Table 3-8. For example, for the IA-32 architecture, choose one of
-lmkl_blacs, -lmkl_blacs_intelmpi, or -lmkl_blacs_openmpi, depending on
the MPI version you use; in particular, for Intel MPI 3.x, choose
-lmkl_blacs_intelmpi.

<MKL core libraries> is <MKL LAPACK & MKL kernel libraries> for
ScaLAPACK, and <MKL kernel libraries> for Cluster FFTs.

<MKL kernel libraries> are processor optimized kernels, threading library, and
system library for threading support, linked as described in section Listing Libraries on
a Link Line.

<MKL LAPACK & kernel libraries> are the LAPACK library and <MKL kernel
libraries>.

grouping symbols -Wl,--start-group and -Wl,--end-group are required for static
linking.

<<MPI> linker script> corresponds to the MPI version. For instance, for Intel MPI
3.x, use <Intel MPI 3.x linker script>.

For example, if you are using Intel MPI 3.x and want to statically use the LP64 interface
with ScaLAPACK and have only one MPI process per core (and thus do not employ
threading), specify the following linker options:

-L$MKLPATH -I$MKLINCLUDE -Wl,--start-group
$MKLPATH/libmkl_scalapack_lp64.a $MKLPATH/libmkl_blacs_intelmpi_lp64.a
$MKLPATH/libmkl_intel_lp64.a $MKLPATH/libmkl_sequential.a
$MKLPATH/libmkl_core.a -static_mpi -Wl,--end-group -lpthread –lm

For more examples, see Examples for Linking with ScaLAPACK and Cluster FFT.

For information on linking with Intel® MKL libraries, see Linking Your Application with the
Intel® Math Kernel Library.

TIP. Use the Web-based Linking Advisor to quickly choose the
appropriate set of <MKL cluster Library>, <BLACS>, and <MKL core
libraries>.

Working with the Intel® Math Kernel Library Cluster Software 9

9-3

Setting the Number of Threads
The OpenMP* software responds to the environment variable OMP_NUM_THREADS. Intel MKL
also has other mechanisms to set the number of threads, such as the MKL_NUM_THREADS
or MKL_DOMAIN_NUM_THREADS environment variables (see Using Additional Threading
Control).

Make sure that the relevant environment variables have the same and correct values on all
the nodes. Intel MKL versions 10.0 and higher no longer set the default number of threads
to one, but depend on the OpenMP libraries used with the compiler to set the default
number. For the threading layer based on the Intel® compiler (libmkl_intel_thread.a),
this value is the number of CPUs according to the OS.

The best way to set an environment variable, such as OMP_NUM_THREADS, is your login
environment. Remember that changing this value on the head node and then doing your
run, as you do on a shared-memory (SMP) system, does not change the variable on all the
nodes because mpirun starts a fresh default shell on all of the nodes. To change the
number of threads on all the nodes, in .bashrc, add a line at the top, as follows:

OMP_NUM_THREADS=1; export OMP_NUM_THREADS

You can run multiple CPUs per node using MPICH. To do this, build MPICH to enable
multiple CPUs per node. Be aware that certain MPICH applications may fail to work
perfectly in a threaded environment (see the Known Limitations section in the Release
Notes). If you encounter problems with MPICH and setting of the number of threads is
greater than one, first try setting the number of threads to one and see whether the
problem persists.

Using Shared Libraries
All needed shared libraries must be visible on all the nodes at run time. To achieve this,
point these libraries by the LD_LIBRARY_PATH environment variable in the .bashrc file.

If Intel MKL is installed only on one node, link statically when building your Intel MKL
applications rather than use shared libraries.

The Intel® compilers or GNU compilers can be used to compile a program that uses Intel
MKL. However, make sure that the MPI implementation and compiler match up correctly.

CAUTION. Avoid over-prescribing the number of threads, which may
occur, for instance, when the number of MPI ranks per node and the
number of threads per node are both greater than one. The product of
MPI ranks per node and the number of threads per node should not
exceed the number of physical cores per node.

9-4

9 Intel® Math Kernel Library User’s Guide

Building ScaLAPACK Tests
To build ScaLAPACK tests:

• For the IA-32 architecture, add libmkl_scalapack_core.a to your link command.

• For the IA-64 and Intel® 64 architectures, add libmkl_scalapack_lp64.a or
libmkl_scalapack_ilp64.a, depending upon the desired interface.

Examples for Linking with ScaLAPACK and Cluster FFT
For the detailed information on the structure of the Intel MKL architecture-specific
directories and the names of the cluster libraries to link, see Directory Structure in Detail.

Examples for Linking a C Application
These examples illustrate linking of an application whose main module is in C under the
following conditions:

• MPICH2 1.0.7 or higher is installed in /opt/mpich.

• $MKLPATH is a user-defined variable containing <mkl_directory>/lib/32.

• You use the Intel® C++ Compiler 10.0 or higher.

To link with ScaLAPACK for a cluster of systems based on the IA-32 architecture, use the
following libraries:

/opt/mpich/bin/mpicc <user files to link> \
-L$MKLPATH \
-lmkl_scalapack_core \
-lmkl_blacs_intelmpi \
-lmkl_intel –lmkl_intel_thread –lmkl_core \
-liomp5 -lpthread

To link with Cluster FFT for a cluster of systems based on the IA-32 architecture, use the
following libraries:

/opt/mpich/bin/mpicc <user files to link> \
-Wl,--start-group \
$MKLPATH/libmkl_cdft_core.a \
$MKLPATH/libmkl_blacs_intelmpi.a \
$MKLPATH/libmkl_intel.a \

Working with the Intel® Math Kernel Library Cluster Software 9

9-5

$MKLPATH/libmkl_intel_thread.a \
$MKLPATH/libmkl_core.a \
-Wl,--end-group \
-liomp5 -lpthread

Examples for Linking a Fortran Application
These examples illustrate linking of an application whose main module is in Fortran under
the following conditions:

• Intel MPI 3.0 is installed in /opt/intel/mpi/3.0.

• $MKLPATH is a user-defined variable containing <mkl_directory>/lib/64.

• You use the Intel® Fortran Compiler 10.0 or higher.

To link with ScaLAPACK for a cluster of systems based on the IA-64 architecture, use the
following libraries:

/opt/intel/mpi/3.0/bin/mpiifort <user files to link> \
-L$MKLPATH \
-lmkl_scalapack_lp64 \
-lmkl_blacs_intelmpi_lp64 \

 -lmkl_intel_lp64 –lmkl_intel_thread –lmkl_core \
-liomp5 -lpthread

To link with Cluster FFT for a cluster of systems based on the IA-64 architecture, use the
following libraries:

/opt/intel/mpi/3.0/bin/mpiifort <user files to link> \
-Wl,--start-group \
$MKLPATH/libmkl_cdft_core.a \
$MKLPATH/libmkl_blacs_intelmpi_ilp64.a \
$MKLPATH/libmkl_intel_ilp64.a \
$MKLPATH/libmkl_intel_thread.a \
$MKLPATH/libmkl_core.a \
-Wl,--end-group \
-liomp5 -lpthread

A binary linked with ScaLAPACK runs the same way as any other MPI application (refer to
the documentation that comes with the MPI implementation). For instance, the script
mpirun is used in the case of MPICH2 and OpenMPI, and a number of MPI processes is set
by -np. In the case of MPICH 2.0 and all Intel MPIs, you should start the daemon before
running an application; the execution is driven by the script mpiexec.

For further linking examples, see the support website for Intel products at
http://www.intel.com/software/products/support/

http://www.intel.com/software/products/support/

10-1

Getting Assistance for
Programming in the
Eclipse* IDE 10

This chapter discusses features of the Intel® Math Kernel Library (Intel® MKL) that assist
you while programming in the Eclipse* IDE:

• The Intel MKL Reference Manual viewable from within the IDE

• Eclipse Help search tuned to target the Intel Web sites

• Context-sensitive help in the Eclipse C/C++ Development Tools (CDT)

• Code/Content Assist in the Eclipse CDT

The Intel MKL plugin for Eclipse Help provides the first three features (see Table 3-2 for the
plugin location after installation). To use the plugin, copy it to the plugins folder of your
Eclipse directory.

The last feature is native to the Eclipse CDT. See the Code Assist section in Eclipse* Help.

Viewing the Intel® MKL Reference Manual in the Eclipse* IDE
To view the Reference Manual, in Eclipse,

1. Select Help > Help Contents from the menu.

2. In the Help tab, under All Topics, click Intel(R) Math Kernel Library Help

3. In the Help tree that expands, click Intel Math Kernel Library Reference Manual
(see Figure 10-1).

The Intel MKL Help Index is also available in Eclipse, and the Reference Manual is included
in the Eclipse Help search.

10-2

10 Intel® Math Kernel Library User’s Guide

Figure 10-1 Intel® MKL Help in the Eclipse* IDE

Getting Assistance for Programming in the Eclipse* IDE 10

10-3

Searching the Intel Web Site from the Eclipse* IDE
The Intel MKL plugin tunes Eclipse Help search to target http://www.intel.com so that
when you are connected to the Internet and run a search from the Eclipse Help pane, the
search hits at the site are shown through a separate link. Figure 10-2 shows search results
for "VML Functions" in Eclipse Help. In the figure, 1 hit means an entry hit to the
respective site.
Click "Intel.com (1 hit)" to open the list of actual hits to the Intel Web site.

Figure 10-2 Hits to the Intel Web Site in the Eclipse* IDE Help Search

http://www.intel.com

10-4

10 Intel® Math Kernel Library User’s Guide

Using Context-Sensitive Help in the Eclipse* IDE CDT
You can view context-sensitive help in the Eclipse CDT editor by Infopop windows and F1
Help.

Infopop Window

Infopop window is a popup description of a C function.

To get the description of an Intel MKL function in the editor, hover the mouse over the
function name.

Figure 10-3 Infopop Window with an Intel® MKL Function Description

NOTE. In the current release infopop windows are provided only for VML
functions.

Getting Assistance for Programming in the Eclipse* IDE 10

10-5

F1 Help

F1 Help displays the list of relevant documentation topics for a keyword.

To get F1 Help for an Intel MKL function in the editor window,

1. Hover the mouse over the function name.

2. Press F1 or double-click the name.

This displays two lists:

— The list of links to the relevant topics in the product documentation displays in the
Related Topics page under See also. The Intel MK Help Index establishes the
relevance (see Figure 10-4). Typically, one link displays in this list for each
function.

— The list of search results for the function name displays in the Related Topics
page under Dynamic Help (see Figure 10-5).

3. Click a link to open the associated Help topic.

Figure 10-4 F1 Help in the Eclipse* IDE

10-6

10 Intel® Math Kernel Library User’s Guide

Figure 10-5 F1 Help Search in the Eclipse* IDE CDT

11-1

LINPACK and MP LINPACK
Benchmarks 11

This chapter describes the Intel® Optimized LINPACK Benchmark for the Linux* OS (for
shared memory systems) and Intel® Optimized MP LINPACK Benchmark for Clusters (for
distributed memory systems).

Intel® Optimized LINPACK Benchmark for Linux OS*
Intel® Optimized LINPACK Benchmark is a generalization of the LINPACK 1000 benchmark.
It solves a dense (real*8) system of linear equations (Ax=b), measures the amount of
time it takes to factor and solve the system, converts that time into a performance rate,
and tests the results for accuracy. The generalization is in the number of equations (N) it
can solve, which is not limited to 1000. It uses partial pivoting to assure the accuracy of
the results.

This benchmark should not be used to report LINPACK 100 performance, as that is a
compiled-code only benchmark. This is a shared-memory (SMP) implementation which
runs on a single platform. Do not confuse this benchmark with:

• MP LINPACK, which is a distributed memory version of the same benchmark.

• LINPACK, the library, which has been expanded upon by the LAPACK library.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high
LINPACK benchmark results on your genuine Intel® processor systems more easily than
with the High Performance Linpack (HPL) benchmark. Use this package to benchmark your
SMP machine.

Additional information on this software as well as other Intel® software performance
products is available at http://www.intel.com/software/products/.

Contents
The Intel Optimized LINPACK Benchmark for Linux* OS contains the following files, located
in the ./benchmarks/linpack/ subdirectory in the Intel MKL directory (see Table 3-2):

http://www.intel.com/software/products/

11-2

11 Intel® Math Kernel Library User’s Guide

Running the Software
To obtain results for the pre-determined sample problem sizes on a given system, type one
of the following, as appropriate:

./runme_itanium

./runme_xeon32

./runme_xeon64

Table 11-1 Contents of the LINPACK Benchmark

./benchmarks/linpack/

linpack_itanium The 64-bit program executable for a system based on Intel®
Itanium® 2 processor.

linpack_xeon32 The 32-bit program executable for a system based on Intel®
Xeon® processor or Intel® Xeon® processor MP with or without
Streaming SIMD Extensions 3 (SSE3).

linpack_xeon64 The 64-bit program executable for a system with Intel® Xeon®
processor using Intel® 64 architecture.

runme_itanium A sample shell script for executing a pre-determined problem set
for linpack_itanium. OMP_NUM_THREADS set to 8
processors.

runme_xeon32 A sample shell script for executing a pre-determined problem set
for linpack_xeon32. OMP_NUM_THREADS set to 2
processors.

runme_xeon64 A sample shell script for executing a pre-determined problem set
for linpack_xeon64. OMP_NUM_THREADS set to 4 processors.

lininput_itanium Input file for pre-determined problem for the runme_itanium
script.

lininput_xeon32 Input file for pre-determined problem for the runme_xeon32
script.

lininput_xeon64 Input file for pre-determined problem for the runme_xeon64
script.

lin_itanium.txt Result of the runme_itanium script execution.

lin_xeon32.txt Result of the runme_xeon32 script execution.

lin_xeon64.txt Result of the runme_xeon64 script execution.

help.lpk Simple help file.

xhelp.lpk Extended help file.

LINPACK and MP LINPACK Benchmarks 11

11-3

To run the software for other problem sizes, see the extended help included with the
program. Extended help can be viewed by running the program executable with the -e
option:

./xlinpack_itanium -e

./xlinpack_xeon32 -e

./xlinpack_xeon64 -e .

The pre-defined data input files lininput_itanium, lininput_xeon32, and
lininput_xeon64 are provided merely as examples. Different systems have different
number of processors or amount of memory and thus require new input files. The extended
help can be used for insight into proper ways to change the sample input files.

Each input file requires at least the following amount of memory:

lininput_itanium 16 GB

lininput_xeon32 2 GB

lininput_xeon64 16 GB

If the system has less memory than the above sample data input requires, you may need
to edit or create your own data input files, as explained in the extended help.

Each sample script, in particular, uses the OMP_NUM_THREADS environment variable to set
the number of processors it is targeting. To optimize performance on a different number of
physical processors, change that line appropriately. If you run the Intel Optimized LINPACK
Benchmark without setting the number of threads, it will default to the number of cores
according to the OS. You can find the settings for this environment variable in the runme_*
sample scripts. If the settings do not already match the situation for your machine, edit the
script.

Known Limitations
The following limitations are known for the Intel Optimized LINPACK Benchmark for Linux*
OS:

• Intel Optimized LINPACK Benchmark is threaded to effectively use multiple processors.
So, in multi-processor systems, best performance will be obtained with
Hyper-Threading technology turned off, which ensures that the operating system
assigns threads to physical processors only.

• If an incomplete data input file is given, the binaries may either hang or fault. See the
sample data input files and/or the extended help for insight into creating a correct data
input file.

11-4

11 Intel® Math Kernel Library User’s Guide

Intel® Optimized MP LINPACK Benchmark for Clusters
The Intel® Optimized MP LINPACK Benchmark for Clusters is based on modifications and
additions to HPL 2.0 from Innovative Computing Laboratories (ICL) at the University of
Tennessee, Knoxville (UTK). The Intel Optimized MP LINPACK Benchmark for Clusters can be
used for Top 500 runs (see http ://www .top500 .org). To use the benchmark you need be
intimately familiar with the HPL distribution and usage. The Intel Optimized MP LINPACK
Benchmark for Clusters provides some additional enhancements and bug fixes designed to
make the HPL usage more convenient, as well as explain Intel® Message-Passing Interface
(MPI) settings that may enhance performance. The ./benchmarks/mp_linpack directory
adds techniques to minimize search times frequently associated with long runs.

The Intel® Optimized MP LINPACK Benchmark for Clusters is an implementation of the
Massively Parallel MP LINPACK benchmark by means of HPL code. It solves a random dense
(real*8) system of linear equations (Ax=b), measures the amount of time it takes to
factor and solve the system, converts that time into a performance rate, and tests the
results for accuracy. You can solve any size (N) system of equations that fit into memory.
The benchmark uses full row pivoting to ensure the accuracy of the results.

Use the Intel Optimized MP LINPACK Benchmark for Clusters on a distributed memory
machine. On a shared memory machine, use the Intel Optimized LINPACK Benchmark.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high
LINPACK benchmark results on your systems based on genuine Intel® processors more
easily than with the HPL benchmark. Use the Intel® Optimized MP LINPACK Benchmark to
benchmark your cluster. The prebuilt binaries require that you first install Intel® MPI 3.x
be installed on the cluster. The run-time version of Intel MPI is free and can be downloaded
from www.intel.com/software/products/cluster.

The Intel package includes software developed at the University of Tennessee, Knoxville,
Innovative Computing Laboratories and neither the University nor ICL endorse or promote
this product. Although HPL 2.0 is redistributable under certain conditions, this particular
package is subject to the Intel MKL license.

Intel MKL has introduced a new functionality into MP LINPACK, which is called a hybrid
build, while continuing to support the older version. The term “hybrid” refers to special
optimizations added to take advantage of mixed OpenMP*/MPI parallelism.

If you want to use one MPI process per node and to achieve further parallelism by means
of OpenMP, use the hybrid build. In general, the hybrid build is useful when the number of
MPI processes per core is less than one. If you want to rely exclusively on MPI for
parallelism and use one MPI per core, use the non-hybrid build.

In addition to supplying certain hybrid prebuilt binaries, Intel MKL supplies some hybrid
prebuilt libraries for Intel® MPI to take advantage of the additional OpenMP*
optimizations.

www.intel.com/software/products/cluster

LINPACK and MP LINPACK Benchmarks 11

11-5

If you wish to use an MPI version other than Intel MPI, you can do so by using the MP
LINPACK source provided. You can use the source to build a non-hybrid version that may
be used in a hybrid mode, but it would be missing some of the optimizations added to the
hybrid version.

Non-hybrid builds are the default of the source code makefiles provided. In some cases,
the use of the hybrid mode is required for external reasons. If there is a choice, the
non-hybrid code may be faster. To use the non-hybrid code in a hybrid mode, use the
threaded version of Intel MKL BLAS, link with a thread-safe MPI, and call function
MPI_init_thread() so as to indicate a need for MPI to be thread-safe.

Intel MKL also provides prebuilt binaries that are dynamically linked against Intel MPI
libraries.

Contents
The Intel Optimized MP LINPACK Benchmark for Clusters (MP LINPACK Benchmark)
includes the HPL 2.0 distribution in its entirety as well as the modifications, delivered in the
files listed in Table 11-2 and located in the ./benchmarks/mp_linpack/ subdirectory in
the Intel MKL directory (see Table 3-2):

NOTE. Performance of statically and dynamically linked prebuilt binaries
may be different. The performance of both depends on the version of
Intel MPI you are using.
You can build binaries statically linked against a particular version of Intel
MPI by yourself.

Table 11-2 Contents of the MP LINPACK Benchmark

./benchmarks/mp_linpack/

testing/ptest/HPL_pdtest.c HPL 2.0 code modified to display captured DGEMM
information in ASYOUGO2_DISPLAY (see details in
the New Features section) if it was captured.

src/blas/HPL_dgemm.c HPL 2.0 code modified to capture DGEMM information
if desired from ASYOUGO2_DISPLAY.

src/grid/HPL_grid_init.c HPL 2.0 code modified to do additional grid
experiments originally not in HPL 2.0.

src/pgesv/HPL_pdgesvK2.c HPL 2.0 code modified to do ASYOUGO and
ENDEARLY modifications.

src/pgesv/HPL_pdgesv0.c HPL 2.0 code modified to do ASYOUGO, ASYOUGO2,
and ENDEARLY modifications.

11-6

11 Intel® Math Kernel Library User’s Guide

testing/ptest/HPL.dat HPL 2.0 sample HPL.dat modified.

Make.ia32 (New) Sample architecture makefile for processors
using the IA-32 architecture and Linux OS.

Make.em64t (New) Sample architecture makefile for processors
using the Intel® 64 architecture and Linux OS.

Make.ipf (New) Sample architecture makefile for the IA-64
architecture and Linux OS.

HPL.dat A repeat of testing/ptest/HPL.dat in the top-level
directory.

Next six files are prebuilt executables, readily available for simple performance testing.

bin_intel/ia32/xhpl_ia32 (New) Prebuilt binary for the IA-32 architecture and
Linux OS. Statically linked against Intel® MPI 3.2.

bin_intel/ia32/xhpl_ia32_
dynamic

(New) Prebuilt binary for the IA-32 architecture and
Linux OS. Dynamically linked against Intel® MPI 3.2.

bin_intel/em64t/xhpl_em64t (New) Prebuilt binary for the Intel® 64 architecture
and Linux OS. Statically linked against Intel® MPI 3.2.

bin_intel/em64t/xhpl_em64t_
dynamic

(New) Prebuilt binary for the Intel® 64 architecture
and Linux OS. Dynamically linked against Intel® MPI
3.2.

bin_intel/ipf/xhpl_ipf (New) Prebuilt binary for the IA-64 architecture and
Linux OS. Statically linked against Intel® MPI 3.2.

bin_intel/ipf/xhpl_ipf_
dynamic

(New) Prebuilt binary for the IA-64 architecture and
Linux OS. Dynamically linked against Intel® MPI 3.2.

Next six files are prebuilt hybrid executables.

bin_intel/ia32/
xhpl_hybrid_ia32

(New) Prebuilt hybrid binary for the IA-32 architecture
and Linux OS. Statically linked against Intel® MPI 3.2.

bin_intel/ia32/
xhpl_hybrid_ia32_dynamic

(New) Prebuilt hybrid binary for the IA-32 architecture
and Linux OS. Dynamically linked against Intel® MPI
3.2.

bin_intel/em64t/
xhpl_ hybrid_em64t

(New) Prebuilt hybrid binary for the Intel® 64
architecture and Linux OS. Statically linked against
Intel® MPI 3.2.

bin_intel/em64t/
xhpl_ hybrid_em64t_dynamic

(New) Prebuilt hybrid binary for the Intel® 64 and
Linux OS. Dynamically linked against Intel® MPI 3.2.

bin_intel/ipf/
xhpl_ hybrid_ipf

(New) Prebuilt hybrid binary for the IA-64 architecture
and Linux OS. Statically linked against Intel® MPI 3.2.

bin_intel/ipf/
xhpl_hybrid_ipf_dynamic

(New) Prebuilt hybrid binary for the IA-64 and Linux
OS. Dynamically linked against Intel® MPI 3.2.

Table 11-2 Contents of the MP LINPACK Benchmark

./benchmarks/mp_linpack/

LINPACK and MP LINPACK Benchmarks 11

11-7

Next 3 files are prebuilt libraries

lib_hybrid/32/libhpl_hybrid.a (New) Prebuilt library with the hybrid version of MP
LINPACK for the IA-32 architecture and Intel MPI 3.2.

lib_hybrid/em64t/libhpl_
hybrid.a

(New) Prebuilt library with the hybrid version of MP
LINPACK for the Intel® 64 architecture and Intel MPI
3.2.

lib_hybrid/64/libhpl_hybrid.a (New) Prebuilt library with the hybrid version of MP
LINPACK for the IA-64 architecture and Intel MPI 3.2.

Next 18 files refer to run scripts

bin_intel/ia32/runme_ia32 (New) Sample run script for the IA-32 architecture
and a pure MPI binary statically linked against Intel
MPI 3.2.

bin_intel/ia32/runme_ia32_
dynamic

(New) Sample run script for the IA-32 architecture
and a pure MPI binary dynamically linked against Intel
MPI 3.2.

bin_intel/ia32/HPL_serial.dat (New) Example of an MP LINPACK benchmark input
file for a pure MPI binary and the IA-32 architecture.

bin_intel/ia32/
runme_hybrid_ia32

(New) Sample run script for the IA-32 architecture
and a hybrid binary statically linked against Intel MPI
3.2.

bin_intel/ia32/
runme_hybrid_ia32_dynamic

(New) Sample run script for the IA-32 architecture
and a hybrid binary dynamically linked against Intel
MPI 3.2.

bin_intel/ia32/HPL_hybrid.dat (New) Example of an MP LINPACK benchmark input
file for a hybrid binary and the IA-32 architecture.

bin_intel/em64t/runme_em64t (New) Sample run script for the Intel® 64 architecture
and a pure MPI binary statically linked against Intel
MPI 3.2.

bin_intel/em64t/runme_em64t_
dynamic

(New) Sample run script for the Intel® 64 architecture
and a pure MPI binary dynamically linked against Intel
MPI 3.2.

bin_intel/em64t/HPL_serial.
dat

(New) Example of an MP LINPACK benchmark input
file for a pure MPI binary and the Intel® 64
architecture.

bin_intel/em64t/
runme_hybrid_em64t

(New) Sample run script for the Intel® 64 architecture
and a hybrid binary statically linked against Intel MPI
3.2.

bin_intel/em64t/
runme_hybrid_em64t_dynamic

(New) Sample run script for the Intel® 64 architecture
and a hybrid binary dynamically linked against Intel
MPI 3.2.

Table 11-2 Contents of the MP LINPACK Benchmark

./benchmarks/mp_linpack/

11-8

11 Intel® Math Kernel Library User’s Guide

Building the MP LINPACK
There are a few included sample architecture makefiles. You can edit them to fit your
specific configuration. Specifically:

• Set TOPdir to the directory that MP LINPACK is being built in.

• You may set MPI variables, that is, MPdir, MPinc, and MPlib.

• Specify the location of Intel MKL and of files to be used (LAdir, LAinc, LAlib).

• Adjust compiler and compiler/linker options.

• Specify the version of MP LINPACK you are going to build (hybrid or non-hybrid) by
setting the version parameter for the make command, for example:

make arch=em64t version=hybrid install .

For some sample cases, like Linux systems based on the Intel® 64 architecture, the
makefiles contain values that must be common. However, you need to be familiar with
building an HPL and picking appropriate values for these variables.

bin_intel/em64t/HPL_hybrid.
dat

(New) Example of an MP LINPACK benchmark input
file for a hybrid binary and the Intel® 64 architecture.

bin_intel/ipf/runme_ia64 (New) Sample run script for the IA-64 architecture
and a pure MPI binary statically linked against Intel
MPI 3.2.

bin_intel/ipf/runme_ia64_
dynamic

(New) Sample run script for the IA-64 architecture
and a pure MPI binary dynamically linked against Intel
MPI 3.2.

bin_intel/ipf/HPL_serial.dat (New) Example of an MP LINPACK benchmark input
file for a pure MPI binary and the IA-64 architecture.

bin_intel/ipf/
runme_hybrid_ia64

(New) Sample run script for the IA-64 architecture
and a hybrid binary statically linked against Intel MPI
3.2.

bin_intel/ipf/
runme_hybrid_ia64_dynamic

(New) Sample run script for the IA-64 architecture
and a hybrid binary dynamically linked against Intel
MPI 3.2.

bin_intel/ipf/HPL_hybrid.dat (New) Example of an MP LINPACK benchmark input
file for a hybrid binary and the IA-64 architecture.

nodeperf.c (New) Sample utility that tests the DGEMM speed
across the cluster.

Table 11-2 Contents of the MP LINPACK Benchmark

./benchmarks/mp_linpack/

LINPACK and MP LINPACK Benchmarks 11

11-9

New Features
The toolset is basically identical with the HPL 2.0 distribution. There are a few changes that
are optionally compiled in and disabled until you specifically request them. These new
features are:

ASYOUGO: Provides non-intrusive performance information while runs proceed. There are
only a few outputs and this information does not impact performance. This is especially
useful because many runs can go for hours without any information.

ASYOUGO2: Provides slightly intrusive additional performance information by intercepting
every DGEMM call.

ASYOUGO2_DISPLAY: Displays the performance of all the significant DGEMMs inside the run.

ENDEARLY: Displays a few performance hints and then terminates the run early.

FASTSWAP: Inserts the LAPACK-optimized DLASWP into HPL's code. This may yield a benefit
for Itanium® 2 processor. You can experiment with this to determine best results.

HYBRID: Establishes the Hybrid OpenMP/MPI mode of MP LINPACK, providing the possibility
to use threaded Intel MKL and prebuilt MP LINPACK hybrid libraries.

Benchmarking a Cluster
To benchmark a cluster, follow the sequence of steps below (some of them are optional).
Pay special attention to the iterative steps 3 and 4. They make a loop that searches for HPL
parameters (specified in HPL.dat) that enable you to reach the top performance of your
cluster.

1. Install HPL and make sure HPL is functional on all the nodes.

2. You may run nodeperf.c (included in the distribution) to see the performance of
DGEMM on all the nodes.

Compile nodeperf.c with your MPI and Intel MKL. For example:

WARNING. Use this option only with an Intel compiler and the Intel®
MPI library version 3.1 or higher. You are also recommended to use the
compiler version 10.0 or higher.

11-10

11 Intel® Math Kernel Library User’s Guide

mpiicc -O3 nodeperf.c -L$MKLPATH $MKLPATH/libmkl_intel_lp64.a \
-Wl,--start-group $MKLPATH/libmkl_sequential.a \
$MKLPATH/libmkl_core.a -Wl,--end-group –lpthread .

Launching nodeperf.c on all the nodes is especially helpful in a very large cluster.
nodeperf enables quick identification of the potential problem spot without numerous
small MP LINPACK runs around the cluster in search of the bad node. It goes through
all the nodes, one at a time, and reports the performance of DGEMM followed by some
host identifier. Therefore, the higher the DGEMM performance, the faster that node
was performing.

3. Edit HPL.dat to fit your cluster needs.

Read through the HPL documentation for ideas on this. However, you should use at
least 4 nodes.

4. Make an HPL run, using compile options such as ASYOUGO or ASYOUGO2 or ENDEARLY to
aid in your search. These options enable you to gain insight into the performance
sooner than HPL would normally give this insight.

When doing so, follow these recommendations:

— Use MP LINPACK, which is a patched version of HPL, to save time in the search.

All performance intrusive features are compile-optional in MP LINPACK. That is, if
you do not use the new options explained in section Options to Reduce Search
Time, these changes are disabled. The primary purpose of the additions is to assist
you in finding solutions.

HPL requires a long time to search for many different parameters. In MP LINPACK,
the goal is to get the best possible number.

Given that the input is not fixed, there is a large parameter space you must search
over. An exhaustive search of all possible inputs is improbably large even for a
powerful cluster. MP LINPACK optionally prints information on performance as it
proceeds. You can also terminate early.

— Save time by compiling with -DENDEARLY -DASYOUGO2 (described in the Options
to Reduce Search Time section) and using a negative threshold (do not use a
negative threshold on the final run that you intend to submit as a Top500 entry).
Set the threshold in line 13 of the HPL 2.0 input file HPL.dat.

— If you are going to run a problem to completion, do it with -DASYOUGO (see
Options to Reduce Search Time).

5. Using the quick performance feedback, return to step 3 and iterate until you are sure
that the performance is as good as possible.

LINPACK and MP LINPACK Benchmarks 11

11-11

Options to Reduce Search Time

Running huge problems to completion on large numbers of nodes can take many hours.
The search space for MP LINPACK is also huge: not only can you run any size problem, but
over a number of block sizes, grid layouts, lookahead steps, using different factorization
methods, etc. It can be a large waste of time to run a huge problem to completion only to
discover it ran 0.01% slower than your previous best problem.

There are 3 options to reduce the search time:

• -DASYOUGO

• -DENDEARLY

• -DASYOUGO2

Use -DASYOUGO2 cautiously because it does have a marginal performance impact. To
see DGEMM internal performance, compile with -DASYOUGO2 and
-DASYOUGO2_DISPLAY. These options provide a lot of useful DGEMM performance
information at the cost of around 0.2% performance loss.

If you want to use the old HPL, simply omit these options and recompile from scratch. To
do this, try "make arch=<arch> clean_arch_all".

-DASYOUGO: Gives performance data as the run proceeds. The performance always starts
off higher and then drops because this actually happens in LU decomposition1. The
ASYOUGO performance estimate is usually an overestimate (because the LU decomposition
slows down as it goes), but it gets more accurate as the problem proceeds. The greater the
lookahead step, the less accurate the first number may be. ASYOUGO tries to estimate
where one is in the LU decomposition that MP LINPACK performs and this is always an
overestimate as compared to ASYOUGO2, which measures actually achieved DGEMM
performance. Note that the ASYOUGO output is a subset of the information that ASYOUGO2
provides. So, refer to the description of the -DASYOUGO2 option below for the details of the
output.

-DENDEARLY: Terminates the problem after a few steps, so that you can set up 10 or 20
HPL runs without monitoring them, see how they all do, and then only run the fastest ones
to completion. -DENDEARLY assumes -DASYOUGO. You do not need to define both, although
it doesn't hurt. To avoid the residual check for a problem that terminates early, set the
"threshold" parameter in HPL.dat to a negative number when testing ENDEARLY. It also
sometimes gives a better picture to compile with -DASYOUGO2 when using -DENDEARLY.

Usage notes on -DENDEARLY follow:

— -DENDEARLY stops the problem after a few iterations of DGEMM on the blocksize
(the bigger the blocksize, the further it gets). It prints only 5 or 6 "updates",
whereas -DASYOUGO prints about 46 or so output elements before the problem
completes.

1. A decomposition of a matrix into a product of a lower (L) and upper (U) triangular matrices.

11-12

11 Intel® Math Kernel Library User’s Guide

— Performance for -DASYOUGO and -DENDEARLY always starts off at one speed,
slowly increases, and then slows down toward the end (because that is what LU
does). -DENDEARLY is likely to terminate before it starts to slow down.

— -DENDEARLY terminates the problem early with an HPL Error exit. It means that
you need to ignore the missing residual results, which are wrong, as the problem
never completed. However, you can get an idea what the initial performance was,
and if it looks good, then run the problem to completion without -DENDEARLY. To
avoid the error check, you can set HPL's threshold parameter in HPL.dat to a
negative number.

— Though -DENDEARLY terminates early, HPL treats the problem as completed and
computes Gflop rating as though the problem ran to completion. Ignore this
erroneously high rating.

— The bigger the problem, the more accurately the last update that -DENDEARLY
returns is close to what happens when the problem runs to completion.
-DENDEARLY is a poor approximation for small problems. It is for this reason that
you are suggested to use ENDEARLY in conjunction with ASYOUGO2, because
ASYOUGO2 reports actual DGEMM performance, which can be a closer
approximation to problems just starting.

The best known compile options for Itanium® 2 processor are with the Intel®
compiler:

-O2 -ipo -ipo_obj -ftz -IPF_fltacc -IPF_fma -unroll -w -tpp2

-DASYOUGO2: Gives detailed single-node DGEMM performance information. It captures all
DGEMM calls (if you use Fortran BLAS) and records their data. Because of this, the routine
has a marginal intrusive overhead. Unlike -DASYOUGO, which is quite non-intrusive,
-DASYOUGO2 interrupts every DGEMM call to monitor its performance. You should beware of
this overhead, although for big problems, it is, less than 1/10th of a percent.

Here is a sample ASYOUGO2 output (the first 3 non-intrusive numbers can be found in
ASYOUGO and ENDEARLY), so it suffices to describe these numbers here:

Col=001280 Fract=0.050 Mflops=42454.99 (DT= 9.5 DF= 34.1
DMF=38322.78).

The problem size was N=16000 with a blocksize of 128. After 10 blocks, that is, 1280
columns, an output was sent to the screen. Here, the fraction of columns completed is
1280/16000=0.08. Only up to 40 outputs are printed, at various places through the
matrix decomposition: fractions
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065
0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130
0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195
0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260
0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325
0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390

LINPACK and MP LINPACK Benchmarks 11

11-13

0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455
0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.515 0.535 0.555 0.575 0.595
0.615 0.635 0.655 0.675 0.695 0.795 0.895.

However, this problem size is so small and the block size so big by comparison that as
soon as it prints the value for 0.045, it was already through 0.08 fraction of the
columns. On a really big problem, the fractional number will be more accurate. It
never prints more than the 112 numbers above. So, smaller problems will have fewer
than 112 updates, and the biggest problems will have precisely 112 updates.

The Mflops is an estimate based on 1280 columns of LU being completed. However,
with lookahead steps, sometimes that work is not actually completed when the output
is made. Nevertheless, this is a good estimate for comparing identical runs.

The 3 numbers in parenthesis are intrusive ASYOUGO2 addins. The DT is the total time
processor 0 has spent in DGEMM. The DF is the number of billion operations that have
been performed in DGEMM by one processor. Hence, the performance of processor 0 (in
Gflops) in DGEMM is always DF/DT. Using the number of DGEMM flops as a basis instead
of the number of LU flops, you get a lower bound on performance of our run by looking
at DMF, which can be compared to Mflops above (It uses the global LU time, but the
DGEMM flops are computed under the assumption that the problem is evenly distributed
amongst the nodes, as only HPL’s node (0,0) returns any output.)

Note that when using the above performance monitoring tools to compare different
HPL.dat input data sets, you should be aware that the pattern of performance drop-off
that LU experiences is sensitive to some input data. For instance, when you try very small
problems, the performance drop-off from the initial values to end values is very rapid. The
larger the problem, the less the drop-off, and it is probably safe to use the first few
performance values to estimate the difference between a problem size 700000 and
701000, for instance. Another factor that influences the performance drop-off is the grid
dimensions (P and Q). For big problems, the performance tends to fall off less from the first
few steps when P and Q are roughly equal in value. You can make use of a large number of
parameters, such as broadcast types, and change them so that the final performance is
determined very closely by the first few steps.

Using these tools will greatly assist the amount of data you can test.

A-1

Intel® Math Kernel Library
Language Interfaces
Support A

Table A-1 shows language interfaces that Intel® Math Kernel Library (Intel® MKL)
provides for each function domain, and Table A-2 lists the respective header files. However,
Intel MKL routines can be called from other languages using mixed-language
programming. See Mixed-language Programming with Intel® MKL for an example of how
to call Fortran routines from C/C++.

Table A-1 Language Interfaces Support

Function Domain
FORTRAN 77
interface

Fortran 90/95
interface

C/C++
interface

Basic Linear Algebra Subprograms (BLAS) Yes Yes via CBLAS

BLAS-like extension transposition routines Yes Yes

Sparse BLAS Level 1 Yes Yes via CBLAS

Sparse BLAS Level 2 and 3 Yes Yes Yes

LAPACK routines for solving systems of linear
equations

Yes Yes †

LAPACK routines for solving least-squares
problems, eigenvalue and singular value
problems, and Sylvester's equations

Yes Yes †

Auxiliary and utility LAPACK routines Yes †

Parallel Basic Linear Algebra Subprograms
(PBLAS)

Yes

ScaLAPACK routines Yes †

DSS/PARDISO* solvers Yes Yes Yes

Other Direct and Iterative Sparse Solver
routines

Yes Yes Yes

Vector Mathematical Library (VML) functions Yes Yes Yes

Vector Statistical Library (VSL) functions Yes Yes Yes

Fourier Transform functions (FFT) Yes Yes

Cluster FFT functions Yes Yes

A-2

A Intel® Math Kernel Library User’s Guide

† Supported using a mixed language programming call. See Table A-2 for the respective header file.

Table A-2 lists available header files for all Intel MKL function domains.

Trigonometric Transform routines Yes Yes

Fast Poisson, Laplace, and Helmholtz Solver
(Poisson Library) routines

Yes Yes

Optimization (Trust-Region) Solver routines Yes Yes Yes

GMP* arithmetic functions Yes

Service routines (including memory
allocation)

Yes

Table A-2 Include Files

Function domain Include files

Fortran C or C++

All function domains mkl.fi mkl.h

BLAS Routines blas.f90

mkl_blas.fi

mkl_blas.h

BLAS-like Extension
Transposition Routines

mkl_trans.fi mkl_trans.h

CBLAS Interface to BLAS mkl_cblas.h

Sparse BLAS Routines mkl_spblas.fi mkl_spblas.h

LAPACK Routines lapack.f90

mkl_lapack.fi

mkl_lapack.h

ScaLAPACK Routines mkl_scalapack.h

All Sparse Solver Routines mkl_solver.f90 mkl_solver.h

• PARDISO mkl_pardiso.f77

mkl_pardiso.f90

mkl_pardiso.h

• DSS Interface mkl_dss.f77

mkl_dss.f90

mkl_dss.h

• RCI Iterative Solvers
• ILU Factorization

mkl_rci.fi mkl_rci.h

Optimization Solver Routines mkl_rci.fi mkl_rci.h

Vector Mathematical Functions mkl_vml.f77
mkl_vml.fi

mkl_vml.h

Table A-1 Language Interfaces Support (continued)

Function Domain
FORTRAN 77
interface

Fortran 90/95
interface

C/C++
interface

Intel® Math Kernel Library Language Interfaces Support A

A-3

Vector Statistical Functions mkl_vml.f77
mkl_vsl.fi

mkl_vsl.h

Fourier Transform Functions mkl_dfti.f90 mkl_dfti.h

Cluster Fourier Transform
Functions

mkl_cdft.f90 mkl_cdft.h

Partial Differential Equations
Support Routines

• Trigonometric Transforms mkl_trig_transforms.f90 mkl_trig_transforms.h

• Poisson Solvers mkl_poisson.f90 mkl_poisson.h

GMP interface mkl_gmp.h

Service routines mkl_service.h

Memory allocation routines i_malloc.h

MKL examples interface mkl_example.h

Table A-2 Include Files (continued)

Function domain Include files

Fortran C or C++

B-1

Support for Third-Party
Interfaces B

This appendix briefly describes certain third-party interfaces that Intel® Math Kernel
Library (Intel® MKL) supports.

GMP* Functions
Intel MKL implementation of GMP* arithmetic functions includes arbitrary precision
arithmetic operations on integer numbers. The interfaces of such functions fully match the
GNU Multiple Precision* (GMP) Arithmetic Library. For specifications of these functions,
please see http://www.intel.com/software/products/mkl/docs/gnump/WebHelp/.

If you currently use the GMP* library, you need to modify INCLUDE statements in your
programs to mkl_gmp.h.

FFTW Interface Support
Intel MKL offers two collections of wrappers for the FFTW interface (www.fftw.org). The
wrappers are the superstructure of FFTW to be used for calling the Intel MKL Fourier
transform functions. These collections correspond to the FFTW versions 2.x and 3.x and the
Intel MKL versions 7.0 and later.

These wrappers enable using Intel MKL Fourier transforms to improve the performance of
programs that use FFTW, without changing the program source code. See the "FFTW
Interface to Intel® Math Kernel Library" appendix in the Intel MKL Reference Manual for
details on the use of the wrappers.

http://www.intel.com/software/products/mkl/docs/gnump/WebHelp/

Index-1

Index
A
Advanced Vector Extensions, dispatching the

instructions, 6-14
affinity mask, 6-17
aligning data, 8-2

B
benchmark, 11-1
BLAS

calling routines from C, 7-5

Fortran-95 interfaces to, 7-3

C
C, calling LAPACK, BLAS, CBLAS from, 7-5
calling

BLAS functions in C, 7-7

complex BLAS Level 1 function from C, 7-8

complex BLAS Level 1 function from C++, 7-9

Fortran-style routines from C, 7-5

CBLAS, 7-6
CBLAS, code example, 7-10
Cluster FFT, linking with, 9-1
cluster software, 9-1

linking examples, 9-4

linking syntax, 9-1

coding
data alignment, 8-1

mixed-language calls, 7-7

techniques to improve performance, 6-15

compatibility OpenMP* run-time library, 3-5

compiler support, 2-2
compiler-dependent function, 7-4
configuration file, for OOC DSS/PARDISO*, 4-4
configuring development environment, 4-1

Eclipse* CDT, 4-2

context-sensitive Help, for Intel(R) MKL in Eclipse*
CDT, 10-4

custom shared object, 5-9, 5-11
building, 5-9

specifying list of functions, 5-11

specifying makefile parameters, 5-10

D
data alignment, 8-2
denormal number, performance, 6-18
denormal, performance, 6-18
development environment, configuring, 4-1
directory structure

documentation, 3-20

high-level, 3-1

in-detail, 3-8

dispatching, of AVX instructions, 6-14
documentation, 3-20

for Intel(R) MKL, viewing in Eclipse* IDE, 10-1

E
Eclipse* CDT

configuring, 4-2

searching the Intel Web site, 10-3

Eclipse* CDT, Intel(R) MKL Help, 10-1
context-sensitive, 10-4

Intel® Math Kernel Library User’s Guide

Index-2

end user license, location, 3-20
environment variables, setting, 4-1
examples

code, 2-2

linking, general, 5-6

ScaLAPACK, Cluster FFT, linking with, 9-4

F
FFT functions, data alignment, 6-16
FFT interface

optimized radices, 6-18

FFTW interface support, B-1
Fortran-95, interfaces to LAPACK and BLAS, 7-3

G
GNU* Multiple Precision Arithmetic Library, B-1

H
Help, for Intel(R) MKL in Eclipse* CDT, 10-1
HT Technology, see Hyper-Threading technology
hybrid, version, of MP LINPACK, 11-4
Hyper-Threading Technology, configuration tip, 6-16

I
ILP64 programming, support for, 3-6
installation, checking, 2-1

J
Java* examples, 7-12

L
language interfaces support, A-1

language-specific interfaces, 7-1

LAPACK
calling routines from C, 7-5

Fortran-95 interfaces to, 7-3

packed routines performance, 6-15

layered model, 3-3
library

run-time, compatibility OpenMP*, 3-5

run-time, legacy OpenMP*, 3-5

library structure, 3-1
license, end user, location, 3-20
link command

examples, 5-6

link libraries
computational, 5-5

for Intel(R) 64 architecture, 5-5

threading, 5-4

linking, 5-1
with Cluster FFT, 9-1

with ScaLAPACK, 9-1

LINPACK benchmark, 11-1

M
memory functions, redefining, 6-19
memory management, 6-19
memory renaming, 6-19
mixed-language programming, 7-5
module, Fortran-95, 7-4
MP LINPACK benchmark, 11-4

hybrid version, 11-4

multi-core performance, 6-16

N
notational conventions, 1-3
number of threads

changing at run time, 6-6

changing with OpenMP* environment variable,
6-6

Intel(R) MKL choice, particular cases, 6-11

setting for cluster, 9-3

techniques to set, 6-4

numerical stability, 8-1

O
OpenMP*

compatibility run-time library, 3-5

legacy run-time library, 3-5

OpenMP*, run-time library, 5-3

Index-3

P
parallel performance, 6-5
parallelism, 6-1
PARDISO* OOC, configuration file, 4-4
performance, 6-1

coding techniques to gain, 6-15

hardware tips to gain, 6-16

multi-core, 6-16

of LAPACK packed routines, 6-15

with denormals, 6-18

with subnormals, 6-18

R
RTL, 7-4
run-time library, 7-4

compatibility OpenMP*, 3-5

legacy OpenMP*, 3-5

S
ScaLAPACK, linking with, 9-1
subnormal number, performance, 6-18
support, technical, 1-1
syntax

linking, cluster software, 9-1

T
technical support, 1-1
thread safety, of Intel(R) MKL, 6-3
threading

avoiding conflicts, 6-5

environment variables and functions, 6-9

Intel(R) MKL behavior, particular cases, 6-11

Intel(R) MKL controls, 6-9

see also number of threads

U
uBLAS, matrix-matrix multiplication, substitution

with Intel MKL functions, 7-10
usage information, 1-1

	Intel® Math Kernel Library for Linux* OS
	Legal Information
	Contents
	1. Overview
	Technical Support
	About This Document
	Related Information
	Document Organization
	Notational Conventions

	2. Getting Started
	Checking Your Installation
	Setting Environment Variables
	Using the Web-based Linking Advisor

	Using Intel MKL Code Examples
	Compiler Support
	Before You Begin Using Intel MKL

	3. Intel® Math Kernel Library Structure
	Architecture Support
	High-level Directory Structure
	Layered Model Concept
	Sequential Mode of the Library
	Support for ILP64 Programming
	Compiling for LP64/ILP64
	Coding for ILP64
	Browsing the Intel MKL Include Files
	Limitations

	Directory Structure in Detail
	Accessing the Intel® MKL Documentation
	Contents of the Documentation Directory
	Viewing Man Pages

	4. Configuring Your Development Environment
	Automating Setting of Environment Variables
	Configuring the Eclipse* IDE CDT to Link with Intel MKL
	Configuring the Eclipse* IDE CDT 4.0
	Configuring the Eclipse* IDE CDT 3.x

	Configuring the Out-of-Core (OOC) DSS/PARDISO* Solver

	5. Linking Your Application with the Intel® Math Kernel Library
	Listing Libraries on a Link Line
	Selecting Libraries to Link
	Linking with Fortran 95 Interface Libraries
	Linking with Threading Libraries
	Linking with Computational Libraries
	Linking with Compiler Support RTLs
	Linking with System Libraries
	Linking Examples
	Linking on IA-32 Architecture Systems
	Linking on Intel® 64 and IA-64 Architecture Systems

	Building Custom Shared Objects
	Intel MKL Custom Shared Object Builder
	Using the Builder
	Specifying a List of Functions
	Distributing Your Custom Shared Object

	6. Managing Performance and Memory
	Using the Intel® MKL Parallelism
	Techniques to Set the Number of Threads
	Avoiding Conflicts in the Execution Environment
	Setting the Number of Threads Using an OpenMP* Environment Variable
	Changing the Number of Threads at Run Time
	Using Additional Threading Control
	MKL_DYNAMIC
	MKL_DOMAIN_NUM_THREADS
	Setting the Environment Variables for Threading Control

	Dispatching Intel® Advanced Vector Extensions (Intel® AVX)
	Tips and Techniques to Improve Performance
	Coding Techniques
	LAPACK Packed Routines
	FFT Functions

	Hardware Configuration Tips
	Managing Multi-core Performance
	Operating on Denormals
	FFT Optimized Radices

	Using the Intel® MKL Memory Management
	Redefining Memory Functions
	Memory Renaming
	How to Redefine Memory Functions

	7. Language-specific Usage Options
	Using Language-Specific Interfaces with Intel® MKL
	Fortran 95 Interfaces to LAPACK and BLAS
	Compiler-dependent Functions and Fortran 90 Modules

	Mixed-language Programming with Intel® MKL
	Calling LAPACK, BLAS, and CBLAS Routines from C Language Environments
	LAPACK and BLAS
	CBLAS

	Using Complex Types in C/C++
	Calling BLAS Functions that Return the Complex Values in C/C++ Code
	Support for Boost uBLAS Matrix-matrix Multiplication
	Invoking Intel® MKL Functions from Java* Applications
	Intel MKL Java Examples
	Running the Examples
	Known Limitations

	8. Coding Tips
	Aligning Data for Consistent Results

	9. Working with the Intel® Math Kernel Library Cluster Software
	Linking with ScaLAPACK and Cluster FFTs
	Setting the Number of Threads
	Using Shared Libraries
	Building ScaLAPACK Tests
	Examples for Linking with ScaLAPACK and Cluster FFT
	Examples for Linking a C Application
	Examples for Linking a Fortran Application

	10. Getting Assistance for Programming in the Eclipse* IDE
	Viewing the Intel® MKL Reference Manual in the Eclipse* IDE
	Searching the Intel Web Site from the Eclipse* IDE
	Using Context-Sensitive Help in the Eclipse* IDE CDT
	Infopop Window
	F1 Help

	11. LINPACK and MP LINPACK Benchmarks
	Intel® Optimized LINPACK Benchmark for Linux OS*
	Contents
	Running the Software
	Known Limitations

	Intel® Optimized MP LINPACK Benchmark for Clusters
	Contents
	Building the MP LINPACK
	New Features
	Benchmarking a Cluster
	Options to Reduce Search Time

	A. Intel® Math Kernel Library Language Interfaces Support
	B. Support for Third-Party Interfaces
	GMP* Functions
	FFTW Interface Support

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U

