

Intel® MPI Library for Linux* OS

Reference Manual

Copyright © 2003–2010 Intel Corporation

All Rights Reserved

Document Number: 315399-008

Revision: 4.0

World Wide Web: http://www.intel.com

Intel® MPI Library for Linux* OS Reference Manual

Contents

1 About this Document .. 6

6
6
7
7

8

8
8

11
12
12
15
15
17
22
23
23
29
29
30
32
33
36
42
43
45

48

48
50
51
51
51
51
52
57
63
63
69
73
80
85
86
87
89

3.4 Dynamic Process Support ..90
91
91
94
98
99
99

100

101

107

107
108

1.1 Intended Audience ...
1.2 Using Doc Type Field ..
1.3 Conventions and Symbols..
1.4 Related Information..

2 Command Reference ..
2.1 Compiler Commands...

2.1.1 Compiler Command Options..
2.1.2 Configuration Files...
2.1.3 Profiles ..
2.1.4 Environment Variables ...

2.2 Job Startup Commands ...
2.2.1 Extended Device Control Options ...
2.2.2 Global Options ..
2.2.3 Local Options..
2.2.4 Configuration Files...
2.2.5 Environment Variables ...

2.3 Simplified Job Startup Command ..
2.4 Experimental Scalable Process Management System (Hydra)

2.4.1 Global Options ..
2.4.2 Local Options..
2.4.3 Environment Variables ...

2.5 Multipurpose Daemon Commands...
2.5.1 Configuration Files...
2.5.2 Environment Variables ...

2.6 Processor Information Utility ..

3 Tuning Reference ...
3.1 Automatic Tuning Utility ..

3.1.1 Cluster-specific Tuning...
3.1.2 Application-specific Tuning..
3.1.3 Tuning Utility Output ...

3.2 Process Pinning..
3.2.1 Process Identification...
3.2.2 Environment Variables ...
3.2.3 Interoperability with OpenMP* ..

3.3 Fabrics Control...
3.3.1 Communication Fabrics Control ...
3.3.2 Shared Memory Control..
3.3.3 DAPL-capable Network Fabrics Control
3.3.4 DAPL UD-capable Network Fabrics Control
3.3.5 TCP-capable Network Fabrics Control ...
3.3.6 TMI-capable Network Fabrics Control ...
3.3.7 OFA*-capable Network Fabrics Control
3.3.8 Failover Support in the OFA* Device ..

3.5 Collective Operation Control...
3.5.1 I_MPI_ADJUST family ..
3.5.2 I_MPI_MSG family...

3.6 Extended File System Support..
3.6.1 Environment variables ...

3.7 Compatibility Control ..
3.8 Miscellaneous ..

4 Statistics Gathering Mode..

5 Fault Tolerance ..
5.1 Environment Variables ..
5.2 Usage Model..

Document number: 315399-008 2

Intel® MPI Library for Linux* OS Reference Manual

6 ILP64 Support ... 109

109
109

110

111

113

114

6.1 Using ILP64...
6.2 Known Issues and Limitations...

7 Unified Memory Management ...

8 Integration into Eclipse* PTP..

9 Glossary ...

10 Index ...

Document number: 315399-008 3

Intel® MPI Library for Linux* OS Reference Manual

Disclaimer and Legal Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED
IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY
OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH
MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained

by calling 1-800-548-4725, or by visiting Intel's Web Site.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core Inside,
FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel
Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus,
OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and
Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2003-2010, Intel Corporation. All rights reserved.

Document number: 315399-008 4

http://www.intel.com/

Intel® MPI Library for Linux* OS Reference Manual

Revision History

Document
Number

Revision
Number

Description Revision Date

315399-001 3.1 Beta Some new options and variables were added,
three new sections “Statistics Gathering
Mode”, “Unified Memory Management”, and
“Integration into Eclipse* PTP” were created

/07/10/2007

315399-002 3.1 New names of variables were added, new
section “Processor Information Utility” was
added. Updated and reviewed for style

/10/02/2007

315399-003 3.1 build 038 Local options were added. Sections “Index”,
“Glossary”, “Process Identification”, and
“Interoperability with OpenMP*” were added

/03/05/2008

315399-004 3.2 Sections “Process pinning”, Automatic Tuning
Utility, and “Statistic Gathering Mode” were
updated

/09/05/2008

315399-005 3.2 Update 1 Section “ILP64 Support” was added, section
“Interoperability with OpenMP*” was updated

/03/04/2009

315399-006 4.0 Engineering
Preview

Sections “Processor Information Utility”,
“Automatic Tuning Utility”, and “Device
Control” were updated

/06/24/2009

315399-007 4.0 Beta Sections “Processor Information Utility”,
“Fabrics Control”, “Statistics Gathering Mode
“, and “ILP64 Support” were updated.

Section “Fault Tolerance” was added

/11/03/2009

315399-008 4.0 Sections “Fabrics Control”, “Environment
Variables”, and “Job Startup Command” were
updated.

Sections “Experimental Scalable Process
Management System (Hydra) “, and
“Dynamic Process Support” were added.

/02/16/2009

Document number: 315399-008 5

Intel® MPI Library for Linux* OS Reference Manual

1 About this Document
This Reference Manual provides you with a complete command and tuning reference for the Intel®
MPI Library.

The Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing
Interface, v2 (MPI-2) specification. It provides a standard library across Intel® platforms that:

• Delivers best in class performance for enterprise, divisional, departmental and workgroup high
performance computing. The Intel® MPI Library focuses on making applications perform better on
IA based clusters.

• Enables to adopt MPI-2 functions as their needs dictate.

The Intel® MPI Library enables you to change or to upgrade processors and interconnects as new
technology becomes available, and achieves maximum application performance without changes to
the software or to the operating environment.

The library is provided in the following kits:

• The Intel® MPI Library Runtime Environment (RTO) has the tools you need to run programs,
including multipurpose daemon* (MPD) and supporting utilities, shared (.so) libraries, and
documentation.

• The Intel® MPI Library Development Kit (SDK) includes all of the Runtime Environment
components plus compilation tools, including compiler commands such as mpiicc, include files
and modules, static (.a) libraries, debug libraries, trace libraries, and test codes.

1.1 Intended Audience
This Reference Manual helps an experienced user understand the full functionality of the Intel® MPI
Library and get the best possible application performance.

1.2 Using Doc Type Field
This Reference Manual contains the following sections

Table 1.2-1 Document Organization

Section Description

Section 1 About this
Document

Section 1 introduces this document

Section 2 Command
Reference

Section 2 describes options and variables for compiler commands, job
startup commands, and MPD daemon commands as well

Section 3 Tuning
Reference

Section 3 describes environment variables used to influence program
behavior and performance at run time

Section 4 Statistics
Gathering Mode

Section 4 describes how to obtain statistics of MPI communication
operations

Section 5 ILP64 Support Section 5 describes support provided for the ILP64 programming model

Document number: 315399-008 6

Intel® MPI Library for Linux* OS Reference Manual

Section 6 Unified Memory
Management

Section 6 describes the unified memory management subsystem
(i_malloc)

Section 7 Integration into
Eclipse* PTP

Section 7 describes the procedure for integration into Eclipse* Parallel
Tools Platform

Section 8 Glossary Section 8 explains basic terms used in this document

Section 9 Index Section 9 references options and variable names

1.3 Conventions and Symbols
The following conventions are used in this document.

Table 1.3-1 Conventions and Symbols used in this Document

This type style Document or product names

This type style Hyperlinks

This type style Commands, arguments, options, file names

THIS_TYPE_STYLE Environment variables

<this type style> Placeholders for actual values

[items] Optional items

{ item | item } Selectable items separated by vertical bar(s)

(SDK only) For Software Development Kit (SDK) users only

1.4 Related Information
The following related documents that might be useful to the user:

Product Web Site

Intel® MPI Library Support

Intel® Cluster Tools Products

Intel® Software Development Products

Document number: 315399-008 7

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
http://www.intel.com/software/products/cluster
http://www.intel.com/software/products

Intel® MPI Library for Linux* OS Reference Manual

2 Command Reference

2.1 Compiler Commands
(SDK only)

The following table lists available MPI compiler commands and the underlying compilers, compiler
families, languages, and application binary interfaces (ABIs) that they support.

Table 2.1-1 The Intel® MPI Library Compiler Drivers

Compiler Command Default Compiler Supported Language(s) Supported ABI(s)

Generic Compilers

mpicc gcc, cc C 32/64 bit

mpicxx g++ C/C++ 32/64 bit

mpifc gfortran Fortran77*/Fortran 95* 32/64 bit

GNU* Compilers Cersions 3 and Higher

mpigcc gcc C 32/64 bit

mpigxx g++ C/C++ 32/64 bit

mpif77 g77 Fortran 77 32/64 bit

mpif90 gfortran Fortran 95 32/64 bit

Intel® Fortran, C++ Compilers Versions 10.0, 10.1, 11.0, 11.1 and Higher

mpiicc icc C 32/64 bit

mpiicpc icpc C++ 32/64 bit

mpiifort ifort Fortran77/Fortran 95 32/64 bit

• Compiler commands are available only in the Intel® MPI Library Development Kit.

• Compiler commands are in the <installdir>/<arch>/bin directory. Where <installdir>
refers to the Intel® MPI Library installation directory and <arch> is one of the following
architectures:

 ia32 – IA-32 architecture binaries

 intel64 – Intel® 64 architecture binaries

• Ensure that the corresponding underlying compilers (32-bit or 64-bit, as appropriate) are already
in your PATH.

• To port existing MPI-enabled applications to the Intel® MPI Library, recompile all sources.

• To display mini-help of a compiler command, execute it without any parameters.

2.1.1 Compiler Command Options
-mt_mpi

Use this option to link the thread safe version of the Intel® MPI library at the following levels:
MPI_THREAD_FUNNELED, MPI_THREAD_SERIALIZED, or MPI_THREAD_MULTIPLE.

Document number: 315399-008 8

Intel® MPI Library for Linux* OS Reference Manual

The MPI_THREAD_FUNNELED level is provided by default by the thread safe version of the Intel® MPI
library.

NOTE: If you specify either the –openmp or the –parallel options for the Intel® C Compiler, the
thread safe version of the library is used.

NOTE: If you specify one of the following options for the Intel® Fortran Compiler, the thread safe
version of the library is used:

• –openmp

• –parallel

• –threads

• –reentrancy

• –reentrancy threaded

-static_mpi

Use this option to link the Intel® MPI library statically. This option does not affect the default linkage
method for other libraries.

-static

Use this option to link the Intel® MPI library statically. This option is passed to a compiler.

-config=<name>

Use this option to source the configuration file. See Configuration Files for details.

-profile=<profile_name>

Use this option to specify an MPI profiling library. The profiling library is selected using one of the
following methods:

• Through the configuration file <profile_name>.conf located in the
<installdir>/<arch>/etc. See Profiles for details.

• In the absence of the respective configuration file, by linking the library lib<profile_name>.so
or lib<profile_name>.a located in the same directory as the Intel® MPI Library.

-t or –trace

Use the -t or –trace option to link the resulting executable against the Intel® Trace Collector library.
This has the same effect as if –profile=vt is used as an argument to mpiicc or another compiler
script.

Use the –t=log or –trace=log option to link the resulting executable against the logging Intel® MPI
Library and the Intel® Trace Collector libraries. The logging libraries trace internal Intel® MPI Library
states in addition to the usual MPI function calls.

Include the installation path of the Intel® Trace Collector in the VT_ROOT environment variable to use
this option. Set I_MPI_TRACE_PROFILE to the <profile_name> environment variable to specify
another profiling library. For example, set I_MPI_TRACE_PROFILE to vtfs to link against the fail-
safe version of the Intel® Trace Collector.

Document number: 315399-008 9

Intel® MPI Library for Linux* OS Reference Manual

-check_mpi

Use this option to link the resulting executable against the Intel® Trace Collector correctness checking
library. This has the same effect as if -profile=vtmc is used as an argument to mpiicc or another
compiler script.

Include the installation path of the Intel® Trace Collector in the VT_ROOT environment variable to use
this option. Set I_MPI_CHECK_PROFILE to the <profile_name> environment variable to specify
another checking library.

-ilp64

Use this option to enable ILP64 support. All integer arguments of the Intel MPI Library are treated as
64-bits values in this case.

NOTE: If you specify the –i8 option for the Intel® Fortran Compiler, you still have to use the ILP64
option for linkage. See ILP64 Support for details.

-dynamic_log

Use this option in combination with the –t option to link in the Intel® Trace Collector library
dynamically. This option does not affect the default linkage method for other libraries.

Include $VT_ROOT/slib in the LD_LIBRARY_PATH environment variable to run the resulting
programs.

-g

Use this option to compile a program in debug mode and link the resulting executable against the
debugging version of the Intel® MPI Library. See Environment variables, I_MPI_DEBUG for
information on how to use additional debugging features with the -g builds.

-O

Use this option to enable optimization.

-fast

Use this Intel compiler option to maximize speed across the entire program. This option forces static
linkage method for the Intel® MPI Library.

NOTE: It works for mpiicc, mpiicpc, and mpiifort Intel compiler drivers only.

-echo

Use this option to display everything that the command script does.

-show

Use this option to learn how the underlying compiler is invoked. For example, use the following
command to see the required compiler flags and options:

$ mpiicc -show -c test.c

Use the following command to see the required link flags, options, and libraries:

$ mpiicc -show -o a.out test.o

This is particularly useful for determining the command line for a complex build procedure that directly
uses the underlying compilers.

Document number: 315399-008 10

Intel® MPI Library for Linux* OS Reference Manual

-{cc,cxx,fc,f77,f90}=<compiler>

Use this option to select the underlying compiler.

For example, use the following command to select the Intel® C++ Compiler:

$ mpicc –cc=icc -c test.c

Make sure icc is in your path. Alternatively, you can specify the full path to the compiler.

-gcc-version=<nnn>

Use this option for compiler drivers mpicxx and mpiicpc when linking an application running in a
particular GNU* C++ environment. The valid <nnn> values are:

<nnn> value GNU* C++ version

320 3.2.x

330 3.3.x

340 3.4.x

400 4.0.x

410 4.1.x, 4.2.x

By default, the library compatible with the detected version of the GNU* C++ compiler is used. Do not
use this option if the GNU* C++ version is older than 3.2.

-compchk

Use this option to enable compiler setup checks. In this case each compiler command performs checks
to ensure that the appropriate underlying compiler is set up correctly.

-v

Use this option to print the compiler driver script version and its native compiler version.

2.1.2 Configuration Files
You can create compiler configuration files using the following file naming convention:

<installdir>/<arch>/etc/mpi<compiler>-<name>.conf

where:

<arch> = {ia32,intel64} for the IA-32, and the Intel® 64 architectures

 <compiler> = {cc,cxx,f77,f90}, depending on the language being compiled

 <name> = name of underlying compiler with spaces replaced by hyphens

For example, the <name> value for cc -64 is cc--64

Source these file or use the -config option, if it exists, prior to compiling or linking to enable
changes to the environment on a per-compiler-command basis.

Document number: 315399-008 11

Intel® MPI Library for Linux* OS Reference Manual

2.1.3 Profiles
You can select a profile library through the -profile option of the Intel® MPI Library compiler
drivers. The profile files are located in the <installdir>/<arch>/etc directory. The Intel® MPI
Library comes with several predefined profiles for the Intel® Trace Collector:

<installdir>/etc/vt.conf - regular Intel® Trace Collector library

<installdir>/etc/vtfs.conf - fail-safe Intel® Trace Collector library

<installdir>/etc/vtmc.conf – correctness checking Intel® Trace Collector library

You can also create your own profile as <profile_name>.conf

The following variables can be defined there:

PROFILE_PRELIB - libraries (and paths) to include before the Intel® MPI Library

PROFILE_POSTLIB - libraries to include after the Intel® MPI Library

PROFILE_INCPATHS - C preprocessor arguments for any include files

For instance, create a file /myprof.conf with the following lines:

PROFILE_PRELIB="-L<path_to_myprof>/lib -lmyprof"

PROFILE_INCPATHS="-I<paths_to_myprof>/include"

Use the command-line argument -profile=myprof for the relevant compile driver to select this
new profile.

2.1.4 Environment Variables

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE

(MPI{CC,CXX,FC,F77,F90}_PROFILE)

Specify a default profiling library.

Syntax

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE=<profile_name>

Deprecated Syntax

MPI{CC,CXX,FC,F77,F90}_PROFILE=<profile_name>

Arguments

<profile_name> Specify a default profiling library

Description

Set this variable to select a specific MPI profiling library to be used by default. This has the same
effect as if -profile=<profile_name> were used as an argument to mpiicc or another Intel® MPI
Library compiler driver.

I_MPI_TRACE_PROFILE

Specify a default profile for the –trace option.

Syntax

I_MPI_TRACE_PROFILE=<profile_name>

Document number: 315399-008 12

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<profile_name> Specify a tracing profile name. The default value is vt

Description

Set this variable to select a specific MPI profiling library to be used with the –trace option to mpiicc
or another Intel® MPI Library compiler driver.

The I_MPI_{CC,CXX,F77,F90}_PROFILE environment variable overrides I_MPI_TRACE_PROFILE.

I_MPI_CHECK_PROFILE

Specify a default profile for the –check_mpi option.

Syntax

I_MPI_CHECK_PROFILE=<profile_name>

Arguments

<profile_name> Specify a checking profile name. The default value is vtmc

Description

Set this variable to select a specific MPI checking library to be used with the –check_mpi option to
mpiicc or another Intel® MPI Library compiler driver.

The I_MPI_{CC,CXX,F77,F90}_PROFILE environment variable overrides I_MPI_CHECK_PROFILE.

I_MPI_CHECK_COMPILER

Turn on/off compiler compatibility check.

Syntax

I_MPI_CHECK_COMPILER=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable checking the compiler

disable | no | off | 0 Disable checking the compiler. This is the default value

Description

If I_MPI_CHECK_COMPILER is set to enable, the Intel MPI compiler drivers check the underlying
compiler for compatibility. Normal compilation will be performed only if known version of underlying
compiler is used.

I_MPI_{CC,CXX,FC,F77,F90}

(MPICH_{CC,CXX,FC,F77,F90})

Set the path/name of the underlying compiler to be used.

Syntax

I_MPI_{CC,CXX,FC,F77,F90}=<compiler>

Deprecated Syntax

MPICH_{CC,CXX,FC,F77,F90}=<compiler>

Document number: 315399-008 13

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<compiler> Specify the full path/name of compiler to be used

Description

Set this variable to select a specific compiler to be used. Specify the full path to the compiler if it is
not located in the search path.

NOTE: Some compilers may require additional command line options.

NOTE: The configuration file is sourced if it exists for a specified compiler. See Configuration Files for
details.

I_MPI_ROOT

Set the Intel® MPI Library installation directory path.

Syntax

I_MPI_ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® MPI Library

Description

Set this variable to specify the installation directory of the Intel® MPI Library.

VT_ROOT

Set Intel® Trace Collector installation directory path.

Syntax

VT_ROOT=<path>

Arguments

<path> Specify the installation directory of the Intel® Trace Collector

Description

Set this variable to specify the installation directory of the Intel® Trace Collector.

I_MPI_COMPILER_CONFIG_DIR

Set the location of the compiler configuration files.

Syntax

I_MPI_COMPILER_CONFIG_DIR=<path>

Arguments

<path> Specify the location of the compiler configuration files. The default
value is <installdir>/<arch>/etc

Description

Set this variable to change the default location of the compiler configuration files.

Document number: 315399-008 14

Intel® MPI Library for Linux* OS Reference Manual

2.2 Job Startup Commands

mpiexec

Syntax

mpiexec <g-options> <l-options> <executable>

or

mpiexec <g-options> <l-options> <executable> : \

<l-options> <executable>

or

mpiexec –configfile <file>

Arguments

<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single arg-set

<executable> ./a.out or path/name of the executable file

<file> File with command-line options

Description

In the first command-line syntax, run the specified <executable> with the specified options. All
global and/or local options apply to all MPI processes. A single arg-set is assumed. For example, the
following command executes a.out over the specified <# of processes>:

$ mpiexec –n <# of processes> ./a.out

In the second command-line syntax, divide the command line into multiple arg-sets, separated by
colon characters. All the global options apply to all MPI processes, but the various local options and
<executable> can be specified separately for each arg-set. For example, the following command
would run each given executable on a different host:

$ mpiexec –n 2 –host host1 ./a.out : \

-n 2 –host host2 ./b.out

In the third command-line syntax, read the command line from specified <file>. For a command
with a single arg-set, the entire command should be specified on a single line in <file>. For a
command with multiple arg-sets, each arg-set should be specified on a single, separate line in <file>.
Global options should always appear at the beginning of the first line in <file>.

MPD daemons must already be running in order for mpiexec to succeed.

NOTE: If "." is not in the path on all nodes in the cluster, specify <executable> as ./a.out rather
than a.out.

2.2.1 Extended Device Control Options
Use these options to select a specific fabric combination.

The exact combination of fabrics depends on the number of processes started per node.

Document number: 315399-008 15

Intel® MPI Library for Linux* OS Reference Manual

If all processes start on one node, the Intel® MPI library uses shm intra-node communication
regardless of the selected option from the list in this topic.

If the number of started processes is less than or equal to the number of available nodes, the library
uses the first available fabric from the list of fabrics for inter-nodes communication.

For other cases, the library uses shm for intra-node communication, and the first available fabric from
the list of fabrics for inter-nodes communication. See I_MPI_FABRICS and I_MPI_FABRICS_LIST for
more details.

-rdma
Use this option to select an RDMA-capable network fabric for inter-nodes communication. The
application attempts to use first available RDMA-capable network fabric from the list dapl or ofa. If
no such fabric is available, other fabrics from the list tcp or tmi are used. This option is equivalent to
the -genv I_MPI_FABRICS_LIST dapl,ofa,tcp,tmi –genv I_MPI_FALLBACK 1 setting.

-RDMA
Use this option to select an RDMA-capable network fabric for inter-nodes communication. The
application attempts to use first available RDMA-capable network fabric from the list dapl or ofa. The
application fails if no such fabric is found. This option is equivalent to
the -genv I_MPI_FABRICS_LIST dapl,ofa –genv I_MPI_FALLBACK 1 setting.

-dapl
Use this option to select DAPL capable network fabric for inter-nodes communication. The application
attempts to use DAPL capable network fabric. If no such fabric is available, another fabrics from the
list tcp,tmi or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST
dapl,tcp,tmi,ofa –genv I_MPI_FALLBACK 1 setting.

-DAPL
Use this option to select DAPL capable network fabric for inter-nodes communication. The application
fails if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST dapl
–genv I_MPI_FALLBACK 0 setting.

-ib
Use this option to select OFA capable network fabric for inter-nodes communication. The application
attempts to use OFA capable network fabric. If no such fabric is available, another fabrics from the list
dapl,tcp or tmi is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST
ofa,dapl,tcp,tmi –genv I_MPI_FALLBACK 1 setting.

-IB
Use this option to select OFA capable network fabric for inter-nodes communication. The application
fails if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST ofa –
genv I_MPI_FALLBACK 0 setting.

-tmi
Use this option to select TMI capable network fabric for inter-nodes communication. The application
attempts to use TMI capable network fabric. If no such fabric is available, another fabrics from the list
dapl,tcp or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST
tmi,dapl,tcp,ofa –genv I_MPI_FALLBACK 1 setting.

-TMI
Use this option to select TMI capable network fabric for inter-nodes communication. The application
will fail if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi
–genv I_MPI_FALLBACK 0 setting.

-mx
Use this option to select Myrinet MX* network fabric for inter-nodes communication. The application
attempts to use Myrinet MX* network fabric. If no such fabric is available, another fabrics from the list

Document number: 315399-008 16

Intel® MPI Library for Linux* OS Reference Manual

dapl,tcp or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST
tmi,dapl,tcp,ofa –genv I_MPI_TMI_PROVIDER mx –genv I_MPI_DAPL_PROVIDER mx –
genv I_MPI_FALLBACK 1 setting.

-MX
Use this option to select Myrinet MX* network fabric for inter-nodes communication. The application
fails if no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi –
genv I_MPI_TMI_PROVIDER mx –genv I_MPI_FALLBACK 0 setting.

-psm
Use this option to select Qlogic* network fabric for inter-nodes communication. The application
attempts to use Qlogic* network fabric. If no such fabric is available, another fabrics from the list
dapl,tcp or ofa is used. This option is equivalent to the -genv I_MPI_FABRICS_LIST
tmi,dapl,tcp,ofa –genv I_MPI_TMI_PROVIDER psm –genv I_MPI_FALLBACK 1 setting.

-PSM
Use this option to select Qlogic* network fabric for inter-nodes communication. The application fails if
no such fabric is found. This option is equivalent to the -genv I_MPI_FABRICS_LIST tmi –genv
I_MPI_TMI_PROVIDER psm –genv I_MPI_FALLBACK 0 setting.

-gm
Use this option to select Myrinet* GM* network fabric for inter-nodes communication. This option is
equivalent to the -genv I_MPI_DEVICE rdssm:GmHca0 –genv I_MPI_FALLBACK_DEVICE 1
setting.

NOTE: This variable is deprecated and supported mostly for backward compatibility.

-GM
Use this option to select Myrinet* GM* network fabric for inter-nodes communication. The application
fails if no such fabric is found. This option is equivalent to the –genv I_MPI_DEVICE
rdssm:GmHca0 –genv I_MPI_FALLBACK_DEVICE 0 setting.

NOTE: This variable is deprecated and supported mostly for backward compatibility.

2.2.2 Global Options

-version or -V

Use this option to display Intel® MPI Library version information.

-h or –help or --help

Use this option to display the mpiexec help message.

-tune [<configuration_file>]

Use this option to optimize the Intel® MPI Library performance using the data collected by the
mpitune utility. If <configuration_file> is not mentioned, the best-fit tune options will be
selected for the given configurations. Otherwise the given configuration file will be used.

The default location of the configuration files is <installdir>/<arch>/etc directory. Set the
I_MPI_TUNER_DATA_DIR environment variable to override the default location.

See Automatic Tuning Utility for more details.

Document number: 315399-008 17

Intel® MPI Library for Linux* OS Reference Manual

-nolocal

Use this option to avoid running <executable> on the host where the mpiexec is launched. This
option is useful, for example, on clusters that deploy a dedicated master node for starting the MPI
jobs, and a set of compute nodes for running the actual MPI processes.

-perhost <# of processes>

Use this option to place the indicated number of consecutive MPI processes on every host in group
round robin fashion. The total number of processes to start is controlled by the –n option as usual.

The mpiexec command controls how the ranks of the processes are allocated to the nodes in the
cluster. By default, mpiexec uses group round-robin assignment of ranks to nodes, putting
consecutive MPI processes on all processor cores.

To change this default behavior, set the number of processes per host using the –perhost option,
and set the total number of processes by using the –n option. See Local Options for details. The first
<# of processes> indicated by the –perhost option will be executed on the first host; the next
<# of processes> will be executed on the next host, and so on.

See also the I_MPI_PERHOST variable.

-rr

Use this option to place consecutive MPI processes onto different host in round robin fashion. This
option is equivalent to –perhost 1.

-grr <# of processes>

Use this option to place the indicated number of consecutive MPI processes on every host in group
round robin fashion. This option is equivalent to –perhost <# of processes>.

-ppn <# of processes>

Use this option to place the indicated number of consecutive MPI processes on every host in group
round robin fashion. This option is equivalent to –perhost <# of processes>.

-machinefile <machine file>

Use this option to control the process placement through <machine file>. The total number of
processes to start is controlled by the –n option as usual.

A machine file is a list of fully qualified or short host names, one name per line. Blank lines and lines
that start with # as the first character are ignored.

By repeating a host name you will place additional processes on this host. You can also use the
following format to avoid repetition of the same host name: <host name>:<number of
processes>. For example, the following machine files:

host1

host1

host2

host2

host3

is equivalent to:

Document number: 315399-008 18

Intel® MPI Library for Linux* OS Reference Manual

host1:2

host2:2

host3

It is also possible to specify the network interface used for communication for each node: <host
name>:<number of processes> [ifhn=<interface_host_name>].

NOTE: The -machinefile, -ppn, -rr, and -perhost options are intended for process distribution.
Do not use them simultaneously. Otherwise –machinefile will take precedence.

-g<l-option>
Use this option to apply the named local option <l-option> globally. See Local Options for a list of
all local options. During the application startup, the default value is the –genvuser option. The
options –genvnone, -genvuser, -genvall have the lowest priority, –genvlist, -genvexcl
have higher priority than the previous set. The –genv option has the highest priority. Local options
have higher priority then the global options.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI
processes.

-genvuser

Use this option to propagate all user environment variables to all MPI processes, with the exception of
the following system variables: $HOSTNAME, $HOST, $HOSTTYPE, $MACHTYPE, $OSTYPE. This is
the default setting.

-genvall

Use this option to enable propagation of all environment variables to all MPI processes.

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

(SDK only) -trace [<profiling_library>] or -t [<profiling_library>]

Use this option to profile your MPI application using the indicated <profiling_library>. If the
<profiling_library> is not mentioned, the default profiling library libVT.so will be used.

Set the I_MPI_JOB_TRACE_LIBS environment variable to override the default profiling library.

NOTE: It is not necessary to link your application against the profiling library before execution.

(SDK only) –check_mpi [<checking_library>]

Use this option to check your MPI application using the indicated <checking_library>. If
<checking_library> is not mentioned, the default checking library libVTmc.so will be used.

Set the I_MPI_JOB_CHECK_LIBS environment variable to override the default checking library.

NOTE: It is not necessary to link your application against the checking library before execution.

-tv

Use this option to run <executable> under the TotalView* debugger. For example:

$ mpiexec –tv –n <# of processes> <executable>

Document number: 315399-008 19

Intel® MPI Library for Linux* OS Reference Manual

See Environment Variables for information on how to select the TotalView* executable file.

NOTE: Make sure that environment variable TVDSVRLAUNCHCMD=ssh, as the TotalView* uses rsh by
default.

NOTE: The TotalView* debugger has a feature to displays the message queue state of your MPI
program. To use the state display feature, do the following steps:

1. Run your <executable> with –tv option.

$ mpiexec –tv –n <# of processes> <executable>

2. Answer Yes to the question about stopping the Python* job.

To display the internal state of the MPI library textually, select the Tools > Message Queue
command. If you select the Process Window Tools > Message Queue Graph command, the
TotalView* displays a window that shows a graph of the current message queue state. For more
information, see TotalView*.

-tva <jobid>

Use this option to attach the TotalView* debugger to existing <jobid>. For example:

$ mpiexec –tva <jobid>

-tvsu

Use this option to run <executable> for later attachment with the TotalView* debugger. For
example:

$ mpiexec –tvsu –n <# of processes> <executable>

NOTE: To debug the running Intel® MPI job, attach the TotalView* to the Python* instance that is
running the mpiexec script.

-idb

Use this option to run <executable> under the Intel® Debugger. For example:

$ mpiexec –idb –n <# of processes> <executable>

Include the installation path of the Intel® Debugger in the IDB_HOME environment variable.

-idba <jobid>

Use this option to attach the Intel® Debugger to the existing <jobid>. For example:

$ mpiexec –idba <jobid>

-gdb

Use this option to run <executable> under the GNU* debugger. For example:

$ mpiexec –gdb –n <# of processes> <executable>

-gdba <jobid>

Use this option to attach the GNU* debugger to the existing <jobid>. For example:

$ mpiexec –gdba <jobid>

Document number: 315399-008 20

Intel® MPI Library for Linux* OS Reference Manual

-a <alias>

Use this option to assign <alias> to the job.

-ordered-output

Use this option to avoid intermingling of data output by the MPI processes. This option affects both
the standard output and standard error streams.

NOTE: For this option to work, the last line output by each process must end with the end-of-line (‘\n’)
character. Otherwise the application may stop responding.

-m

Use this option to merge output lines.

-l

Use this option to insert the MPI process rank at the beginning of all lines written to the standard
output.

-s <spec>

Use this option to direct standard input to the specified MPI processes.

Arguments

<spec> Define MPI process ranks

all Use all processes

<l>,<m>,<n> Specify an exact list and use processes <l>, <m> and <n> only. The
default value is zero

<k>,<l>-<m>,<n> Specify a range and use processes <k>, <l> through <m>, and <n>

-noconf

Use this option to disable processing of the mpiexec configuration files described in the section
Configuration Files.

-ifhn <interface/hostname>

Use this option to specify the network interface for communication with the local MPD daemon. The
<interface/hostname> should be an IP address or a hostname associated with the alternative
network interface.

-ecfn <filename>

Use this option to output XML exit codes to the file <filename>.

-configfile <filename>

Use this option to specify the file <filename> that contains command-line options. Blank lines and
lines that start with '#' as the first character are ignored. For example, the configuration file contains
the following commands to run the executables a.out and b.out using the rdssm device over
host1 and host2 respectively:

-host host1 -env I_MPI_DEBUG 2 -env I_MPI_DEVICE rdssm -n 2 ./a.out

-host host2 -env I_MPI_DEBUG 2 -env I_MPI_DEVICE rdssm -n 2 ./b.out

Document number: 315399-008 21

Intel® MPI Library for Linux* OS Reference Manual

To launch a MPI application according to the parameters above, use:

$ mpiexec –configfile <filename>

NOTE: This option may only be used alone. It terminates parsing of the mpiexec command line.

2.2.3 Local Options

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run the current arg-set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to specified <value> for all MPI processes
in the current arg-set.

-envuser

Use this option to propagate all user environment variables with the exception of the following
variables: $HOSTNAME, $HOST, $HOSTTYPE, $MACHTYPE, $OSTYPE. This is the default setting.

-envall

Use this option to propagate all environment variables in the current environment.

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the
current arg-set.

-envlist <list of env var names>

Use this option to pass a list of environment variables with their current values. <list of env var
names> is a comma separated list of variables to be sent into the processes. If this option is used
several times in the command line, all variables listed in the arguments will be included into one list.

-envexcl <list of env var names>

Use this option to suppress propagation of the listed environment variables to the MPI processes in
the current arg-set.

-host <nodename>

Use this option to specify a particular <nodename> on which the MPI processes in the current arg-set
are to be run. For example, the following will run the executable a.out on host host1 only:

$ mpiexec –n 2 –host host1 ./a.out

-path <directory>

Use this option to specify the path to <executable> that is to be run in the current arg-set.

-wdir <directory>

Use this option to specify the working directory in which <executable> is to be run in the current
arg-set.

Document number: 315399-008 22

Intel® MPI Library for Linux* OS Reference Manual

-umask <umask>

Use this option to perform the umask <umask> command for the remote process.

2.2.4 Configuration Files

The mpiexec configuration files specify the default options applied to all mpiexec commands.

If any of these files exist, their contents are prepended to the command-line options for mpiexec in
the following order:

1. System-wide <installdir>/etc/mpiexec.conf. The default location of the configuration
file is the <installdir>/<arch>/etc.

2. User-specific $HOME/.mpiexec.conf

3. Session-specific $PWD/mpiexec.conf

You can override these files by defining environment variables and using command line options. You
can skip these configuration files by using the mpiexec –noconf option.

You can create or modify these files. They contain mpiexec command-line options. Blank lines and
lines that start with '#' are ignored. For example, to specify a default device, add the following line to
the respective mpiexec.conf file:

-genv I_MPI_DEVICE <device>

2.2.5 Environment Variables

I_MPI_DEBUG

Print out debugging information when an MPI program starts running.

Syntax

I_MPI_DEBUG=<level>

Arguments

<level> Indicate level of debug information provided

0 Print no debugging information. This is the default value

1 Output verbose error diagnostics

2 Confirm which I_MPI_DEVICE was used

3 Output effective MPI rank, pid and node mapping table

4 Print process pinning information

5 Print Intel MPI-specific environment variables

> 5 Add extra levels of debug information

Description

Set this variable to control the output of the debugging information.

The I_MPI_DEBUG mechanism extends the MPICH2* MPICH_DBG_OUTPUT debug mechanism by
overriding the current value and setting MPICH_DBG_OUTPUT=stdout.

Each printed line has the following format:

[<identifier>] <message>

Document number: 315399-008 23

Intel® MPI Library for Linux* OS Reference Manual

where <identifier> identifies the MPI process that produced the message, while <message>
contains the debugging output.

The <identifier> is an MPI process rank if <level> is an unsigned number. If the '+' sign is
added in front of the <level> number, the <identifier> contains a rank#pid@hostname tuple.
Here, rank is the MPI process rank, pid is the UNIX process id, and hostname is the host name as
defined at process launch time.

For example, the following command:

$ mpiexec –n 1 -env I_MPI_DEBUG 2 ./a.out

may produce the following output:

[0] MPI startup(): shared memory data transfer mode

while the command

$ mpiexec –n 1 -env I_MPI_DEBUG +2 ./a.out

may produce the following output:

[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode

NOTE: Compiling with mpiicc -g causes considerable amount of additional debug information to be
printed.

I_MPI_PERHOST

Define the default settings for the -perhost option in the mpiexec command.

Syntax
I_MPI_PERHOST=<value>

Arguments

<value> Define the default process layout

<n> > 0 <n> processes per node

all All logical CPUs on a node

allcores All cores (physical CPUs) on a node

Description

Set this variable to define the default setting for the -perhost option. If -perhost is explicitly called
in the command line, the I_MPI_PERHOST variable has no effect. The -perhost option assumes the
value of the I_MPI_PERHOST variable if this variable is defined.

NOTE: I_MPI_PERHOST is incompatible with the mpiexec -host option. The I_MPI_PERHOST
environment variable will be ignored in this case.

(SDK only) I_MPI_JOB_TRACE_LIBS

(MPIEXEC_TRACE_LIBS)

Choose the libraries to preload through the –trace option.

Syntax

I_MPI_JOB_TRACE_LIBS=<arg>

Document number: 315399-008 24

Intel® MPI Library for Linux* OS Reference Manual

Deprecated Syntax

MPIEXEC_TRACE_LIBS=<arg>

Arguments

<arg> String parameter

<list> Blank separated list of libraries to preload. The default value is vt

Description

Set this variable to choose an alternative library for preloading by the –trace option.

(SDK only) I_MPI_JOB_CHECK_LIBS

Choose the libraries to preload through the –check_mpi option.

Syntax

I_MPI_JOB_CHECK_LIBS=<arg>

Arguments

<arg> String parameter

<list> Blank separated list of libraries to preload. The default value is vtmc

Description

Set this variable to choose an alternative library for preloading by the –check_mpi option.

I_MPI_JOB_STARTUP_TIMEOUT

Set the mpiexec job startup timeout.

Syntax

I_MPI_JOB_STARTUP_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec job startup timeout period in seconds

<n> 0≥ The default timeout value is 20 seconds

Description

Set this variable to make mpiexec wait for the job to start in <timeout> seconds after its launch.
The <timeout> value should be greater than zero. Otherwise the variable setting is ignored and a
warning message is printed. Setting this variable may make sense on large clusters with a lot of nodes
where the job startup time may exceed the default value.

NOTE: Set the I_MPI_JOB_STARTUP_TIMEOUT variable in the shell environment before executing
the mpiexec command. Do not use the -genv or -env options for setting the <timeout>
value. Those options are used only for passing variables to the MPI process environment.

I_MPI_JOB_TIMEOUT

(MPIEXEC_TIMEOUT)

Set the mpiexec timeout.

Syntax

I_MPI_JOB_TIMEOUT=<timeout>

Document number: 315399-008 25

Intel® MPI Library for Linux* OS Reference Manual

Deprecated Syntax

MPIEXEC_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec timeout period in seconds

<n> 0≥ The default timeout value is zero, meaning no timeout

Description

Set this variable to make mpiexec terminate the job in <timeout> seconds after its launch. The
<timeout> value should be greater than zero. Otherwise the variable setting is ignored.

NOTE: Set the I_MPI_JOB_TIMEOUT variable in the shell environment before executing the
mpiexec command. Do not use the -genv or -env options for setting the <timeout> value.
Those options are used only for passing variables to the MPI process environment.

I_MPI_JOB_TIMEOUT_SIGNAL

(MPIEXEC_TIMEOUT_SIGNAL)

Define a signal to be used when a job is terminated due to a timeout.

Syntax

I_MPI_JOB_TIMEOUT_SIGNAL=<number>

Deprecated Syntax

MPIEXEC_TIMEOUT_SIGNAL=<number>

Arguments

<number> Define signal number

<n> > 0 The default value is 9 (SIGKILL)

Description

Define a signal number for killing the processes of the task if the timeout pointed to by
I_MPI_JOB_TIMEOUT is over. If a signal number unsupported by the system is set, mpiexec prints a
warning message and continues task termination using the default signal number 9 (SIGKILL).

I_MPI_JOB_SIGNAL_PROPAGATION

(MPIEXEC_SIGNAL_PROPAGATION)

Control signal propagation.

Syntax

I_MPI_JOB_SIGNAL_PROPAGATION=<arg>

Deprecated Syntax

MPIEXEC_SIGNAL_PROPAGATION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on propagation.

Document number: 315399-008 26

Intel® MPI Library for Linux* OS Reference Manual

disable | no | off | 0 Turn off propagation. This is the default value

Description

Set this variable to control propagation of the signals (SIGINT, SIGTSTP, SIGCONT, SIGALARM, and
SIGTERM) that may be received by the MPD daemons. If signal propagation is enabled, the received
signal is sent to all processes of the MPI job. If signal propagation is disabled, all processes of the MPI
job are stopped with the default signal 9 (SIGKILL).

I_MPI_OUTPUT_CHUNK_SIZE

Set the size of the stdout/stderr output buffer.

Syntax

I_MPI_OUTPUT_CHUNK_SIZE=<size>

Arguments

<size> Define output chunk size in kilobytes

<n> > 0 The default chunk size value is 1 KB

Description

Set this variable to increase the size of the buffer used to intercept the standard output and standard
error streams from the processes. If the <size> value is not greater than zero, the variable setting is
ignored and a warning message is displayed.

Use this setting for applications that create significant amount of output from different processes. With
the –ordered-output mpiexec option, this setting helps to prevent the output from garbling.

NOTE: Set the I_MPI_OUTPUT_CHUNK_SIZE variable in the shell environment before executing the
mpiexec command. Do not use the -genv or -env options for setting the <size> value.
Those options are used only for passing variables to the MPI process environment.

I_MPI_PMI_EXTENSIONS

Turn on/off the use of the Intel® MPI Library Process Management Interface (PMI) extensions.

Syntax

I_MPI_PMI_EXTENSIONS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the PMI extensions

disable | no | off | 0 Turn off the PMI extensions

Description

The Intel® MPI Library automatically detects if your process manager supports the PMI extensions. If
supported, the extensions substantially decrease task startup time. Set I_MPI_PMI_EXTENSIONS to
disable if your process manager does not support these extensions.

I_MPI_JOB_FAST_STARTUP

(I_MPI_PMI_FAST_STARTUP)

Turn on/off the faster Intel® MPI Library process startup algorithm.

Document number: 315399-008 27

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_JOB_FAST_STARTUP=<arg>

Deprecated Syntax

I_MPI_PMI_FAST_STARTUP=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the algorithm for fast startup. This is the default value

disable | no | off | 0 Turn off the algorithm for fast startup

Description

The new algorithm significantly decreases the application startup time. Some DAPL providers may be
overloaded during startup of large number of processes (greater than 512). To avoid this problem,
turn off this algorithm by setting the I_MPI_JOB_FAST_STARTUP environment variable to disable.

TOTALVIEW*

Select a particular TotalView* executable file to use.

Syntax

TOTALVIEW=<path>

Arguments

<path> Path/name of the TotalView* executable file instead of the default
totalview

Description

Set this variable to select a particular TotalView* executable file.

IDB_HOME

Set the Intel® Debugger installation directory path.

Syntax

IDB_HOME=<path>

Arguments

<path> Specify the installation directory of the Intel® Debugger

Description

Set this variable to specify the installation directory of the Intel® Debugger.

I_MPI_TUNER_DATA_DIR

Set an alternate path to the directory with the tuning configuration files.
Syntax

I_MPI_TUNER_DATA_DIR=<path>

Arguments

<path> Specify the automatic tuning utility output directory. The default

value is <mpiinstalldir>/<arch>/etc

Document number: 315399-008 28

Intel® MPI Library for Linux* OS Reference Manual

Description

Set this variable to specify an alternative location of the tuning configuration files.

2.3 Simplified Job Startup Command

mpirun

Syntax

mpirun [<mpdboot options>] <mpiexec options>

Arguments

<mpdboot options> mpdboot options as described in the mpdboot command description
below, except –n

<mpiexec options> mpiexec options as described in the mpiexec section above

Description

Use this command to start an independent ring of mpd daemons, launch an MPI job, and shut down
the mpd ring upon job termination.

The first non mpdboot option (including –n or –np) delimits the mpdboot and mpiexec options. All
options up to this point, excluding the delimiting option, are passed to the mpdboot command. All
options from this point on, including the delimiting option, are passed to the mpiexec command.

All configuration files and environment variables applicable to the mpdboot and mpiexec commands
are also pertinent to mpirun.

The set of hosts is defined by the following rules, which are checked in this order:

1. All host names from the mpdboot host file (either mpd.hosts or the file specified by the –f
option).

2. All host names returned by the mpdtrace command, if there is an mpd ring running.

3. Local host (a warning is issued in this case).

The mpirun command also detects if the MPI job is submitted in a session allocated using a job
scheduler like Torque*, PBS Pro*, OpenPBS*, LSF*, Parallelnavi* NQS*, SLURM*, or Sun* Grid
Engine*. In this case, the mpirun command extracts the host list from the respective environment
and uses these nodes automatically according to the above scheme.

In this case you do not have to create the mpd.hosts file yourself. Just allocate the session you need
using the particular job scheduler installed on your system, and use the mpirun command inside this
session to run your MPI job.

2.4 Experimental Scalable Process Management
System (Hydra)

mpiexec.hydra

Use the experimental mpiexec.hydra utility to run Intel MPI application on a large cluster.

Syntax
mpiexec.hydra <g-options> <l-options> <executable>

Document number: 315399-008 29

Intel® MPI Library for Linux* OS Reference Manual

or

mpiexec <g-options> <l-options> <executable> : \

<l-options> <executable>

Arguments

<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single arg-set

<executable> ./a.out or path/name of the executable file

Description

In the first command-line syntax, run the specified <executable> with the specified options. All
global and/or local options apply to all MPI processes. A single arg-set is assumed. For example, the
following command executes a.out over the specified <# of processes>:

$ mpiexec.hydra -f <hostsfile> –n <# of processes> ./a.out

<hostsfile> is the path/name of the file that has the list of machine names on which the
application to run.

In the second command-line syntax, divide the command line into multiple arg-sets, separated by
colon characters. All the global options apply to all MPI processes, but the various local options and
<executable> can be specified separately for each arg-set. For example, the following command
would run each given executable on a different host:

$ cat hosts.file

host1:2

host2:2

$ mpiexec.hydra -f hosts.file –env <VAR1> <VAL1> –n 2 ./a.out : \

-env <VAR2> <VAL2> -n 2 ./b.out

To start a job by mpiexec.hydra, the daemons are not required to be run before using the
mpiexec.hydra command.

NOTE: If "." is not in the path on all nodes in the cluster, specify <executable> as ./a.out instead
of a.out.

2.4.1 Global Options

-f <hostsfile>

Use this option to specify machine names to run application. List machine names line by line.

host1

host2

host3

Use colon with number of processes for required processes distribution across the machines.

host1:2

host2:3

Document number: 315399-008 30

Intel® MPI Library for Linux* OS Reference Manual

Comments are started with #.

host1:2 # the first 2 processes will be run here

host2:3 # the rest 3 processes will be run on this host

See also the I_MPI_HYDRA_HOST_FILE variable.

-genv <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI
processes.

-genvall

Use this option to enable propagation of all environment variables to all MPI processes.

-genvnone

Use this option to suppress propagation of any environment variables to any MPI processes.

-genvlist <list of genv var names>

Use this option to pass a list of environment variables with their current values. <list of genv var
names> is a comma separated list of variables to be sent into the processes.

-wdir <directory>

Use this option to specify the working directory in which <executable> is run in the current arg-set.

-pmi-connect <mode>

Use this option to choose the PMI connections method. Possible values are: mpich2, proxy, cache.

It is case sensitive.

 The mpich2 mode is the original mpich2 PMI connections mode. In this case, PMI connections
are organized between MPI process and mpiexec.hydra.

 The proxy mode – PMI connections through pmi_proxy.

 The cache mode – PMI connections through pmi_proxy with PMI information caching on local
pmi_proxies to minimize PMI requests.

The cache mode is the default PMI connections method.

See also the I_MPI_HYDRA_PMI_CONNECT variable.

2.4.1.1 Bootstrap Options
-bootstrap <bootstrap server>

Use this option to set bootstrap server to use. A bootstrap server is the basic remote node access
mechanism that is provided on any system. Hydra supports multiple runtime bootstrap servers such
as ssh, rsh, fork, and slurm to launch processes. The default bootstrap server is ssh.

See also the I_MPI_HYDRA_BOOTSTRAP variable.

-bootstrap-exec <bootstrap server>

Use this option to set executable bootstrap server to run. Possible values are ssh, rsh, fork, and
slurm. The default bootstrap server is ssh.

See also the I_MPI_HYDRA_BOOTSTRAP_EXEC variable.

Document number: 315399-008 31

Intel® MPI Library for Linux* OS Reference Manual

2.4.1.2 Communication Sub-system Options
-rmk <RMK>

Use this option to run the resource management kernel.

See also the I_MPI_HYDRA_RMK variable.

2.4.1.3 Other Options
-verbose

Use this option to print extra verbose information

See also the I_MPI_HYDRA_DEBUG variable.

-print-rank-map

Use this option to print rank mapping.

-print-all-exitcodes

 Use this option to print exit codes of all processes.

2.4.2 Local Options

-n <# of processes> or -np <# of processes>

Use this option to set the number of MPI processes to run the current arg-set.

-env <ENVVAR> <value>

Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI
processes in the current arg-set.

-envall

Use this option to propagate all environment variables in the current environment.

See also the I_MPI_HYDRA_ENV variable.

-envnone

Use this option to suppress propagation of any environment variables to the MPI processes in the
current arg-set.

-envlist <list of env var names>

Use this option to pass a list of environment variables with their current values. <list of env var
names> is a comma separated list of variables to be sent into the processes.

Document number: 315399-008 32

Intel® MPI Library for Linux* OS Reference Manual

2.4.3 Environment Variables

I_MPI_HYDRA_HOST_FILE

(HYDRA_HOST_FILE)

Set the hosts file to run the application.

Syntax

I_MPI_HYDRA_HOST_FILE=<arg>

Deprecated Syntax

HYDRA_HOST_FILE=<arg>

Arguments

<arg> String parameter

<hostsfile> Full or relative path to hosts file

Description

Set this variable to specify the hosts file.

I_MPI_HYDRA_DEBUG

(HYDRA_DEBUG)

Print out the debug information.

Syntax

I_MPI_HYDRA_DEBUG=<arg>

Deprecated Syntax

HYDRA_DEBUG=<arg>

Arguments

<arg> Binary indicator

0 | 1 Turn on or off the debug output. The default value is 0

Description

Set this variable to 1 to enable the debug mode and 0 to turn off the debug mode.

I_MPI_HYDRA_ENV

(HYDRA_ENV)

Set it to all to pass the environment.

Syntax

I_MPI_HYDRA_ENV=<arg>

Deprecated Syntax

HYDRA_ENV=<arg>

Arguments

<arg> String parameter

Document number: 315399-008 33

Intel® MPI Library for Linux* OS Reference Manual

all To pass the launching node environment to the application
processes

Description

By default, the launching node environment is passed to the executables as long as it does not
overwrite any of the environment variables that have been preset by the remote shell.

I_MPI_MPIEXEC_TIMEOUT

(MPIEXEC_TIMEOUT)

Set the mpiexec timeout.

Syntax

I_MPI_MPIEXEC_TIMEOUT=<timeout>

Deprecated Syntax

MPIEXEC_TIMEOUT=<timeout>

Arguments

<timeout> Define mpiexec timeout period in seconds

<n> 0≥ The default timeout value is zero, which means no timeout

Description

Set this variable to make mpiexec terminate the job in <timeout> seconds after its launch. The
<timeout> value should be greater than zero. Otherwise the variable setting is ignored.

I_MPI_HYDRA_BOOTSTRAP

(HYDRA_BOOTSTRAP)

Set the bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP=<arg>

Deprecated Syntax

HYDRA_BOOTSTRAP=<arg>

Arguments

<arg> String parameter

ssh | rsh | fork | slurm The remote node access mechanism. The default is ssh

Description

Set this variable to specify the bootstrap server.

I_MPI_HYDRA_BOOTSTRAP_EXEC

(HYDRA_BOOTSTRAP_EXEC)

Set the bootstrap server to run application.

Document number: 315399-008 34

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_HYDRA_BOOTSTRAP_EXEC=<arg>

Deprecated Syntax

HYDRA_BOOTSTRAP_EXEC=<arg>

Arguments

<arg> String parameter

ssh | rsh | fork | slurm The remote node access mechanism. The default is ssh

Description

Set this variable to specify the bootstrap server to run application.

I_MPI_HYDRA_RMK

(HYDRA_RMK)

Use the resource management kernel.

Syntax

I_MPI_HYDRA_DEMUX=<arg>

Deprecated Syntax

HYDRA_DEMUX=<arg>

Arguments

<arg> String parameter

<rmk> Resource management kernel

Description

Set this variable to use resource management kernel. In Intel® MPI Library 4.0, only pbs is supported.

I_MPI_HYDRA_PMI_CONNECT

Define the algorithm for Hydra PMI connections.

Syntax
I_MPI_HYDRA_PMI_CONNECT=<value>

Arguments

<value> Define an algorithm for PMI connections with Hydra PMI

mpich2 Use the original mpich2 algorithm

proxy Use the PMI connections through pmi_proxy.

cache Minimize the PMI requests by caching PMI information into local
pmi_proxy. The default is cache

Description

Use this variable to choose the PMI connections method. If –pmi-connect is explicitly presented in
the mpiexec.hydra command line, I_MPI_HYDRA_PMI_CONNECT has no effect. The –pmi-connect
option is assumed with its value if I_MPI_HYDRA_PMI_CONNECT is defined.

Document number: 315399-008 35

Intel® MPI Library for Linux* OS Reference Manual

2.5 Multipurpose Daemon Commands

mpd

Start mpd daemon.

Syntax

mpd [--help] [-V] [--version] [--host=<host> --port=<portnum>] \

 [--noconsole] [--trace] [--echo] [--daemon] [--bulletproof] \

 [--i fhn <interface/hostname>] [--listenport <listenport>]

Arguments

--help Display a help message

-V | --version Display the Intel® MPI Library version information

-h <host> -p <portnum> |

--host=<host> --port=<portnum>

Specify the host and port to be used for entering an
existing ring. The --host and --port options must be
specified together

-n | --noconsole Do not create a console at startup

-t | --trace Print internal MPD trace information

-e | --echo Print a port number at startup to which other mpds may
connect

-d | --daemon Start mpd in daemon mode. By default, the interactive
mode is enabled

--bulletproof Turn MPD bulletproofing on

--ifhn=<interface/hostname> Specify <interface/hostname> to use for MPD
communications

-l <listenport> |

--listenport=<listenport>

Specify the mpd listening port

Description

Multipurpose daemon* (MPD) is the Intel® MPI Library process management system for starting
parallel jobs. Before running a job, start mpd daemons on each host and connect them into a ring.
Long parameter names may be abbreviated to their first letters by using only one hyphen and no
equal sign. For example,

$ mpd –h masterhost -p 4268 –n

is equivalent to

$ mpd --host=masterhost --port=4268 –noconsole

If a file named .mpd.conf is presented in the user's home directory, only the user can have read and
write privileges. The file must minimally contain a line with secretword=<secretword>. Create the
mpd.conf file in the /etc directory instead of .mpd.conf in the root's home directory to run mpd as
root. We do not recommend starting the MPD ring under the root account.

mpdboot

Start mpd ring.

Document number: 315399-008 36

Intel® MPI Library for Linux* OS Reference Manual

Syntax

mpdboot [-h] [-V] [-n <#nodes>] [-f <hostsfile>] [-r <rshcmd>] \

 [-u <user>] [-m <mpdcmd>] [--loccons] [--remcons] \

 [-s] [-d] [-v] [-1] [--ncpus=<ncpus>] [-o] \

 [-b <maxbranch>] [-p]

or

mpdboot [--help] [--version] [--totalnum=<#nodes>] \

 [--file=<hostsfile>] [--rsh=<rshcmd>] [--user=<user>] \

 [--mpd=<mpdcmd>] [--loccons] [--remcons] [--shell] \

 [--debug] [--verbose] [-1] [--ncpus=<ncpus>] [--ordered]

 [--maxbranch=<maxbranch>] [--parallel-startup]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-d | --debug Print debug information

–v | --verbose Print extra verbose information. Show the <rshcmd>
attempts

-n <#nodes> |

--totalnum=<#nodes>

Number of nodes in mpd.hosts on which daemons are
started

-r <rshcmd> | --rsh=<rshcmd> Specify remote shell to start daemons and jobs. The default
value is rsh

-f <hostsfile> |

--file=<hostsfile>

Path/name of the file that has the list of machine names on
which the daemons are started

-1 Remove the restriction of starting only one mpd per
machine

-m <mpdcmd> | --mpd=<mpdcms> Specify the full path name of the mpd on the remote hosts

-s | --shell Specify the shell

-u <user> | --user=<user> Specify the user

--loccons Do not create local MPD consoles

--remcons Do not create remote MPD consoles

--ncpus=<ncpus> Indicate how many processors to use on the local machine
(other nodes are listed in the hosts file)

-o | --ordered Start all the mpd daemons in the exact order as specified in
the mpd.hosts file

-b <maxbranch> |

--maxbranch=<maxbranch>

Use this option to indicate the maximum number of the mpd
daemons to enter the mpd ring under another. This helps to
control the parallelism of the mpd ring start. The default
value is four

Document number: 315399-008 37

Intel® MPI Library for Linux* OS Reference Manual

-p |--parallel-startup Use this option to allow parallel fast starting of mpd
daemons under one local root. No daemon checking is
performed. This option also supports shells which do not
transfer the output from the remote commands

Description

Start the mpd daemons on the specified number of nodes by providing a list of node names in
<mpd.hosts>.

The mpd daemons are started using the rsh command by default. If the rsh connectivity is not
enabled, use the –r ssh option to switch over to ssh. Make sure that all nodes in the cluster can
connect to each other through the rsh command without a password or, if the –r ssh option is used,
through the ssh command without a password.

NOTE: The mpdboot command will spawn an MPD daemon on the host machine, even if the machine
name is not listed in the mpd.hosts file.

mpdexit

Shut down a single mpd daemon.

Syntax

mpdexit [--help] [-V] [--version] <mpdid>

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<mpdid> Specify the mpd daemon to kill

Description

Use this command to cause the single mpd daemon to exit. Use <mpdid> obtained through the
mpdtrace –l command in the form <hostname>_<port number>.

mpdallexit

Shut down all mpd daemons on all nodes.

Syntax

mpdallexit [--help] [-V] [--version]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

Description

Use this command to shutdown all MPD rings you own.

mpdcleanup

Cleanup the environment after an mpd crash.

Syntax

mpdcleanup [-h] [-V] [-f <hostsfile>] [-r <rshcmd>] [-u <user>] \

Document number: 315399-008 38

Intel® MPI Library for Linux* OS Reference Manual

 [-c <cleancmd>] [-a]

or

mpdcleanup [--help] [--version] [--file=<hostsfile>] \

 [--rsh=<rshcmd>] [--user=<user>] [--clean=<cleancmd>] \

 [--all]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-f <hostsfile> |

--file=<hostsfile>

Specify the file containing a list of machines to clean up

-r <rshcmd> |

--rsh=<rshcmd>

Specify the remote shell to use

-u <user> |

--user=<user>

Specify the user

-c <cleancmd> |

--clean=<cleancmd>

Specify the command to use for removing the UNIX* socket. The
default command is /bin/rm –f

-a | --all Kill all mpd daemons related to the current settings of the
I_MPI_JOB_CONTEXT environment variable on all hosts specified in
<hostsfile>

Description

Use this command to cleanup the environment after an mpd crash. It removes the UNIX* socket on
local and remote machines or kills all mpd daemons related to the current environment controlled by
the I_MPI_JOB_CONTEXT environment variable.

For instance, use the following command to remove the UNIX sockets on machines specified in the
hostsfile file:

$ mpdcleanup --file=hostsfile --rsh=ssh

Use the following command to kill the mpd daemons on the machines specified in the hostsfile file:

$ mpdcleanup --file=hostsfile --all

mpdtrace

Determine whether mpd is running.

Syntax

mpdtrace [--help] [-V] [--version] [-l]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

-l Show MPD identifiers instead of the hostnames

Document number: 315399-008 39

Intel® MPI Library for Linux* OS Reference Manual

Description

Use this command to list the hostnames or identifiers of all mpds in the ring. The output identifiers
have the form <hostname>_<port number>.

mpdcheck

Check for configuration problems on the host or print configuration information about this host.

Syntax

mpdcheck [-v] [-l] [-h] [--help] [-V] [--version]

mpdcheck –pc [-v] [-l]

mpdcheck -f <host_file> [-ssh] [-v] [-l]

mpdcheck –s [-v] [-l]

mpdcheck -c < server_host> <server_port> [-v] [-l]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-pc Print configuration information about a local host

-f <host_file> Print information about the hosts listed in <host_file>

-ssh Invoke testing of ssh on each remote host. Use in
conjunction with the -f option

-s Run mpdcheck as a server on one host

-c <server_host> <server_port> Run mpdcheck as a client on the current or different host.
Connect to the <server_host> <server_port>

-l Print diagnostic messages in extended format

-v Print the actions that mpdcheck is performing

Description

Use this command to check configuration problems on the cluster nodes. Any output started with ***
indicates a potential problem.

If you have problems running parallel jobs through mpd on one or more hosts, try to run the script
once on each of those hosts.

mpdringtest

Test the MPD ring.

Syntax

mpdringtest [--help] [-V] [--version] <number of loops>

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<number of loops> Number of loops

Document number: 315399-008 40

Intel® MPI Library for Linux* OS Reference Manual

Description

Use this command to test how long it takes for a message to circle the mpd ring.

mpdlistjobs

List the running processes for a particular set of MPI jobs.

Syntax

mpdlistjobs [-h] [-V] [-u <username>] [-a <jobalias>] [-j <jobid>]

or

mpdlistjobs [--help] [--version] [--user=<username>] \

[--alias=<jobalias>] [--jobid=<jobid>]

Arguments

-h | --help Display a help message

-V | --version Display Intel® MPI Library version information

-u <username>
| --user=<username>

List jobs of a particular user

-a <jobalias>
|--alias=<jobalias>

List information about the particular job specified by <jobalias>

-j <jobid>

| --jobid=<jobid>

List information about the particular job specified by <jobid>

Description

Use this command to list the running processes for a set of MPI jobs. All jobs for the current machine
are displayed by default.

mpdsigjob

Apply a signal to a process running an application.

Syntax

mpdsigjob [--help] [-V] [--version] <sigtype> \

[-j <jobid> | -a <jobalias>] [-s | -g]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<sigtype> Specify the signal to send

-a <jobalias> Send a signal to the job specified by <jobalias>

-j <jobid> Send a signal to the job specified by <jobid>

-s Deliver a signal to a single user process

-g Deliver a signal to a group of processes. This is the default behavior

Description

Use this command to deliver a specific signal to the processes of a running job. The desired signal is
the first argument. Specify only one of two options: -j or –a.

Document number: 315399-008 41

Intel® MPI Library for Linux* OS Reference Manual

mpdkilljob

Kill a job.

Syntax

mpdkilljob [--help] [-V] [--version] [<jobnum>] [-a <jobalias>]

Arguments

--help Display a help message

-V | --version Display Intel® MPI Library version information

<jobnum> Kill the job specified by <jobnum>

-a <jobalias> Kill the job specified by <jobalias>

Description

Use this command to kill the job specified by <jobnum> or by <jobalias>. Obtain <jobnum> and
<jobalias> from the mpdlistjobs command. The <jobid> field has the following format:
<jobnum>@<mpdid>.

mpdhelp

Print brief help concerning MPD commands.

Syntax

mpdhelp [-V] [--version]

Arguments

-V | --version Display Intel® MPI Library version information

Description

Use this command to obtain a brief help message concerning MPD commands.

2.5.1 Configuration Files

$HOME/.mpd.conf

This optional configuration file contains an mpd daemon password. Create it before setting up the mpd
daemons. Use it to control access to the daemons by various Intel® MPI Library users.

Syntax

The file has a single line:

secretword=<mpd password>

or

MPD_SECRETWORD=<mpd password>

Description

An arbitrary <mpd password> string only controls access to the mpd daemons by various cluster
users. Do not use Linux* OS login passwords here.

Place the $HOME/.mpd.conf file on a network-mounted file system, or replicate this file so that it is
accessible as $HOME/.mpd.conf on all nodes of the cluster.

Document number: 315399-008 42

Intel® MPI Library for Linux* OS Reference Manual

When mpdboot is executed by some non-root <user>, this file should have user and ownership set to
<user> and <<user>'s group> accordingly. The access permissions should be set to 600 mode
(only user has read and write privileges).

NOTE: MPD_SECRETWORD is a synonym for secretword.

mpd.hosts

This file has a list of node names which the mpdboot command uses to start mpd daemons.

Ensure that this file is accessible by the user who runs mpdboot on the node where the mpdboot
command is actually invoked.

Syntax

The format of the mpd.hosts file is a list of node names, one name per line. Blank lines and the
portions of any lines that follow a # character are ignored.

2.5.2 Environment Variables

I_MPI_JOB_CONFIG_FILE

(I_MPI_MPD_CONF)

Set the path/name of the mpd configuration file.

Syntax

I_MPI_JOB_CONFIG_FILE=<path/name>

Deprecated Syntax

I_MPI_MPD_CONF=<path/name>

Arguments

<path/name> Absolute path of the MPD configuration file

Description

Set this variable to define the absolute path of the file that is used by the mpdboot script instead of
the default value ${HOME}/.mpd.conf.

I_MPI_JOB_CONTEXT

(MPD_CON_EXT)

Set a unique name for the mpd console file. This enables you to run several mpd rings under the same
user account.

Syntax

I_MPI_JOB_CONTEXT=<tag>

Deprecated Syntax

MPD_CON_EXT=<tag>

Arguments

<tag> Unique MPD identifier

Document number: 315399-008 43

Intel® MPI Library for Linux* OS Reference Manual

Description

Set this variable to different unique values to allow several MPD rings to co-exist. Each MPD ring is
associated with a separate I_MPI_JOB_CONTEXT value. Once this variable is set, you can start one
MPD ring and work with it without affecting other available MPD rings. Set the appropriate
I_MPI_JOB_CONTEXT value to work with a particular MPD ring. See Simplified Job Startup Command
to learn about an easier way to run several Intel® MPI Library jobs at once.

I_MPI_JOB_TAGGED_PORT_OUTPUT

Turn on/off the use of the tagged mpd port output.

Syntax

I_MPI_JOB_TAGGED_PORT_OUTPUT=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the tagged output

disable | no | off | 0 Turn off the tagged output. This is the default value

Description

The tagged output format works at the mpdboot stage and prevents a failure during startup due to
unexpected output from a remote shell like ssh. mpdboot sets this variable to 1 automatically. Set
I_MPI_JOB_TAGGED_PORT_OUTPUT to disable if you do not want to use the new format.

I_MPI_MPD_CHECK_PYTHON*

Turn on/off the Python* versions check at the MPD ring startup stage.

Syntax

I_MPI_MPD_CHECK_PYTHON=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Check for Python version compatibility

disable | no | off | 0 Do not check the Python version compatibility. This is the default
value

Description

Set this variable to enable compatibility checking of Python versions installed on the cluster nodes.
This may lead to increased MPD ring startup time. The MPD behavior is undefined if incompatible
Python versions are installed on the cluster.

If I_MPI_MPD_CHECK_PYTHON is set to enable and the compatibility check fails, mpdboot will exit
abnormally and print a diagnostic message. An MPD ring will not be started.

I_MPI_MPD_RSH

Set the remote shell to start mpd daemons.

Syntax

I_MPI_MPD_RSH =<arg>

Document number: 315399-008 44

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<arg> String parameter

<remoute shell> The remote shell

Description

Set this variable to define the default setting for the –-rsh mpdboot option. If --rsh is explicitly
called in the command line, the I_MPI_MPD_RSH variable has no effect. The --rsh option assumes
the value of the I_MPI_MPD_RSH variable if this variable is defined.

I_MPI_MPD_TMPDIR

TMPDIR

Set a temporary directory for the MPD subsystem.

Syntax

I_MPI_MPD_TMPDIR=<arg>

TMPDIR=<arg>

Arguments

<arg> String parameter

<directory name> A string that points to a scratch space location. The default value is
/tmp

Description

Set one of these variables to specify an alternative scratch space location. The MPD subsystem creates
its own files in the directory specified by these environment variables. If both variables point to valid
directories, the value of the TMPDIR environment variable is ignored.

NOTE: The mpd2.console_* file full path length can be limited in some operating systems. You hit
this limitation if you get the following diagnostic message: socket.error: AF_UNIX path
too long. Decrease the length of the <directory name> string to avoid this issue.

NOTE: If <arg> points to a distributed file system (PANFS, PVFS, etc.), the mpd demons may not
start. If this happens, set the I_MPI_MPD_TMPDIR and TMPDIR to point to a standard file
system (ext2, ext3, NFS, etc.).

2.6 Processor Information Utility

cpuinfo

Use the cpuinfo utility to display processor architecture information.

Document number: 315399-008 45

Intel® MPI Library for Linux* OS Reference Manual

Syntax

cpuinfo

Description

The cpuinfo utility prints out processor architecture information that can be used to define suitable
process pinning settings. The output consists of a header and a number of tables. The output header
includes the processor band name, the processor code name, and the processor architecture. The
output includes the following tables:

• Processor composition table: describes the processor packages, cores, and threads.

Processors (CPUs) – the number of software executive processor units.
Packages (sockets) – the number of physical packages and corresponding sockets.
Cores per package – the number of cores within each package.
Threads per core – the number of processor units within each core. If the number equals one,
Simultaneous Multi Threading (SMT) mode is disabled. If the number is larger than one, SMT
mode is enabled.

• Processor identification table: identifies threads, cores, and packages of each logical processor
accordingly.
Thread Id – unique processor identifier within a core.
Core Id – unique core identifier within a package.
Package Id – unique package identifier within a node.

• Processor placement table: maps processor packages and cores. It is an inversion of the
processor identification table. Each entry contains the information on packages, cores, and
processors.
Package Id – a physical package identifier.
Cores Id – a list of core identifiers that belong to this package.
Processors Id – a list of processors that belong to this package. This list order directly corresponds
to the core list. A group of processors enclosed in brackets belongs to one core.

• Cache sharing table: lists information of sizes and processors groups, for each cache level.
Size – cache size in bytes.
Processors – a list of processor groups enclosed in the parentheses that shared this cache or no
sharing otherwise.

NOTE: The architecture information is available on systems based on the IA-32 and Intel® 64
architectures.

Examples

1. cpuinfo output for Intel® Xeon® Processor 5400 series:
Intel(R) Xeon(TM) Processor (Intel64 Harpertown)

===== Processor composition =====
Processors(CPUs) : 8
Packages(sockets) : 2
Cores per package : 4
Threads per core : 1

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 1
1 0 0 0
2 0 2 0
3 0 2 1
4 0 1 0
5 0 3 0
6 0 1 1
7 0 3 1

===== Placement on packages =====
Package Id. Core Id. Processors
1 0,2,1,3 0,3,6,7

Document number: 315399-008 46

Intel® MPI Library for Linux* OS Reference Manual

0 0,2,1,3 1,2,4,5

===== Cache sharing =====
Cache Size Processors
L1 32 KB no sharing
L2 6 MB (0,6)(1,4)(2,5)(3,7)

2. cpuinfo output for Intel® Core™ i7 processor with SMT support:
Intel(R) Core(TM) i7 Processor (Intel64 Bloomfield)

===== Processor composition =====
Processors(CPUs) : 8
Packages(sockets) : 1
Cores per package : 4
Threads per core : 2

===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 1 0
2 0 2 0
3 0 3 0
4 1 0 0
5 1 1 0
6 1 2 0
7 1 3 0
===== Placement on packages =====
Package Id Core Id Processors
0 0,1,2,3 (0,4)(1,5)(2,6)(3,7)

===== Cache sharing =====
Cache Size Processors
L1 32 KB (0,4)(1,5)(2,6)(3,7)
L2 256 KB (0,4)(1,5)(2,6)(3,7)
L3 8 MB (0,1,2,3,4,5,6,7)

Document number: 315399-008 47

Intel® MPI Library for Linux* OS Reference Manual

3 Tuning Reference
The Intel® MPI Library provides an automatic tuning utility and many environment variables that can
be used to influence program behavior and performance at run time.

3.1 Automatic Tuning Utility

mpitune

Use the mpitune utility to find optimal settings for the Intel® MPI Library relevant to your cluster
configuration or your application.

Syntax

mpitune [-h] [-V] [-hf <hostsfile>] [-od <outputdir>] [-d] \

 [-i <count>] [-s] [-a \”<application command line>\”]

or

mpitune [--help] [--version] [--host-file <hostsfile>] \

 [--output-directory <outputdir>] [--debug] \

 [--iterations <count>] [--silent] \

 [--application \”<application command line>\”]

Arguments

-a \”<app_cmd_line>\” |
--application
\”<app_cmd_line>\”

Switch on the application tuning mode. Quote the full
command line as shown

-of <file-name> |

--output-file <file-name>

Specify the application configuration file to be generated in the
application-specific mode. By default, use the
$PWD/app.conf

-t \”<test_cmd_line>\” |

--test \”<test_cmd_line>\”

Replace the default Intel® MPI Benchmarks by the indicated
benchmarking program in the cluster-specific mode. Quote the
full command line as shown

-cm | --cluster-mode
{exclusive|full}

Set the cluster usage mode

full – maximum number of tasks will be executed. This is
the default mode

exclusive – only one task will be executed on the cluster at
a time

-d | --debug Print out the debug information

-dl [d1[,d2…[,dN]]] |
--device-list [d1[,d2,…
[,dN]]]

Select the device(s) you want to tune. By default, use all
devices mentioned in the
<installdir>/<arch>/etc/devices.xml file

-fl [f1[,f2…[,fN]]] |

--fabric-list
[f1[,f2…[,fN]]]

Select the fabric(s) you want to tune. By default, use all
fabrics mentioned in the
<installdir>/<arch>/etc/fabrics.xml file

Document number: 315399-008 48

Intel® MPI Library for Linux* OS Reference Manual

-er | --existing-ring Try to use an existing MPD ring. By default, create a new MPD
ring

-hf <hostsfile> |
--host-file <hostsfile>

Specify an alternative host file name. By default, use the
$PWD/mpd.hosts

-h | --help Display a help message

-hr | --host-range
{min:max|min:|:max}

Set the range of hosts used for testing. The default minimum
value is 1. The default maximum value is the number of hosts
defined by the mpd.hosts or the existing MPD ring. The
min: or :max format will use the default values as
appropriate

-i <count> |

--iterations <count>

Define how many times to run each tuning step. Higher
iteration counts increase the tuning time, but may also
increase the accuracy of the results. The default value is 3

--message-range
{min:max|min:|:max}

Set the message size range. The default minimum value is 0.
The default maximum value is 4194304 (4mb). By default, the
values are given in bytes. They can also be given in the
following format: 16kb, 8mb or 2gb. The min: or :max
format will use the default values as appropriate

-od <outputdir> |
--output-directory
<outputdir>

Specify the directory name for all output files. By default, use
the current directory. This directory should be accessible from
all hosts

-pr {min:max|min:|:max} |

--ppn-range
{min:max|min:|:max} |

--perhost-range
{min:max|min:|:max}

Set the maximum number of processes per host. The default
minimum value is 1. The default maximum value is the
number of cores of the processor. The min: or :max format
will use the default values as appropriate

-sf [file-path] |

--session-file [file-path]

Continue the tuning process starting from the state saved in
the file-path session file

-s | --silent Suppress all diagnostic output

-td <dir-path> |

--temp-directory <dir-path>

Specify a directory name for the temporary data. By default,
use the $PWD/mpitunertemp. This directory should be
accessible from all hosts

-tl <minutes> |

--time-limit <minutes>

Set mpitune execution time limit in minutes. The default
value is 0, which means no limitations

-mh |

--master-host

Dedicate a single host to run mpitune

-V | --version Print out version information

Deprecated Options

Deprecated Option New Option

--outdir -od | --output-directory

--verbose -d | --debug

--file -hf | --host-file

--logs -lf | --log-file

--app -a | --application

Document number: 315399-008 49

Intel® MPI Library for Linux* OS Reference Manual

Description

Use the mpitune utility to create a set of Intel® MPI Library configuration files that contain optimal
settings for a particular cluster or application. You can reuse these configuration files in the mpiexec
job launcher by using the -tune option.

The MPI tuner utility operates in two modes:

• Cluster-specific, evaluating a given cluster environment using either the Intel® MPI
Benchmarks or a user-provided benchmarking program to find the most suitable configuration
of the Intel® MPI Library. This mode is used by default.

• Application-specific, evaluating the performance of a given MPI application to find the best
configuration for the Intel® MPI Library for the particular application. Application tuning is
enabled by the --application command line option.

3.1.1 Cluster-specific Tuning

Run this utility once after the Intel® MPI Library installation and after every cluster configuration
change (processor or memory upgrade, network reconfiguration, etc.). Do this under the user account
that was used for the Intel® MPI Library installation or set the tuner data directory with the
--output-directory command.

If there are any configuration files in the <installdir>/<arch>/etc directory, the recorded Intel®
MPI Library configuration settings will be used automatically by mpiexec with the -tune option.

For example:

1. Collect configuration settings for the cluster hosts listed in the ./mpd.hosts file by using the
Intel® MPI Benchmarks

$ mpitune

2. Use the optimal recorded values when running on the cluster

$ mpiexec -tune -n 32 ./myprog

The job launcher will find a proper set of configuration options based on the execution conditions:
communication fabrics, number of hosts and processes, etc. If you have write access permission for
<installdir>/<arch>/etc, all generated files will be saved in this directory; otherwise the current
working directory will be used.

3.1.1.1 Replacing the Default Benchmark

This tuning feature is an extension of the cluster-specific tuning mode in which you specify a
benchmarking application that will be used for tuning.

For example:

1. Collect the configuration settings for the cluster hosts listed in the ./mpd.hosts file by using
the desired benchmarking program

$ mpitune –-test \”benchmark –param1 –param2\”

2. Use the optimal recorded values for your cluster

$ mpiexec -tune -n 32 ./myprog

Document number: 315399-008 50

Intel® MPI Library for Linux* OS Reference Manual

3.1.2 Application-specific Tuning

Run the tuning process for any kind of MPI application by specifying its command line to the tuner.
Performance is measured as inversed execution time of the given application. To reduce the overall
tuning time, use the shortest representative application workload if applicable.

For example:

1. Collect configuration settings for the given application

$ mpitune --application \”mpiexec -n 32 ./myprog\” –of ./myprog.conf

2. Use the optimal recorded values for your application

$ mpiexec –tune ./myprog.conf -n 32 ./myprog

Based on the default tuning rules, the automated tuning utility evaluates a full set of the library
configuration parameters to minimize the application execution time. By default, all generated files will
be saved in the current working directory.

NOTE: The resulting application configuration file contains the optimal Intel® MPI Library parameters
for this particular application only. If you want to tune the Intel® MPI Library for the same
application in a different configuration (number of hosts, workload, etc.), you may need to
rerun the automated tuning utility by using the desired configuration.

The automated tuning utility will overwrite the existing application configuration files by default. You
should use a naming convention for your various application files to select the correct file when you
need it.

3.1.3 Tuning Utility Output

Upon completion of the tuning process, the Intel® MPI Library tuning utility records the chosen values
in the configuration file in the following format:

 -genv I_MPI_DYNAMIC_CONNECTION 1
 -genv I_MPI_ADJUST_REDUCE 1:0-8

The Intel MPI Library tuning utility ignores variables having no effect on the application when the
difference between probes is at the noise level (1%). In this case, the utility does not set the variable
and preserves the default library heuristics.

In the case of the tuning application having significant run-to-run performance variation, the Intel MPI
Library tuning utility might select divergent values for the same variable under the same conditions.
To improve decision accuracy, increase the number of iterations for each test run with the -i
command line option. The default value for the iteration number is 3.

3.2 Process Pinning
Use this feature to pin particular MPI process to a corresponding CPU and avoid undesired process
migration. This feature is available on operating systems that provide the necessary kernel interfaces.

3.2.1 Process Identification

Two schemes are used to identify logical processors in a system:

1. System-defined logical enumeration

Document number: 315399-008 51

Intel® MPI Library for Linux* OS Reference Manual

2. Topological enumeration based on three-level hierarchical identification through triplets
(package/socket, core, thread)

The number of a logical CPU is defined as the corresponding position of this CPU bit in the kernel
affinity bit-mask. Use the cpuinfo utility or the cat /proc/cpuinfo command to find out the
logical CPU numbers.

Three-level hierarchical identification uses triplets that provide information about processor location
and their order. The triplets are hierarchically ordered (package, core, and thread).

See example below for possible processor numbering where there are two sockets, four cores (two
cores per socket), and eight logical processors (two processors per core).

NOTE: Logical and topological enumerations are not the same.

 Table 3.2-1 Logical Enumeration

0 4 1 5 2 6 3 7

 Table 3.2-2 Hierarchical Levels

Socket 0 0 0 0 1 1 1 1

Core 0 0 1 1 0 0 1 1

Thread 0 1 0 1 0 1 0 1

 Table 3.2-3 Topological Enumeration

0 1 2 3 4 5 6 7

Use the cpuinfo utility to identify the correspondence between the logical and topological
enumerations. See Processor Information Utility for more details.

3.2.2 Environment Variables

I_MPI_PIN

Turn on/off process pinning.

Syntax

I_MPI_PIN=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable process pinning. This is the default value

disable | no | off | 0 Disable processes pinning

Description

Set this variable to turn off the process pinning feature of the Intel® MPI Library.

I_MPI_PIN_MODE

Choose the pinning method.

Document number: 315399-008 52

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_PIN_MODE=<pinmode>

Arguments

<pinmode> Choose the CPU pinning mode

mpd Pin processes inside MPD. Default on the SGI* Altix* platform

lib Pin processes inside the Intel MPI Library. Default on other platforms

Description

Set the I_MPI_PIN_MODE variable to choose the pinning method. This variable is valid only if the
I_MPI_PIN environment variable is enabled.

Set this variable to lib to make the Intel® MPI Library pin the processes. In this mode there is no
chance to co-locate the process CPU and its memory.

Set the I_MPI_PIN_MODE variable to mpd to make the mpd daemon pin processes through system
specific means, if they are available. The pinning is done before the MPI process launch. Therefore, it
is possible to co-locate the process CPU and memory in this case. This pinning method has an
advantage over a system with Non-Uniform Memory Architecture (NUMA) like SGI* Altix*. Under
NUMA, a processor can access its own local memory faster than non-local memory.

NOTE: It is not recommended to change the default settings.

I_MPI_PIN_PROCESSOR_LIST
(I_MPI_PIN_PROCS)

Define a processor subset and mapping rules for MPI processes pinning to separate processors of this
subset.

Syntax

I_MPI_PIN_PROCESSOR_LIST=<value>

The variable value has three syntax forms:

1. <proclist>

2. [<procset>] [:[grain=<grain>] [,shift=<shift>]\

[,preoffset=<preoffset>] [,postoffset=<postoffset>]

3. [<procset>][:map=<map>]

Deprecated Syntax

I_MPI_PIN_PROCS=<proclist>

NOTE: The postoffset keyword has offset alias.

NOTE: The second form of pinning procedure has three steps:

1. Cyclic shift of the source processor list on preoffset*grain value.

2. Round robin shift of the list derived on the first step on shift*grain value.

3. Cyclic shift of the list derived on the second step on the postoffset*grain value.

The result processor list is used for the consecutive mapping of MPI processes (i-th rank is mapped on
the i-th list member).

NOTE: grain, shift, preoffset, and postoffset parameters have the unified style of setting.

Document number: 315399-008 53

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<proclist> A comma-separated list of logical processor numbers and/or ranges of
processors. Process with the i-th rank is pinned on the i-th processor in
the list. The number should not exceed the amount of processors on a
node

<l> Processor with logical number <l>

<l>-<m> Range of processors with logical numbers from <l> to <m>

<k>,<l>-<m> Processors <k>, as well as <l> through <m>

<procset> A processor is ordered according to the topological numeration. The
default value is allcores

all All logical processors. The power of this subset is equal to the number
of CPU on a node

allcores All logical processors that belong to different cores. A power of this
subset is equal to the number of cores on a node.

If Intel® Hyper-Threading Technology is disabled, allcores equals
to all

allsocks All logical processors that belong to different physical
packages/sockets. The power of this subset is equal to the number of
sockets on a node

<map> Pattern used for the process placement

bunch The processes are mapped in proportion on sockets as close as possible

scatter The processes are mapped as remotely as possible not to share
common resources: FSB, caches, core

spread The processes are mapped consecutively with the possibility not to
share common resources

<grain> Specify pinning granularity cell for defined procset. Minimal grain is
one element of procset. Maximal grain is a number of procset
elements in a socket. The grain value must be multiple of the
procset power. Otherwise, minimal grain is assumed. The default
value is minimal grain

<shift> Specify the round robin shift of the granularity cells along procset.
shift is measured in the defined grain units. The shift value must
be positive integer. Otherwise, no shift is performed. The default value
is no shift

<preoffset> Specify cyclic shift of procset on the preoffset value before the
round robin shifting. The value is measured in the defined grain
units. The preoffset value must be non negative integer. Otherwise,
no shift is performed. The default value is no shift

<postoffset> Specify cyclic shift of processor subset derived after round robin
shifting on the postoffset value. The value is measured in the

Document number: 315399-008 54

Intel® MPI Library for Linux* OS Reference Manual

defined grain units. The postoffset value must be non-negative
integer. Otherwise no shift is performed. The default value is no shift

<n> Specify the explicit value of the corresponding parameter. <n> is non-
negative integer

fine Specify the minimal value of the corresponding parameter

core Specify the parameter value equal to the amount of the corresponding
parameter units contained in one core

cache1 Specify the parameter value equal to the amount of the corresponding
parameter units that share L1 cache

cache2 Specify the parameter value equal to the amount of the corresponding
parameter units that share L2 cache

cache3 Specify the parameter value equal to the amount of the corresponding
parameter units that share L3 cache

cache The largest value among cache1, cache2, and cache3

socket Specify the parameter value equal to the amount of the corresponding
parameter units contained in one physical package/socket

sock sock = socket

half Specify the parameter value equal to socket/2

mid mid = half

third Specify parameter value equal to socket/3

quarter Specify parameter value equal to socket/4

octavo Specify parameter value equal to socket/8

Description

Set the I_MPI_PIN_PROCESSOR_LIST variable to define the processor placement on processors. In
order to avoid conflicts with shells, the variable value may be enclosed in quotes.

NOTE: This variable is valid only if I_MPI_PIN is enabled.

The I_MPI_PIN_PROCESSOR_LIST variable has three different variants:

1. Explicit processor list. This comma-separated list is defined in terms of logical processor
numbers. Relative node rank of a process is an index to the list that is the i-th process pinned
on i-th list member. This permits definition of any process placement on CPUs.

For example, process mapping for I_MPI_PROCESSOR_LIST=p0,p1,p2,…,pn is as follows:

Rank on a node 0 1 2 … n-1 N

Logical CPU p0 p1 p2 … pn-1 Pn

2. Grain/shift/offset mapping. This method provides cyclic shift of the defined grain along the
processor list with step equal to shift*grain and a single shift on offset*grain at the end. This
shifting action is repeated shift times.

For example: grain = 2 logical processors, shift = 3 grains, offset = 0.

Legend:

Document number: 315399-008 55

Intel® MPI Library for Linux* OS Reference Manual

gray – MPI process grains

A) red – processor grains chosen on the 1st pass

B) cyan - processor grains chosen on the 2nd pass

C) green - processor grains chosen on the final 3rd pass

D) Final map table ordered by MPI ranks

A)

 0
1

 2
3

 . . . 2n-2 2n-
1

 0
1

 2
3

 4 5 6
7

 8
9

 10
11

. . . 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

B)

 0
1

 2n
2n+1

 2
3

2n+2
2n+3

 . . . 2n-2 2n-
1

4n-2
4n-1

 0
1

 2
3

 4 5 6
7

 8
9

 10
11

. . . 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

C)

 0
1

 2n
2n+1

 4n
4n+1

 2
3

2n+2
2n+3

4n+2
4n+3

. . . 2n-2 2n-
1

4n-2
4n-1

6n-2
6n-1

 0
1

 2
3

 4 5 6
7

 8
9

 10
11

. . . 6n-6
6n-5

6n-4
6n-3

6n-2
6n-1

D)

 0 1 2
3

… 2n-2 2n-
1

2n
2n+1

2n+2
2n+3

… 4n-2 4n-
1

 4n
4n+1

4n+2
4n+3

… 6n-2
6n-1

 0 1 6
7

… 6n-6 6n-
5

 2
3

 8
9

… 6n-4 6n-
3

 4
5

 10
11

… 6n-2
6n-1

3. Predefined scenario. In this case the most popular schemes of process pinning get unique
names and these names are used for selection. Currently there are two such scenarios: bunch
and scatter.

In the bunch scenario the processes are mapped proportionally to sockets as closely as possible. This
makes sense for partial processor loading. In this case the number of processes is less than the
number of processors.

In the scatter scenario the processes are mapped as remotely as possible to not share common
resources: FSB, caches, cores.

In the example below there are two sockets, four cores per socket, one logical CPU per core, and two
cores per shared cache.

Legend:

gray – MPI processes

cyan – 1st socket processors

green – 2nd socket processors

The same color – processor pair share one cache

Document number: 315399-008 56

Intel® MPI Library for Linux* OS Reference Manual

bunch scenario for 5 processors

scatter scenario for full loading

Examples

1. To pin the processes to the CPU0 and CPU3 on each node globally, use the following command:
$ mpirun -genv I_MPI_PIN_PROCESSOR_LIST 0,3 \

 -n <# of processes> <executable>

2. To pin the processes to different CPUs on each node individually (CPU0 and CPU3 on host1 and
CPU0, CPU1 and CPU3 on host2), use the following command:

$ mpirun –host host1 -env I_MPI_PIN_PROCESSOR_LIST 0,3 \

 -n <# of processes> <executable> : \

 -host host2 -env I_MPI_PIN_PROCESSOR_LIST 1,2,3 \

 -n <# of processes> <executable>

3. To print extra debug information about process pinning, use the following command:
$ mpirun –genv I_MPI_DEBUG 4 –m –host host1 \

 -env I_MPI_PIN_PROCESSOR_LIST 0,3 -n <# of processes> <executable> :\

 -host host2 -env I_MPI_PIN_PROCESSOR_LIST 1,2,3 \

 -n <# of processes> <executable>

NOTE: If a number of processes is greater than a number of CPUs for pinning, a process list is
wrapped on a processor list.

3.2.3 Interoperability with OpenMP*

I_MPI_PIN_DOMAIN

The Intel® MPI Library provides an additional environment variable to control process pinning for
hybrid Intel MPI applications. The variable is used to define a number of non-overlapping subsets
(domains) of logical processors on a node, and a set of rules on how MPI processes are bound to these
domains by the following formula: one MPI process per one domain. See the picture below.

Picture 3.2-1 Domain Example

 0 1 2 3 4

 0 1 2 3

 4 5 6 7

 0 4 2 6 1 5 3 7

 0 1 2 3

 4 5 6 7

Document number: 315399-008 57

Intel® MPI Library for Linux* OS Reference Manual

Each MPI process can create a number of children threads for running within the corresponding
domain. The process threads can freely migrate from one logical processor to another within the
particular domain. There are no any domains defined by default so they should be defined explicitly.

If the I_MPI_PIN_DOMAIN variable is defined, then the I_MPI_PIN_PROCESSOR_LIST variable
setting is ignored.

If the I_MPI_PIN_DOMAIN variable is not defined, then MPI processes are pinned according to the
current value of the I_MPI_PIN_PROCESSOR_LIST variable.

The I_MPI_PIN_DOMAIN variable has the following syntax forms:

1. Domain description through multi-core terms

2. Domain description through domain size and domain member layout

3. Explicit domain description through bit mask

Multi-core Shape
I_MPI_PIN_DOMAIN=<mc-shape>

<mc-shape> Define domains through multi-core terms

core Each domain consists of the logical processors that share a particular
core. The number of domains on a node is equal to the number of
cores on this node

socket | sock Each domain consists of the logical processors that share a particular
socket. The number of domains on a node is equal to the number of
sockets on this node. The recommended value is socket

node All logical processors on a node are arranged into a single domain

cache1 Logical processors that share a particular level 1 cache are arranged
into a single domain

cache2 Logical processors that share a particular level 2 cache are arranged
into a separate domain

cache3 Logical processors that share a particular level 3 cache are arranged
into a separate domain

cache The largest domain among cache1, cache2, and cache3 is selected

Explicit Shape
I_MPI_PIN_DOMAIN=<size>[:<layout>]

<size> Define a number of logical processors in each domain (domain size)

omp The domain size is equal to the OMP_NUM_THREADS environment
variable value. If the OMP_NUM_THREADS environment variable is not
set, each node is treated as a separate domain.

auto The domain size is defined by the formula size=#cpu/#proc, where
#cpu is the number of logical processors on a node, and #proc is the
number of the MPI processes started on a node

<n> The domain size is defined by the positive decimal number <n>

<layout> Ordering of domain members. If <layout> is omitted then compact is
assumed

Document number: 315399-008 58

Intel® MPI Library for Linux* OS Reference Manual

platform Domain members are ordered on the base of BIOS numbering
(platform-depended numbering)

compact Domain members are located as close to each other as possible in
terms of common resources (cores, caches, sockets, etc.). This is the
default value

scatter Domain members are located as far away from each other as possible
in terms of common resources (cores, caches, sockets, etc.)

 Explicit Domain Mask
I_MPI_PIN_DOMAIN=<masklist>

<masklist> Define domains through the comma separated list of hexadecimal
numbers (domain masks)

[m1,…,mn] Each mi number defines one separate domain. The following rule is
used: the ith logical processor is included into the domain if the
corresponding mi value is set to 1. All remaining processors are put
into a separate domain. BIOS numbering is used

NOTE: In order to pin OpenMP processes/threads inside the domain the corresponding OpenMP
feature (KMP_AFFINITY environment variable) may be used.

See the following model of the SMP node in the examples below:

Picture 3.2-2 Model of Node

Document number: 315399-008 59

Intel® MPI Library for Linux* OS Reference Manual

Document number: 315399-008 60

Picture 3.2-3 mpiexec –n 2 –env I_MPI_PIN_DOMAIN socket ./a.out

Two domains are defined according to the number of sockets. Process rank 0 can migrate on all cores
on the 0-th socket. Process rank 1 can migrate on all cores on the first socket.

Picture 3.2-4 mpiexec –n 4 –env I_MPI_PIN_DOMAIN cache2 ./a.out

Four domains are defined according to the amount of common L2 caches. Process rank 0 runs on
cores {0,4} that share L2 cache. Process rank 1 runs on cores {1,5} that share L2 cache as well, and
so on.

Intel® MPI Library for Linux* OS Reference Manual

Document number: 315399-008 61

Picture 3.2-5 mpiexec –n 2 –env I_MPI_PIN_DOMAIN 4:platform ./a.out

Two domains with size=4 are defined. The fist domain contains {0,1,2,3} cores, and the second
domain contains cores {4,5,6,7}. Domain members (cores) have consecutive numbering as defined by
the platform option.

Intel® MPI Library for Linux* OS Reference Manual

Document number: 315399-008 62

Picture 3.2-6 mpiexec –n 4 –env I_MPI_PIN_DOMAIN auto:scatter ./a.out

Domain size=2 (defined by the number of CPUs=8 / number pf process=4), scatter layout. Four
domains {0,2}, {1,3}, {4,6}, {5,7} are defined. Domain members do not share any common
resources.

Picture 3.2-7 mpiexec –n 4 –env I_MPI_PIN_DOMAIN omp:platform ./a.out
setenv OMP_NUM_THREADS=2

Domain size=2 (defined by OMP_NUM_THREADS=2), platform layout. Four domains {0,1}, {2,3},
{4,5}, {6,7} are defined. Domain members (cores) have consecutive numbering.

Intel® MPI Library for Linux* OS Reference Manual

Picture 3.2-8 mpiexec –n 2 –env I_MPI_PIN_DOMAIN [55,aa] ./a.out

The fist domain is defined by the 0x55 mask. It contains all cores with even numbers {0,2,4,6}. The
second domain is defined by the 0xAA mask. It contains all cores with odd numbers {1,3,5,7}.

3.3 Fabrics Control

3.3.1 Communication Fabrics Control

I_MPI_FABRICS

(I_MPI_DEVICE)

Select the particular network fabrics to be used.

Syntax

I_MPI_FABRICS=<fabric>|<intra-node fabric>:<inter-nodes fabric>

Where <fabric> := {shm, dapl, tcp, tmi, ofa}

<intra-node fabric> := {shm, dapl, tcp, tmi, ofa}

<inter-nodes fabric> := {dapl, tcp, tmi, ofa}

Deprecated Syntax

I_MPI_DEVICE=<device>[:<provider>]

Arguments

<fabric> Define a network fabric

shm Shared-memory

dapl DAPL–capable network fabrics, such as InfiniBand*, iWarp*, Dolphin*,
and XPMEM* (through DAPL*)

tcp TCP/IP-capable network fabrics, such as Ethernet and InfiniBand*
(through IPoIB*)

Document number: 315399-008 63

Intel® MPI Library for Linux* OS Reference Manual

tmi fabrics including Qlogic*, Myrinet*, (through Tag TMI-capable network
Matching Interface)

ofa able network fabric including InfiniBand* (through OFED*
verbs)
OFA-cap

Correspondence with I_MPI_DEVICE

 <device> <fabric>

sock tcp

shm shm

ssm shm:tcp

rdma dapl

rdssm shm:dapl

<provider> APL* provider name (only for the rdma and the rdssm

I_MPI_DAPL_UD_PROVIDER=<provider>

Optional D
devices)

I_MPI_DAPL_PROVIDER=<provider> or

Use the <provider> specification only for the {rdma,rdssm} devices.

For example, to select the OFED* InfiniBand* device, use the following command:

$ mpiexec -n <# of processes> \

-env I_MPI_DEVICE rdssm:OpenIB-cma

 devices, if <provider> is not specified, the first DAPL* provider in the /etc/dat.conf file

ilable,

<executable>

For these
is used.

Description

Set this variable to select a specific fabric combination. If the requested fabric(s) is not ava
Intel® MPI Library can fall back to other fabric(s). See I_MPI_FALLBACK for details. If the
I_MPI_FABRICS variable is not defined, Intel® MPI Library selects the most appropriate fabric

 the

fabric
from the fabrics list for inter-nodes communication. See I_MPI_FABRICS_LIST

combination automatically.

The exact combination of fabrics depends on the number of processes started per node.

• If all processes start on one node, the library uses shm intra-node communication.

• If the number of started processes is less than or equal to the number of available nodes,
library uses the first available fabric from the fabrics list for inter-nodes communication.

• For other cases, the library uses shm for intra-node communication, and the first available
 for details.

ation may not

For example, to select shared-memory as the chosen fabric, use the following command:

ory and DAPL–capable network fabric as the chosen fabric combination, use the
following command:

NOTE: The combination of selected fabrics ensures that the job runs, but this combin
provide the highest possible performance for the given cluster configuration.

$ mpiexec -n <# of processes> -env I_MPI_FABRICS shm <executable>

To select shared-mem

Document number: 315399-008 64

Intel® MPI Library for Linux* OS Reference Manual

$ mpiexec -n <# of processes> -env I_MPI_FABRICS shm:dapl <executable>

To enable Intel® MPI Library to select most appropriate fabric combination automatically, use the
followin

Set the level of debug information to 2 or higher to check which fabrics have been initialized. See
I_MPI_

g command:

$ mpiexec -n <# of procs> -perhost <# of procs per host> <executable>

DEBUG for details. For example:

[0] MPI startup(): shm and dapl data transfer modes

or

ariable are set at the same level
(command line, environment, configuration files), the I_MPI_FABRICS environment variable

ty than the I_MPI_DEVICE variable.

T

fabrics list.

here c>

ic> := {dapl, tcp, tmi, ofa}

Ar

<fabrics list> ing list is the default value:

dapl, tcp, tmi, and ofa

[0] MPI startup(): tcp data transfer mode

NOTE: If the I_MPI_FABRICS variable and the I_MPI_DEVICE v

has higher priori

I_MPI_FABRICS_LIS

Define a

Syntax

I_MPI_FABRICS_LIST=<fabrics list>

W <fabrics list> := <fabric>,…,<fabri

 <fabr

guments

Specify a fabrics list. The follow

Description

Set this variable to define a list of fabrics. The library uses the fabrics list to choose the most
appropriate fabrics combination automatically. For information on fabric combination, see
I_MPI_FABRICS

For example, if I_MPI_FABRICS_LIST=dapl,tcp, I_MPI_FABRICS is not defined and the
initialization of DAPL-capable network fabrics fails, the library falls back to TCP-capable network fabric.

llback, see I_MPI_FALLBACKFor information on fa .

nvironment variable to enable fallback to the first available fabric.

rg>

BACK_DEVICE=<arg>

Ar ts

I_MPI_FALLBACK

(I_MPI_FALLBACK_DEVICE)

Set this e

Syntax

I_MPI_FALLBACK=<a

Deprecated Syntax

I_MPI_FALL

gumen

<arg> Binary indicator

Document number: 315399-008 65

Intel® MPI Library for Linux* OS Reference Manual

enable | yes | on | 1 Fall back to the first available fabric. This is the default value if
I_MPI_FABRICS(I_MPI_DEVICE) environment variable is not set

disable | no | off | 0 I can not initialize the one of the fabrics
selected by the I_MPI_FABRICS environment variable. This is the
default value if you set I_MPI_FABRICS(I_MPI_DEVICE)
environment variable

Terminate the job if MP

Description

bric from the list of fabrics. See I_MPI_FABRICS_LIST

Set this variable to control fallback to the first available fabric.

If I_MPI_FALLBACK is set to enable and an attempt to initialize a specified fabric fails, the library
uses the first available fa for details.

y

cs
bers in the fabrics list. For example, if I_MPI_FABRICS=dapl,

I_MPI_FABRICS_LIST=ofa,tmi,dapl,tcp, I_MPI_FALLBACK=enable and the
pable network fabrics fails, the library falls back to TCP-capable

I_MPI_EAGER_THRESHOLD

ze threshold for all devices.

I_MPI_EAGER_THRESHOLD=<nbytes>

Arguments

<nbytes> Set the eager/rendezvous message size threshold

If I_MPI_FALLBACK is set to disable and an attempt to initialize a specified fabric fails, the librar
terminates the MPI job.

NOTE: If I_MPI_FABRICS is set and I_MPI_FALLBACK=enable, the library falls back to fabri
with higher num

initialization of DAPL-ca
network fabric.

Change the eager/rendezvous message si

Syntax

> 0 The default <nbytes> value is equal to 262144 bytes

Description

Set this variable to control the protocol used for point-to-point communication:

• Messages shorter than or equal in size to <nbytes> are sent using the eager protocol.

using the rendezvous protocol. The rendezvous protocol

I_MPI_INTRANODE_EAGER_THRESHOLD

for intra-node communication mode.

I_MPI_INTRANODE_EAGER_THRESHOLD=

Arguments

<nbytes>

• Messages larger than <nbytes> are sent
uses memory more efficiently.

Change the eager/rendezvous message size threshold

Syntax

<nbytes>

Define the threshold for DAPL* intra-node communication

> 0 The default <nbytes> value is equal to 262144 bytes for all fabrics
except shm. For shm, cutover point is equal to the value of
I_MPI_SHM_CELL_SIZE environment variable

Document number: 315399-008 66

Intel® MPI Library for Linux* OS Reference Manual

Description

Set this variable to change the protocol used for communication within the node:

ges larger than <nbytes> are sent using the rendezvous protocol. The rendezvous protocol

If I_MPI_INTRANODE_EAGER_THRESHOLD is not set, the value of I_MPI_EAGER_THRESHOLD is

e intranode direct copy communication mode.

Synt

I_MPI_INTRANODE_DIRECT_COPY=<arg>

Ar

<arg> indicator

• Messages shorter than or equal in size to <nbytes> are sent using the eager protocol.

• Messa
uses the memory more efficiently.

used.

I_MPI_INTRANODE_DIRECT_COPY

Turn on/off th

ax

guments

Binary

enable | yes | on | 1 Turn on the direct copy communication mode

disable | no | off | 0 Turn off the direct copy communication mode. This is t
value

he default

Description

• Messages shorter than or equal to the threshold value of the
_EAGER_THRESHOLD variable are transferred using the shared memory.

d value of the I_MPI_INTRANODE_EAGER_THRESHOLD variable
e direct process memory access.

I_MPI_SPIN_COUNT

in count value.

Syntax

I_MPI_SPIN_COUNT=<scount>

Ar ents

Define the loop spin count when polling fabric(s)

Set this variable to specify the communication mode within the node. If the direct copy
communication mode is enabled, data transfer algorithms are selected according to the following
scheme:

I_MPI_INTRANODE

• Messages larger than the threshol
are transferred through th

Control the sp

gum

<scount>

> 0 The default <scount> value is equal to 1 when more than one
process runs per processor/core. Otherwise the value equals 250

Description

Set the spin count limit. The loop for polling the fabric(s) spins <scount> times before freeing the
processes if no incoming messages are received for processing. Smaller values for <scount> cause
the Intel® MPI Library to release the p

rocessor more frequently.

Use the I_MPI_SPIN_COUNT environment variable for tuning application performance. The best value
for <scount> can be chosen on an experimental basis. It depends on the particular computational
environment and application.

Document number: 315399-008 67

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_SCALABLE_OPTIMIZATION

(I_MPI_SOCK_SCALABLE_OPTIMIZATION)

Turn on/off scalable optimization of the network fabric communication.

Syntax

I_MPI_SCALABLE_OPTIMIZATION=<arg>

Deprecated Syntax

I_MPI_SOCK_SCALABLE_OPTIMIZATION=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on scalable optimization of the network fabric communication.
This is the default for 16 or more processes

disable | no | off | 0 Turn off scalable optimization of the network fabric communication.
This is the default for less than 16 processes

Description

Set this variable to enable scalable optimization of the network fabric communication. In most cases,
using optimization decreases latency and increases bandwidth for a large number of processes.

NOTE: Old notification I_MPI_SOCK_SCALABLE_OPTIMIZATION is equal to
I_MPI_SCALABLE_OPTIMIZATION for tcp fabric.

I_MPI_WAIT_MODE

Turn on/off wait mode.

Syntax

I_MPI_WAIT_MODE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the wait mode

disable | no | off | 0 Turn off the wait mode. This is the default

Description

Set this variable to control the wait mode. If this mode is enabled, the processes wait for receiving
messages without polling the fabric(s). This mode can save CPU time for other tasks.

Use the Native POSIX Thread Library* with the wait mode for shm communications.

NOTE: To check which version of the thread library is installed, use the following command:

$ getconf GNU_LIBPTHREAD_VERSION

I_MPI_DYNAMIC_CONNECTION

(I_MPI_USE_DYNAMIC_CONNECTIONS)

Turn on/off the dynamic connection establishment.

Document number: 315399-008 68

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_DYNAMIC_CONNECTION=<arg>

Deprecated Syntax

I_MPI_USE_DYNAMIC_CONNECTIONS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the dynamic connection establishment. This is the default
for 64 or more processes

disable | no | off | 0 Turn off the dynamic connection establishment. This is the default
for less than 64 processes

Description

Set this variable to control dynamic connection establishment.

• If this mode is enabled, all connections are established at the time of the first communication
between each pair of processes.

• If this mode is disabled, all connections are established upfront.

The default value depends on a number of processes in the MPI job. The dynamic connection
establishment is off if a total number of processes is less than 64.

3.3.2 Shared Memory Control

I_MPI_SHM_CACHE_BYPASS

(I_MPI_CACHE_BYPASS)

Control the message transfer algorithm for the shared memory.

Syntax

I_MPI_SHM_CACHE_BYPASS=<arg>

Deprecated Syntax

I_MPI_CACHE_BYPASS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable message transfer bypass cache. This is the default value

disable | no | off | 0 Disable message transfer bypass cache

Description

Set this variable to enable/disable message transfer bypass cache for the shared memory. When
enabled, the MPI sends the messages greater than or equal in size to the value specified by the
I_MPI_SHM_CACHE_BYPASS_THRESHOLD environment variable through the bypass cache. By default,
this feature is enabled on the IA-32 architecture and Intel® 64 architectures. This feature is not
supported on IA-64 architecture systems.

Document number: 315399-008 69

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_SHM_CACHE_BYPASS_THRESHOLDS

(I_MPI_CACHE_BYPASS_THRESHOLDS)

Set the messages copying algorithm threshold.

Syntax

I_MPI_SHM_CACHE_BYPASS_THRESHOLDS=<nb_send>,[<nb_recv>,[<nb_send_pk>,[<nb_rec
v_pk>]]]

Deprecated Syntax

I_MPI_CACHE_BYPASS_THRESHOLDS=<nb_send>,[<nb_recv>,[<nb_send_pk>,[<nb_recv_pk
>]]]

Arguments

<nb_send> Set the threshold for sent messages in the following situations:

Processes are pinned on cores that are not located in the same
physical processor package

Processes are not pinned

≥ 0 The default <nb_send> value is 16,384 bytes

<nb_recv> Set the threshold for received messages in the following situations:

Processes are pinned on cores that are not located in the same
physical processor package

Processes are not pinned

≥ 0 The default <nb_recv> value is 2,097,152 bytes

<nb_send_pk> Set the threshold for sent messages when processes are pinned on
cores located in the same physical processor package

≥ 0 The default <nb_send_pk> value is -1 (copying bypass cache is
disabled)

<nb_recv_pk> Set the threshold for received messages when processes are pinned
on cores located in the same physical processor package

≥ 0 The default <nb_recv_pk> value is 2,097,152 bytes

Description

Set this variable to control the thresholds for the message copying algorithm. MPI copies messages
greater than or equal in size to the defined threshold values so that the messages bypass the cache.
The value of -1 disables cache bypass. This variable is valid only when I_MPI_SHM_CACHE_BYPASS is
enabled.

I_MPI_SHM_LMT_BUFFER_NUM

(I_MPI_SHM_NUM_BUFFERS)

Change the number of shared memory buffers for Large Message Transfer (LMT) mechanism.

Document number: 315399-008 70

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_SHM_LMT_BUFFER_NUM=<num>

Deprecated Syntax

I_MPI_SHM_NUM_BUFFERS=<num>

Arguments

<num> The number of shared memory buffers for each process pair

> 0 The default value is 8

Description

Set this variable to define the number of shared memory buffers between each process pair.

I_MPI_SHM_LMT_BUFFER_SIZE

(I_MPI_SHM_BUFFER_SIZE)

Change the size of shared memory buffers for LMT mechanism.

Syntax

I_MPI_SHM_LMT_BUFFER_SIZE=<nbytes>

Deprecated Syntax

I_MPI_SHM_BUFFER_SIZE=<nbytes>

Arguments

<nbytes> The size of shared memory buffers in bytes

> 0 The default <nbytes> value is equal to 32,768 bytes

Description

Set this variable to define the size of shared memory buffers for each pair of processes.

I_MPI_SHM_CELL_NUM

Change the number of shared memory cells.

Syntax

I_MPI_SHM_CELL_NUM=<num>

Arguments

<num> The number of shared memory cells

> 0 The default value is 128

Description

Set this variable to define the number of shared memory cells.

I_MPI_SHM_CELL_SIZE

Change the size of shared memory cell.

Document number: 315399-008 71

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_SHM_CELL_SIZE=<nbytes>

Arguments

<nbytes> Size of shared memory cell in bytes

> 0 The default <nbytes> value is equal to 65,408 bytes

Description

Set this variable to define the size of shared memory cell.

I_MPI_SHM_FBOX_SIZE

Set the size of shared memory fastbox.

Syntax

I_MPI_SHM_FBOX_SIZE=<nbytes>

Arguments

<nbytes> Size of shared memory fastbox in bytes

> 0 The default <nbytes> value is equal to 65,408 bytes

Description

Set this variable to define the size of shared memory fastbox.

I_MPI_SHM_SINGLE_SEGMENT_THRESHOLD

(I_MPI_SHM_PROC_THRESHOLD)

Change the shared memory segment(s) allocation mode for the shm device.

Syntax

I_MPI_SHM_SINGLE_SEGMENT_THRESHOLD=<nproc>

Deprecated Syntax

I_MPI_SHM_PROC_THRESHOLD=<nproc>

Arguments

<nproc> Define the threshold of allocation mode for the shm device

> 0 The default <nproc> value depends on the values of the
I_MPI_SHM_NUM_BUFFERS and I_MPI_SHM_BUFFER_SIZE

Description

Set this variable to change the allocation mode for the shm device.

The following modes are available for the allocation of the shared memory segment(s) for the shm
device:

• If the number of processes started on the system is less than the value specified by <nproc>, the
static mode is used. In static mode, only one common shared memory segment is allocated for all
processes during the initialization stage.

Document number: 315399-008 72

Intel® MPI Library for Linux* OS Reference Manual

• If the number of processes started on the system is more than the value specified by <nproc>,
the dynamic mode is used. In dynamic mode, the shared memory segments are allocated for each
connection.

The default value depends on the values of the I_MPI_SHM_NUM_BUFFERS and
I_MPI_SHM_BUFFER_SIZE environment variables. It is equal to 90 in the case of default settings for
I_MPI_SHM_NUM_BUFFERS and I_MPI_SHM_BUFFER_SIZE.

The I_MPI_DYNAMIC_CONNECTION environment variable is not applicable when MPI uses the static
allocation mode.

I_MPI_SHM_BYPASS

(I_MPI_INTRANODE_SHMEM_BYPASS, I_MPI_USE_DAPL_INTRANODE)

Turn on/off the intra-node communication mode through network fabric along with shm.

Syntax

I_MPI_SHM_BYPASS=<arg>

Deprecated Syntaxes

I_MPI_INTRANODE_SHMEM_BYPASS=<arg>

I_MPI_USE_DAPL_INTRANODE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the intra-node communication through network fabric

disable | no | off | 0 Turn off the intra-node communication through network fabric. This
is the default

Description

Set this variable to specify the communication mode within the node. If the intra-node communication
mode through network fabric is enabled, data transfer algorithms are selected according to the
following scheme:

• Messages shorter than or equal in size to the threshold value of the
I_MPI_INTRANODE_EAGER_THRESHOLD variable are transferred using shared memory.

• Messages larger than the threshold value of the I_MPI_INTRANODE_EAGER_THRESHOLD variable
are transferred through the network fabric layer.

NOTE: This variable is applicable only when shared memory and the network fabric are turned on
either by default or by setting the I_MPI_FABRICS environment variable to shm:<fabric>.
This mode is available only for dapl and tcp fabrics in MPI 4.0.

3.3.3 DAPL-capable Network Fabrics Control

I_MPI_DAPL_PROVIDER

Define the DAPL provider to load.

Syntax

I_MPI_DAPL_PROVIDER=<name>

Document number: 315399-008 73

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<name> Define the name of DAPL provider to load

Description

Set this variable to define the name of DAPL provider to load. This name is also defined in the
dat.conf configuration file. The DAPL provider name can be also specified inside I_MPI_FABRICS
variable as I_MPI_FABRICS=dapl or I_MPI_FABRICS=shm:dapl.

I_MPI_DAT_LIBRARY

Select the DAT library to be used for DAPL provider.

Syntax

I_MPI_DAT_LIBRARY=<library>

Arguments

<library> Specify the DAT library for DAPL provider to be used. Default values
are libdat.so for DAPL 1.2 providers and libdat2.so for DAPL
2.0 providers

Description

Set this variable to select a specific DAT library to be used for DAPL provider. If the library is not
located in the dynamic loader search path, specify the full path to the DAT library. This variable affects
only on DAPL and DAPL UD capable fabrics.

I_MPI_DAPL_TRANSLATION_CACHE

(I_MPI_RDMA_TRANSLATION_CACHE)

Turn on/off the memory registration cache in the DAPL path.

Syntax

I_MPI_DAPL_TRANSLATION_CACHE=<arg>

Deprecated Syntax

I_MPI_RDMA_TRANSLATION_CACHE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the memory registration cache. This is the default

disable | no | off | 0 Turn off the memory registration cache

Description

Set this variable to turn on/off the memory registration cache in the DAPL path.

The cache substantially increases performance, but may lead to correctness issues in certain rare
situations. See product Release Notes for further details.

I_MPI_DAPL_DIRECT_COPY_THRESHOLD

(I_MPI_RDMA_EAGER_THRESHOLD, RDMA_IBA_EAGER_THRESHOLD)

Change the threshold of the DAPL direct-copy protocol.

Document number: 315399-008 74

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_DAPL_DIRECT_COPY_THRESHOLD=<nbytes>

Deprecated Syntaxes

I_MPI_RDMA_EAGER_THRESHOLD=<nbytes>

RDMA_IBA_EAGER_THRESHOLD=<nbytes>

Arguments

<nbytes> Define the DAPL direct-copy protocol threshold

> 0 The default <nbytes> value is equal to 16456 bytes

Description

Set this variable to control the DAPL direct-copy protocol threshold. Data transfer algorithms for the
DAPL-capable network fabrics are selected based on the following scheme:

• Messages shorter than or equal to <nbytes> are sent using the eager protocol through the
internal pre-registered buffers. It involves additional calls of memcpy() function on sender and
receiver sides. This approach is faster for short messages.

• Messages larger than <nbytes> are sent using the direct-copy protocol. It does not use any
buffering but involves registration of memory on sender and receiver sides. The data is transferred
directly from a sender to a receiver without calling memcpy()function. This approach is faster for
large messages.

I_MPI_DAPL_DYNAMIC_CONNECTION_MODE

(I_MPI_DYNAMIC_CONNECTION_MODE, I_MPI_DYNAMIC_CONNECTIONS_MODE)

Choose the algorithm for establishing the DAPL* connections.

Syntax

I_MPI_DAPL_DYNAMIC_CONNECTION_MODE=<arg>

Deprecated Syntax

I_MPI_DYNAMIC_CONNECTION_MODE=<arg>

I_MPI_DYNAMIC_CONNECTIONS_MODE=<arg>

Arguments

<arg> Mode selector

reject Deny one of the two simultaneous connection requests. This is the
default

disconnect Deny one of the two simultaneous connection requests after both
connections have been established

Description

Set this variable to choose the algorithm for handling dynamically established connections for DAPL-
capable fabrics according to the following scheme:

• In the reject mode, if two processes initiate the connection simultaneously, one of the requests
is rejected.

• In the disconnect mode, both connections are established, but then one is disconnected. The
disconnect mode is provided to avoid a bug in certain DAPL* providers.

Document number: 315399-008 75

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_DAPL_SCALABLE_PROGRESS

(I_MPI_RDMA_SCALABLE_PROGRESS)

Turn on/off scalable algorithm for DAPL read progress.

Syntax

I_MPI_DAPL_SCALABLE_PROGRESS=<arg>

Deprecated Syntax

I_MPI_RDMA_SCALABLE_PROGRESS=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on scalable algorithm

disable | no | off | 0 Turn off scalable algorithm. This is the default value

Description

Set this variable to enable scalable algorithm for the DAPL read progress. In some cases, this provides
advantages for systems with many processes.

I_MPI_DAPL_BUFFER_NUM

(I_MPI_RDMA_BUFFER_NUM, NUM_RDMA_BUFFER)

Change the number of internal pre-registered buffers for each process pair in the DAPL path.

Syntax

I_MPI_DAPL_BUFFER_NUM=<nbuf>

Deprecated Syntaxes

I_MPI_RDMA_BUFFER_NUM=<nbuf>

NUM_RDMA_BUFFER=<nbuf>

Arguments

<nbuf> Define the number of buffers for each pair in a process group

> 0 The default value is 16

Description

Set this variable to change the number of the internal pre-registered buffers for each process pair in
the DAPL path.

NOTE: The more pre-registered buffers are available, the more memory is used for every established
connection.

I_MPI_DAPL_BUFFER_SIZE

(I_MPI_RDMA_BUFFER_SIZE, I_MPI_RDMA_VBUF_TOTAL_SIZE)

Change the size of internal pre-registered buffers for each process pair in the DAPL path.

Syntax

I_MPI_DAPL_BUFFER_SIZE=<nbytes>

Document number: 315399-008 76

Intel® MPI Library for Linux* OS Reference Manual

Deprecated Syntaxes

I_MPI_RDMA_BUFFER_SIZE=<nbytes>

I_MPI_RDMA_VBUF_TOTAL_SIZE=<nbytes>

Arguments

<nbytes> Define the size of pre-registered buffers

> 0 The default <nbytes> value is equal to 16,640 bytes

Description

Set this variable to define the size of the internal pre-registered buffer for each process pair in the
DAPL path. The actual size is calculated by adjusting the <nbytes> to align the buffer to an optimal
value.

I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT

(I_MPI_RDMA_RNDV_BUFFER_ALIGNMENT, I_MPI_RDMA_RNDV_BUF_ALIGN)

Define the alignment of the sending buffer for the DAPL direct-copy transfers.

Syntax

I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT=<arg>

Deprecated Syntaxes

I_MPI_RDMA_RNDV_BUFFER_ALIGNMENT=<arg>

I_MPI_RDMA_RNDV_BUF_ALIGN=<arg>

Arguments

<arg> Define the alignment for the sending buffer

> 0 and a power of 2 The default value is 128

Set this variable to define the alignment of the sending buffer for DAPL direct-copy transfers. When a
buffer specified in a DAPL operation is aligned to an optimal value, the data transfer bandwidth may
be increased.

I_MPI_DAPL_RDMA_RNDV_WRITE

(I_MPI_RDMA_RNDV_WRITE, I_MPI_USE_RENDEZVOUS_RDMA_WRITE)

Turn on/off the RDMA Write-based rendezvous direct-copy protocol in the DAPL path.

Syntax

I_MPI_DAPL_RDMA_RNDV_WRITE=<arg>

Deprecated Syntaxes

I_MPI_RDMA_RNDV_WRITE=<arg>

I_MPI_USE_RENDEZVOUS_RDMA_WRITE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the RDMA Write rendezvous direct-copy protocol

disable | no | off | 0 Turn off the RDMA Write rendezvous direct-copy protocol

Document number: 315399-008 77

Intel® MPI Library for Linux* OS Reference Manual

Description

Set this variable to select the RDMA Write-based rendezvous direct-copy protocol in the DAPL path.
Certain DAPL* providers have a slow RDMA Read implementation on certain platforms. Switching on
the rendezvous direct-copy protocol based on the RDMA Write operation can increase performance in
these cases. The default value depends on the DAPL provider attributes.

I_MPI_DAPL_CHECK_MAX_RDMA_SIZE

(I_MPI_RDMA_CHECK_MAX_RDMA_SIZE)

Check the value of the DAPL attribute max_rdma_size.

Syntax

I_MPI_DAPL_CHECK_MAX_RDMA_SIZE=<arg>

Deprecated Syntax

I_MPI_RDMA_CHECK_MAX_RDMA_SIZE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Check the value of the DAPL* attribute max_rdma_size

disable | no | off | 0 Do not check the value of the DAPL* attribute max_rdma_size.
This is the default value

Description

Set this variable to control message fragmentation according to the following scheme:

• If this mode is enabled, the Intel® MPI Library fragmentizes the messages bigger than the value
of the DAPL attribute max_rdma_size

• If this mode is disabled, the Intel® MPI Library does not take into account the value of the DAPL
attribute max_rdma_size for message fragmentation

I_MPI_DAPL_MAX_MSG_SIZE

(I_MPI_RDMA_MAX_MSG_SIZE)

Control message fragmentation threshold.

Syntax

I_MPI_DAPL_MAX_MSG_SIZE=<nbytes>

Deprecated Syntax

I_MPI_RDMA_MAX_MSG_SIZE=<nbytes>

Arguments

<nbytes> Define the maximum message size that can be sent through DAPL
without fragmentation

> 0 If the I_MPI_DAPL_CHECK_MAX_RDMA_SIZE variable is enabled,
the default <nbytes> value is equal to the max_rdma_size DAPL
attribute value. Otherwise the default value is MAX_INT

Description

Set this variable to control message fragmentation size according to the following scheme:

Document number: 315399-008 78

Intel® MPI Library for Linux* OS Reference Manual

• If the I_MPI_DAPL_CHECK_MAX_RDMA_SIZE variable is set to disable, the Intel® MPI Library
fragmentizes the messages whose sizes are greater than <nbytes>.

• If the I_MPI_DAPL_CHECK_MAX_RDMA_SIZE variable is set to enable, the Intel® MPI Library
fragmentizes the messages whose sizes are greater than the minimum of <nbytes> and the
max_rdma_size DAPL* attribute value.

I_MPI_DAPL_CONN_EVD_SIZE

(I_MPI_RDMA_CONN_EVD_SIZE, I_MPI_CONN_EVD_QLEN)

Define the event queue size of the DAPL event dispatcher for connections.

Syntax

I_MPI_DAPL_CONN_EVD_SIZE=<size>

Deprecated Syntaxes

I_MPI_RDMA_CONN_EVD_SIZE=<size>
I_MPI_CONN_EVD_QLEN=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value is 2*number of processes + 32 in the MPI
job

Description

Set this variable to define the event queue size of the DAPL event dispatcher that handles connection
related events. If this variable is set, the minimum value between <size> and the value obtained
from the provider is used as the size of the event queue. The provider is required to supply a queue
size that is at least equal to the calculated value, but it can also provide a larger queue size.

I_MPI_DAPL_SR_THRESHOLD
Change the threshold of switching send/recv to rdma path for DAPL wait mode.

Syntax

I_MPI_DAPL_SR_THRESHOLD=<arg>

Arguments

<nbytes> Define the message size threshold of switching send/recv to rdma

>= 0 The default <nbytes> value is 256 bytes

Description

Set this variable to control the protocol used for point-to-point communication in DAPL wait mode:

• Messages shorter than or equal in size to <nbytes> are sent using DAPL send/recv data transfer
operations.

• Messages greater in size than <nbytes> are sent using DAPL RDMA WRITE or RDMA WRITE
immediate data transfer operations.

I_MPI_DAPL_SR_BUF_NUM

Change the number of internal pre-registered buffers for each process pair used in DAPL wait mode
for send/recv path.

Syntax

I_MPI_DAPL_SR_BUF_NUM=<nbuf>

Document number: 315399-008 79

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<nbuf> Define the number of send/recv buffers for each pair in a process
group

> 0 The default value is 32

Description

Set this variable to change the number of the internal send/recv pre-registered buffers for each
process pair.

I_MPI_DAPL_RDMA_WRITE_IMM

 (I_MPI_RDMA_WRITE_IMM)

Enable/disable RDMA Write with immediate data InfiniBand (IB) extension in DAPL wait mode.

Syntax

I_MPI_DAPL_RDMA_WRITE_IMM=<arg>

Deprecated syntax

I_MPI_RDMA_WRITE_IMM=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on RDMA Write with immediate data IB extension

disable | no | off | 0 Turn off RDMA Write with immediate data IB extension

Description

Set this variable to utilize RDMA Write with immediate data IB extension. The algorithm is enabled if
this environment variable is set and a certain DAPL provider attribute indicates that RDMA Write with
immediate data IB extension is supported.

3.3.4 DAPL UD-capable Network Fabrics Control

I_MPI_DAPL_UD

Enable/disable using DAPL UD path.

Syntax

I_MPI_DAPL_UD=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on using DAPL UD IB extension

disable | no | off | 0 Turn off using DAPL UD IB extension. This is the default value

Description

Set this variable to enable DAPL UD path for transferring data. The algorithm is enabled if you set this
environment variable and a certain DAPL provider attribute indicates that UD IB extension is
supported.

Document number: 315399-008 80

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_DAPL_UD_PROVIDER

Define the DAPL provider to work with IB UD transport.

Syntax

I_MPI_DAPL_UD_PROVIDER=<name>

Arguments

<name> Define the name of DAPL provider to load

Description

Set this variable to define the name of DAPL provider to load. This name is also defined in the
dat.conf configuration file. The DAPL provider name can be also specified inside I_MPI_FABRICS
variable as I_MPI_FABRICS=dapl or I_MPI_FABRICS=dapl:shm. Make sure that specified DAPL
provider supports UD IB extension.

I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD

Change the message size threshold of the DAPL UD direct-copy protocol.

Syntax

I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD=<nbytes>

Arguments

<nbytes> Define the DAPL UD direct-copy protocol threshold

> 0 The default <nbytes> value is equal to 16456 bytes

Description

Set this variable to control the DAPL UD direct-copy protocol threshold. Data transfer algorithms for
the DAPL-capable network fabrics are selected based on the following scheme:

• Messages shorter than or equal to <nbytes> are sent using the eager protocol through the
internal pre-registered buffers. It involves additional calls of memcpy() function on sender and
receiver sides. This approach is faster for short messages.

• Messages larger than <nbytes> are sent using the direct-copy protocol. It does not use any
buffering but involves registration of memory on sender and receiver sides. The data is transferred
directly from a sender to a receiver without calling memcpy()function. This approach is faster for
large messages.

I_MPI_DAPL_UD_RECV_BUFFER_NUM

Change the number of the internal pre-registered UD buffers for receiving messages.

Syntax

I_MPI_DAPL_UD_RECV_BUFFER_NUM=<nbuf>

Arguments

<nbuf> Define the number of buffers for receiving messages

> 0 The default value is 256 + n*4 where n is a total number of
process in MPI job

Description

Set this variable to change the number of the internal pre-registered buffers for receiving messages.
These buffers are common for all connections or process pairs.

Document number: 315399-008 81

Intel® MPI Library for Linux* OS Reference Manual

NOTE: The pre-registered buffers use up memory, however they help avoid the loss of packets.

I_MPI_DAPL_UD_SEND_BUFFER_NUM

Change the number of internal pre-registered UD buffers for sending messages.

Syntax

I_MPI_DAPL_UD_SEND_BUFFER_NUM=<nbuf>

Arguments

<nbuf> Define the number of buffers for sending messages

> 0 The default value is 256 + n*4 where n is a total number of
process in MPI job

Description

Set this variable to change the number of the internal pre-registered buffers for sending messages.
These buffers are common for all connections or process pairs.

NOTE: The pre-registered buffers use up memory, however they help avoid the loss of packets.

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE

Change the number of ACK UD buffers for sending messages.

Syntax

I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE=<nbuf>

Arguments

<nbuf> Define the number of ACK UD buffers for sending messages

> 0 The default value is 128

Description

Set this variable to change the number of the internal pre-registered ACK buffers for sending service
messages. These buffers are common for all connections or process pairs.

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE

Change the number of ACK UD buffers for receiving messages.

Syntax

I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE=<nbuf>

Arguments

<nbuf> Define the number of ACK UD buffers for receiving messages

> 0 The default value is 512+n*4, where n is total number of process in
MPI job

Description

Set this variable to change the number of the internal pre-registered ACK buffers for receiving service
messages. These buffers are common for all connections or process pairs.

Document number: 315399-008 82

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_DAPL_UD_TRANSLATION_CACHE

Turn on/off the memory registration cache in the DAPL path.

Syntax

I_MPI_DAPL_UD_TRANSLATION_CACHE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the memory registration cache. This is the default

disable | no | off | 0 Turn off the memory registration cache

Description

Set this variable to turn off the memory registration cache in the DAPL UD path.

Using the cache substantially improves performance but may lead to correctness issues in certain rare
situations. See product Release Notes for further details.

I_MPI_DAPL_UD_REQ_EVD_SIZE

Define the event queue size of the DAPL UD event dispatcher for sending data transfer operations.

Syntax

I_MPI_DAPL_UD_REQ_EVD_SIZE=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value is 2000

Description

Set this variable to define the event queue size of the DAPL event dispatcher that handles completions
of sending DAPL UD data transfer operations (DTO). If this variable is set, the minimum value
between <size> and the value obtained from the provider is used as the size of the event queue. The
provider is required to supply a queue size that is at least equal to the calculated value, but it can also
provide a larger queue size.

I_MPI_DAPL_UD_CONN_EVD_SIZE

Define the event queue size of the DAPL UD event dispatcher for connections.

Syntax

I_MPI_DAPL_UD_CONN_EVD_SIZE=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value is 2*number of processes + 32

Description

Set this variable to define the event queue size of the DAPL event dispatcher that handles connection
related events. If this variable is set, the minimum value between <size> and the value obtained
from the provider is used as the size of the event queue. The provider is required to supply a queue
size that is at least equal to the calculated value, but it can also provide a larger queue size.

Document number: 315399-008 83

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_DAPL_UD_RECV_EVD_SIZE

Define the event queue size of the DAPL UD event dispatcher for receiving data transfer operations.

Syntax

I_MPI_DAPL_UD_RECV_EVD_SIZE=<size>

Arguments

<size> Define the length of the event queue

> 0 The default value depends on the number UD and ACK buffers

Description

Set this variable to define the event queue size of the DAPL event dispatcher that handles completions
of receiving DAPL UD data transfer operations (DTO). If this variable is set, the minimum value
between <size> and the value obtained from the provider is used as the size of the event queue. The
provider is required to supply a queue size that is at least equal to the calculated value, but it can also
provide a larger queue size.

I_MPI_DAPL_UD_RNDV_MAX_BLOCK_LEN

Define maximum size of block that is passed at one iteration of DAPL UD direct-copy protocol.

Syntax

I_MPI_DAPL_UD_RNDV_MAX_BLOCK_LEN=<nbytes>

Arguments

<arg> Define maximum size of block that is passed at one iteration of
DAPL UD direct-copy protocol

> 0 The default value is 65536

Set this variable to define the maximum size of memory block that is passed at one iteration of DAPL
UD direct-copy protocol. If the size of message in direct-copy protocol is greater than given value, the
message will be divided in several blocks and passed in several operations.

I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT

Define the alignment of the sending buffer for the DAPL UD direct-copy transfers.

Syntax

I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT=<arg>

Arguments

<arg> Define the alignment of the sending buffer

> 0 and a power of 2 The default value is 16

Set this variable to define the alignment of the sending buffer for DAPL direct-copy transfers. When a
buffer specified in a DAPL operation is aligned to an optimal value, this may increase data transfer
bandwidth.

I_MPI_DAPL_UD_RNDV_COPY_ALIGNMENT_THRESHOLD

Define threshold where alignment is applied to send buffer for the DAPL UD direct-copy transfers.

Document number: 315399-008 84

Intel® MPI Library for Linux* OS Reference Manual

Syntax

I_MPI_DAPL_UD_RNDV_COPY_ALIGNMENT_THRESHOLD=<nbytes>

Arguments

<nbytes> Define send buffer alignment threshold

> 0 and a power of 2 The default value is 32768

Set this variable to define the threshold where the alignment of the sending buffer is applied in DAPL
direct-copy transfers. When a buffer specified in a DAPL operation is aligned to an optimal value, this
may increase data transfer bandwidth.

3.3.5 TCP-capable Network Fabrics Control

I_MPI_TCP_NETMASK

(I_MPI_NETMASK)

Choose the network interface for MPI communication over TCP-capable network fabrics.

Syntax

I_MPI_TCP_NETMASK=<arg>

Arguments

<arg> Define the network interface (string parameter)

<interface_mnemonic> Mnemonic of the network interface: ib or eth

ib Select IPoIB*

eth Select Ethernet. This is the default value

<interface_name> Name of the network interface

Usually the UNIX* driver name followed by the unit number

<network_address>> Network address. The trailing zero bits imply netmask

<network_address/netmask> Network address. The <netmask> value specifies the netmask
length

<list of interfaces> A colon separated list of network addresses and interface names

Description

Set this variable to choose the network interface for MPI communication over TCP-capable network
fabrics. If you specify a list of interfaces, the first available interface on the node will be used for
communication.

Examples

 Use the following setting to select the IP over InfiniBand* (IPoIB) fabric:
I_MPI_TCP_NETMASK=ib

 Use the following setting to select the specified network interface for socket communications:

I_MPI_TCP_NETMASK=ib0

 Use the following setting to select the specified network for socket communications. This setting
implies the 255.255.0.0 netmask:
I_MPI_TCP_NETMASK=192.169.0.0

Document number: 315399-008 85

Intel® MPI Library for Linux* OS Reference Manual

 Use the following setting to select the specified network for socket communications with netmask
set explicitly:
I_MPI_TCP_NETMASK=192.169.0.0/24

 Use the following setting to select the specified network interfaces for socket communications:
I_MPI_TCP_NETMASK=192.169.0.5/24:ib0:192.169.0.0

3.3.6 TMI-capable Network Fabrics Control

I_MPI_TMI_LIBRARY

Select the TMI library to be used.

Syntax

I_MPI_TMI_LIBRARY=<library>

Arguments

<library> Specify a TMI library to be used instead of the default libtmi.so

Description

Set this variable to select a specific TMI library. Specify the full path to the TMI library if the library
does not locate in the dynamic loader search path.

I_MPI_TMI_PROVIDER

Define the name of the TMI provider to load.

Syntax

I_MPI_TMI_PROVIDER=<name>

Arguments

<name> name of the TMI provider to load

Description

Set this variable to define the name of the TMI provider to load. The name must also be defined in the
tmi.conf configuration file.

I_MPI_TMI_PROBE_INTERVAL

Define the frequency that the TMI module probes the internal control messages.

Syntax
I_MPI_TMI_PROBE_INTERVAL=<value>

Arguments

<value> Define the frequency that the TMI module probes the internal control
messages

integer > 0 Exact value for the option

Description

Set this variable to define how often the TMI module should probe for incoming internal control
messages. A larger value means less frequent probes. The value 1 means that a probe happens each
time the TMI module is polled for progress. The default setting is 20.

Document number: 315399-008 86

Intel® MPI Library for Linux* OS Reference Manual

Reducing the probe frequency helps improve the performance when there are a large number of
unexpected messages. The trade-off is longer response time for the internal control messages. In MPI
4.0, the internal control messages only affect the MPI functions for one-sided operations (RMA).

3.3.7 OFA*-capable Network Fabrics Control

I_MPI_OFA_NUM_ADAPTERS

Set the number of connection adapters.

Syntax

I_MPI_OFA_NUM_ADAPTERS=<arg>

Arguments

<arg> Define the maximum number of connection adapters used

>0 Use the specified number of adapters. The default value is 1

Description

Set the number of the used adapters. If the number is greater than the available number of adapters,
all the available adaptors are used.

I_MPI_OFA_ADAPTER_NAME

Set the name of adapter that is used.

Syntax

I_MPI_OFA_ADAPTER_NAME=<arg>

Arguments

<arg> Define the name of adapter

Name Use the specified adapter. By default, any adapter can be used

Description

Set the name of adaptor to be used. If the adapter with specified name does not exist, the library
returns error. This has effect only if I_MPI_OFA_NUM_ADAPTERS=1.

I_MPI_OFA_NUM_PORTS

Set the number of used ports on each adapter.

Syntax

I_MPI_OFA_NUM_PORTS=<arg>

Arguments

<arg> Define the number of ports that are used on each adapter

> 0 Use the specified number of ports. The default value is 1

Description

Set the number of used ports on each adaptor. If the number is greater than the available number of
ports, all the available ports are used.

Document number: 315399-008 87

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_OFA_NUM_RDMA_CONNECTIONS

Set the maximum number of connections that use the rdma exchange protocol.

Syntax

I_MPI_OFA_NUM_RDMA_CONNECTIONS=<num_conn>

Arguments

<num_conn> Define the maximum number of connections that use the rdma
exchange protocol

>= 0 Create the specified number of connections that use the rdma
exchange protocol. The rest processes use the send/ receive exchange
protocol

-1 Create log2(number of processes) rdma connections

>= number of
processes

Create rdma connections for all processes. This is the default value

Description

There are two exchange protocols between two processes: send/receive and rdma. This variable
specifies the maximum amount of connections that use rdma protocol.

RDMA protocol is faster but requires more resources. For a large application, you can limit the number
of connections that use the rdma protocol so that only processes that actively exchange data use the
rdma protocol.

I_MPI_OFA_SWITCHING_TO_RDMA

Set the number of messages that a process should receive before switching this connection to RDMA
exchange protocol.

Syntax

I_MPI_OFA_SWITCHING_TO_RDMA=<number>

Arguments

<number> Define the number of messages that the process receives before
switching to use the rdma protocol

>= 0 If this process receives <number> of messages, start using the rdma
protocol

Description

Count the number of messages received from the specific process. The connection achieved the
specified number tries to switch to rdma protocol for exchanging with that process. The connection
will not switch to rdma protocol if the maximum number of connections that use the rdma exchange
protocol defined in I_MPI_OFA_NUM_RDMA_CONNECTIONS has been reached.

I_MPI_OFA_RAIL_SCHEDULER

Set the method of choosing rails for short messages.

Syntax

I_MPI_OFA_RAIL_SCHEDULER=<arg>

Document number: 315399-008 88

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<arg> Mode selector

ROUND_ROBIN Next time use next rail

FIRST_RAIL Always use the first rail for short messages

PROCESS_BIND Always use the rail specific for process

Description

Set the method of choosing rails for short messages. The algorithms are selected according to the
following scheme:

• In the ROUND_ROBIN mode, the first message is sent using the first rail; the next message is sent
using the second rail, and so on.

• In the FIRST_RAIL mode, the first rail is always used for short messages.

• In the PROCESS_BIND mode, the process with the smallest rank uses the first rail, and the next
uses the second rail.

I_MPI_OFA_TRANSLATION_CACHE

Turn on/off the memory registration cache.

Syntax

I_MPI_OFA_TRANSLATION_CACHE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on the memory registration cache. This is the default

disable | no | off | 0 Turn off the memory registration cache

Description

Set this variable to turn on/off the memory registration cache.

The cache substantially increases performance, but may lead to correctness issues in certain situations.
See product Release Notes for further details.

3.3.8 Failover Support in the OFA* Device
The Intel® MPI Library recognizes the following events to detect hardware issues:

• IBV_EVENT_QP_FATAL Error occurred on a QP and it transitioned to error state

• IBV_EVENT_QP_REQ_ERR Invalid request local work queue error

• IBV_EVENT_QP_ACCESS_ERR Local access violation error

• IBV_EVENT_PATH_MIG_ERR A connection failed to migrate to the alternate path

• IBV_EVENT_CQ_ERR CQ is in error (CQ overrun)

• IBV_EVENT_SRQ_ERR Error occurred on an SRQ

• IBV_EVENT_PORT_ERR Link became unavailable on a port

• IBV_EVENT_DEVICE_FATAL CA is in FATAL state

Document number: 315399-008 89

Intel® MPI Library for Linux* OS Reference Manual

Intel® MPI Library stops using port or whole adapter for communications if one of these issues is
detected. The communications will be continued through the available port or adapter if application is
running in the multi-rail mode. The application will be aborted if no healthy ports/adapters are
available.

Intel® MPI Library also recognizes the following event

• IBV_EVENT_PORT_ACTIVE Link became active on a port

The event indicates that the port can be used again and is enabled for communications.

3.4 Dynamic Process Support
The Intel® MPI Library provides support for the MPI-2 process model what allows creation and
cooperative termination of processes after an MPI application has started. It provides

 a mechanism to establish communication between the newly created processes and the existing
MPI application

 a process attachment mechanism to establish communication between two existing MPI
applications even when one of them does not spawn the other

The existing MPD ring (see mpdboot for details) is used for the placement of the spawned processes in
the round robin fashion. The first spawned process is placed after the last process of the parent group.
A specific network fabric combination is selected using the usual fabrics selection algorithm (see
I_MPI_FABRICS and I_MPI_FABRICS_LIST for details).

For example, to run a dynamic application, use the following commands:

$ mpdboot -n 4 -r ssh

$ mpiexec -n 1 -gwdir <path_to_executable> -genv I_MPI_FABRICS shm:tcp
<spawn_app>

In the example, the spawn_app spawns 4 dynamic processes. If the mpd.hosts contains the
following information,

host1
host2
host3
host4

the original spawing process is placed on host1, while the dynamic processes is distributed as follows:
1 – on host2, 2 – on host3, 3 – on host4, and 4 – again on host1.

To run a client-server application, use the following commands on the server host:

$ mpdboot -n 1

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:dapl <server_app> > <port_name>

and use the following commands on the intended client hosts:

$ mpdboot -n 1

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:dapl <client_app> < <port_name>

To run a simple MPI_COMM_JOIN based application, use the following commands on the intended host:

Document number: 315399-008 90

Intel® MPI Library for Linux* OS Reference Manual

$ mpdboot -n 1 -r ssh

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:ofa <join_server_app> <
<port_number>

$ mpiexec -n 1 -genv I_MPI_FABRICS shm:ofa <join_client_app> <
<port_number>

3.5 Collective Operation Control
Each collective operation in the Intel® MPI Library supports a number of communication algorithms.
In addition to highly optimized default settings, the library provides two ways to control the algorithm
selection explicitly: the novel I_MPI_ADJUST environment variable family and the deprecated
I_MPI_MSG environment variable family. They are described in the following sections.

3.5.1 I_MPI_ADJUST family

I_MPI_ADJUST_<opname>

Control collective operation algorithm selection.

Syntax

I_MPI_ADJUST_<opname>=<algid>[:<conditions>][;<algid>:<conditions>[…]]

Arguments

<algid> Algorithm identifier

>= 0 The default value of zero selects the reasonable settings

<conditions> A comma separated list of conditions. An empty list selects all
message sizes and process combinations

<l> Messages of size <l>

<l>-<m> Messages of size from <l> to <m>, inclusive

<l>@<p> Messages of size <l> and number of processes <p>

<l>-<m>@<p>-<q> Messages of size from <l> to <m> and number of processes from
<p> to <q>, inclusive

Description

Set this variable to select the desired algorithm(s) for the collective operation <opname> under
particular conditions. Each collective operation has its own environment variable and algorithms. See
below.

Document number: 315399-008 91

Intel® MPI Library for Linux* OS Reference Manual

Table 3.5-1 Environment Variables, Collective Operations, and Algorithms

Environment Variable Collective Operation Algorithms

I_MPI_ADJUST_ALLGATHER MPI_Allgather 1. Recursive doubling algorithm

2. Bruck’s algorithm

3. Ring algorithm

4. Topology aware Gatherv + Bcast
algorithm

I_MPI_ADJUST_ALLGATHERV MPI_Allgatherv 1. Recursive doubling algorithm

2. Bruck’s algorithm

3. Ring algorithm

4. Topology aware Gatherv + Bcast
algorithm

I_MPI_ADJUST_ALLREDUCE MPI_Allreduce 1. Recursive doubling algorithm

2. Rabenseifner’s algorithm

3. Reduce + Bcast algorithm

4. Topology aware Reduce + Bcast
algorithm

5. Binomial gather + scatter
algorithm

6. Topology aware binominal
gather + scatter algorithm

7. Ring algorithm

I_MPI_ADJUST_ALLTOALL MPI_Alltoall 1. Bruck’s algorithm

2. Isend/Irecv + waitall algorithm

3. Pair wise exchange algorithm

4. Plum’s algorithm

I_MPI_ADJUST_ALLTOALLV MPI_Alltoallv 1. Isend/Irecv + waitall algorithm

2. Plum’s algorithm

I_MPI_ADJUST_ALLTOALLW MPI_Alltoallw 1. Isend/Irecv + waitall algorithm

I_MPI_ADJUST_BARRIER MPI_Barrier 1. Dissemination algorithm

2. Recursive doubling algorithm

3. Topology aware dissemination
algorithm

4. Topology aware recursive
doubling algorithm

5. Binominal gather + scatter
algorithm

6. Topology aware binominal
gather + scatter algorithm

Document number: 315399-008 92

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_ADJUST_BCAST MPI_Bcast 1. Binomial algorithm

2. Recursive doubling algorithm

3. Ring algorithm

4. Topology aware binomial
algorithm

5. Topology aware recursive
doubling algorithm

6. Topology aware ring algorithm

7. Shumilin’s bcast algorithm

I_MPI_ADJUST_EXSCAN MPI_Exscan 1. Partial results gathering
algorithm

2. Partial results gathering
regarding algorithm layout of
processes

I_MPI_ADJUST_GATHER MPI_Gather 1. Binomial algorithm

2. Topology aware binomial
algorithm

3. Shumilin’s algorithm

I_MPI_ADJUST_GATHERV MPI_Gatherv 1. Linear algorithm

2. Topology aware linear algorithm

I_MPI_ADJUST_REDUCE_SCATTER MPI_Reduce_scatter 1. Recursive having algorithm

2. Pair wise exchange algorithm

3. Recursive doubling algorithm

4. Reduce + Scatterv algorithm

5. Topology aware Reduce +
Scatterv algorithm

I_MPI_ADJUST_REDUCE MPI_Reduce 1. Shumilin’s algorithm

2. Binomial algorithm

3. Topology aware Shumilin’s
algorithm

4. Topology aware binomial
algorithm

I_MPI_ADJUST_SCAN MPI_Scan 1. Partial results gathering
algorithm

2. Topology aware partial results
gathering algorithm

I_MPI_ADJUST_SCATTER MPI_Scatter 1. Binomial algorithm

2. Topology aware binomial
algorithm

3. Shumilin’s algorithm

I_MPI_ADJUST_SCATTERV MPI_Scatterv 1. Linear algorithm

2. Topology aware linear algorithm

The message size calculation rules for the collective operations are described in the table below. Here,
“n/a” means that the corresponding interval <l>-<m> should be omitted.

Document number: 315399-008 93

Intel® MPI Library for Linux* OS Reference Manual

Table 3.5-2 Message Collective Functions

Collective Function Message Size Formula

MPI_Allgather recv_count*recv_type_size

MPI_Allgatherv total_recv_count*recv_type_size

MPI_Allreduce count*type_size

MPI_Alltoall send_count*send_type_size

MPI_Alltoallv n/a

MPI_Alltoallw n/a

MPI_Barrier n/a

MPI_Bcast count*type_size

MPI_Exscan count*type_size

MPI_Gather recv_count*recv_type_size if MPI_IN_PLACE is used,
otherwise send_count*send_type_size

MPI_Gatherv n/a

MPI_Reduce_scatter total_recv_count*type_size

MPI_Reduce count*type_size

MPI_Scan count*type_size

MPI_Scatter send_count*send_type_size if MPI_IN_PLACE is used,
otherwise recv_count*recv_type_size

MPI_Scatterv n/a

Examples

1. Use the following settings to select the second algorithm for MPI_Reduce operation:
I_MPI_ADJUST_REDUCE=2

2. Use the following settings to define the algorithms for MPI_Reduce_scatter operation:
I_MPI_ADJUST_REDUCE_SCATTER=4:0-100,5001-10000;1:101-3200,2:3201-5000;3

In this case. algorithm 4 will be used for the message sizes from 0 up to 100 bytes and from 5001 to
10000 bytes, algorithm 1 will be used for the message sizes from 101 up to 3200 bytes, algorithm 2
will be used for the message sizes from 3201 up to 5000 bytes, and algorithm 3 will be used for all
other messages.

3.5.2 I_MPI_MSG family

These variables are deprecated and supported mostly for backward compatibility. Use the
I_MPI_ADJUST environment variable family whenever possible.

I_MPI_FAST_COLLECTIVES

Control the default library behavior during selection of the most appropriate collective algorithm.

Syntax

I_MPI_FAST_COLLECTIVES=<arg>

Document number: 315399-008 94

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<arg> Binary indicator

enable | yes | on | 1 Fast collective algorithms are used. This is the default value

disable | no | off | 0 Slower and safer collective algorithms are used

Description

The Intel® MPI Library uses advanced collective algorithms designed for better application
performance by default. The implementation makes the following assumptions:

• It is safe to utilize the flexibility of the MPI standard regarding the order of execution of the
collective operations to take advantage of the process layout and other opportunities.

• There is enough memory available for allocating additional internal buffers.

Set the I_MPI_FAST_COLLECTIVES variable to disable if you need to obtain results that do not
depend on the physical process layout or other factors.

NOTE: Some optimizations controlled by this variable are of an experimental nature. In case of failure,
turn off the collective optimizations and repeat the run.

I_MPI_BCAST_NUM_PROCS

Control MPI_Bcast algorithm thresholds.

Syntax

I_MPI_BCAST_NUM_PROCS=<nproc>

Arguments

<nproc> Define the number of processes threshold for choosing the
MPI_Bcast algorithm

> 0 The default value is 8

I_MPI_BCAST_MSG

Control MPI_Bcast algorithm thresholds.

Syntax

I_MPI_BCAST_MSG=<nbytes1,nbytes2>

Arguments

<nbytes1,nbytes2> Define the message size threshold range (in bytes) for choosing the
MPI_Bcast algorithm

> 0

nbytes2 >= nbytes1

The default pair of values is 12288,524288

Description

Set these variables to control the selection of the three possible MPI_Bcast algorithms according to
the following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected if the message size is less than <nbytes1>, or the number of
processes in the operation is less than <nproc>.

2. The second algorithm is selected if the message size is greater than or equal to <nbytes1> and
less than <nbytes2>, and the number of processes in the operation is a power of two.

Document number: 315399-008 95

Intel® MPI Library for Linux* OS Reference Manual

3. If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_ALLTOALL_NUM_PROCS

Control MPI_Alltoall algorithm thresholds.

Syntax

I_MPI_ALLTOALL_NUM_PROCS=<nproc>

Arguments

<nproc> Define the number of processes threshold for choosing the
MPI_Alltoall algorithm

> 0 The default value is 8

I_MPI_ALLTOALL_MSG

Control MPI_Alltoall algorithm thresholds.

Syntax

I_MPI_ALLTOALL_MSG=<nbytes1,nbytes2>

Arguments

<nbytes1,nbytes2> Defines the message size threshold range (in bytes) for choosing the
MPI_Alltoall algorithm

> 0

nbytes2 >= nbytes1

The default pair of values is 256,32768

Description

Set these variables to control the selection of the three possible MPI_Alltoall algorithms according
to the following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected if the message size is greater than or equal to <nbytes1>, and the
number of processes in the operation is not less than <nproc>.

2. The second algorithm is selected if the message size is greater than <nbytes1> and less than or
equal to <nbytes2>, or if the message size is less than <nbytes2> and the number of processes
in the operation is less than <nproc>.

3. If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_ALLGATHER_MSG

Control MPI_Allgather algorithm thresholds.

Syntax

I_MPI_ALLGATHER_MSG=<nbytes1,nbytes2>

Arguments

<nbytes1,nbytes2> Define the message size threshold range (in bytes) for choosing the
MPI_Allgather algorithm

> 0

nbytes2 >= nbytes1

The default pair of values is 81920,524288

Document number: 315399-008 96

Intel® MPI Library for Linux* OS Reference Manual

Description

Set this variable to control the selection of the three possible MPI_Allgather algorithms according
to the following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected if the message size is less than <nbytes2> and the number of
processes in the operation is a power of two.

2. The second algorithm is selected if the message size is less than <nbytes1> and number of
processes in the operation is not a power of two.

3. If none of the above conditions is satisfied, the third algorithm is selected.

I_MPI_ALLREDUCE_MSG

Control MPI_Allreduce algorithm thresholds.

Syntax

I_MPI_ALLREDUCE_MSG=<nbytes>

Arguments

<nbytes> Define the message size threshold (in bytes) for choosing the
MPI_Allreduce algorithm

> 0 The default value is 2048

Description

Set this variable to control the selection of the two possible MPI_Allreduce algorithms according to
the following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected if the message size is less than or equal <nbytes>, or the reduction
operation is user-defined, or the count argument is less than the nearest power of two less than or
equal to the number of processes.

2. If the above condition is not satisfied, the second algorithm is selected.

I_MPI_REDSCAT_MSG

Control the MPI_Reduce_scatter algorithm thresholds.

Syntax

I_MPI_REDSCAT_MSG=<nbytes1,nbytes2>

Arguments

<nbytes> Define the message size threshold range (in bytes) for choosing the
MPI_Reduce_scatter algorithm

> 0 The default pair of values is 512,524288

Description

Set this variable to control the selection of the three possible MPI_Reduce_scatter algorithms
according to the following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected if the reduction operation is commutative and the message size is
less than <nbytes2>.

2. The second algorithm is selected if the reduction operation is commutative and the message size
is greater than or equal to <nbytes2>, or if the reduction operation is not commutative and the
message size is greater than or equal to <nbytes1>.

3. If none of the above conditions is satisfied, the third algorithm is selected.

Document number: 315399-008 97

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_SCATTER_MSG

Control MPI_Scatter algorithm thresholds.

Syntax

I_MPI_SCATTER_MSG=<nbytes>

Arguments

<nbytes> Define the buffer size threshold range (in bytes) for choosing the
MPI_Scatter algorithm

> 0 The default value is 2048

Description

Set this variable to control the selection of the two possible MPI_Scatter algorithms according to the
following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected on the intercommunicators if the message size is greater than
<nbytes>.

2. If the above condition is not satisfied, the second algorithm is selected.

I_MPI_GATHER_MSG

Control MPI_Gather algorithm thresholds.

Syntax

I_MPI_GATHER_MSG=<nbytes>

Arguments

<nbytes> Define the buffer size threshold range (in bytes) for choosing the
MPI_Gather algorithm

> 0 The default value is 2048

Description

Set this variable to control the selection of the two possible MPI_Gather algorithms according to the
following scheme (See Table 3.5-1 for algorithm descriptions):

1. The first algorithm is selected on the intercommunicators if the message size is greater than
<nbytes>.

2. If the above condition is not satisfied, the second algorithm is selected.

3.6 Extended File System Support
The Intel® MPI Library provides loadable shared modules to provide native support for the following
file systems:

• Panasas* ActiveScale* File System (PanFS)

• Parallel Virtual File System, Version 2 (Pvfs2)

• Lustre* File System

Set the I_MPI_EXTRA_FILESYSTEM environment variable to on to enable parallel file system support.
Set the I_MPI_EXTRA_FILESYSTEM_LIST environment variable to request native support for the
specific file system. For example, to request native support for Panasas* ActiveScale* File System, do
the following:

Document number: 315399-008 98

Intel® MPI Library for Linux* OS Reference Manual

$ mpiexec -env I_MPI_EXTRA_FILESYSTEM on \

 -env I_MPI_EXTRA_FILESYSTEM_LIST panfs -n 2 ./test

3.6.1 Environment variables

I_MPI_EXTRA_FILESYSTEM

Turn on/off native parallel file systems support.

Syntax

I_MPI_EXTRA_FILESYSTEM=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on native support for the parallel file systems

disable | no | off | 0 Turn off native support for the parallel file systems. This is the
default value

Description

Set this variable to enable parallel file system support. The I_MPI_EXTRA_FILESYSTEM_LIST
environment variable must be set to request native support for the specific file system.

I_MPI_EXTRA_FILESYSTEM_LIST

Select specific file systems support.

Syntax

I_MPI_EXTRA_FILESYSTEM_LIST=<fs>[, <fs>, ... , <fs>]

Arguments

<fs> Define a target file system

panfs Panasas* ActiveScale* File System

pvfs2 Parallel Virtual File System, Version 2

lustre Lustre* File System

Description

Set this variable to request support for the specific parallel file system. This variable is handled only if
the I_MPI_EXTRA_FYLESYSTEM is enabled. The Intel® MPI Library will try to load shared modules to
support the file systems specified by I_MPI_EXTRA_FILESYSTEM_LIST.

3.7 Compatibility Control
The Intel® MPI Library 4.0 implements the MPI-2.1 standard. The following MPI routines are changed:

• MPI_Cart_create

• MPI_Cart_map

Document number: 315399-008 99

Intel® MPI Library for Linux* OS Reference Manual

• MPI_Cart_sub

• MPI_Graph_create

If your application depends on the strict pre-MPI-2.1 behavior, set the environment variable
I_MPI_COMPATIBILITY to 3.

I_MPI_COMPATIBILITY

Select the runtime compatibility mode.

Syntax
I_MPI_COMPATIBILITY=<value>

Arguments

<value> Define compatibility mode

3 Enable the Intel® MPI Library 3.x compatibility mode

4 Disable the Intel® MPI Library 3.x compatibility mode and enable the
Intel® MPI Library 4.0 compatible mode. This is the default value

Description

Set this variable to choose the Intel® MPI runtime compatible mode.

3.8 Miscellaneous

I_MPI_TIMER_KIND

Select the timer used by the MPI_Wtime and MPI_Wtick calls.

Syntax

I_MPI_TIMER_KIND=<timername>

Arguments

<timername> Define the timer type

gettimeofday If this setting is chosen, the MPI_Wtime and MPI_Wtick functions will
work through the function gettimeofday(2). This is the default
value

rdtsc If this setting is chosen, the MPI_Wtime and MPI_Wtick functions will
use the high resolution RDTSC timer

Description

Set this variable to select either the ordinary or RDTSC timer.

NOTE: The resolution of the default gettimeofday(2) timer may be insufficient on certain
platforms.

Document number: 315399-008 100

Intel® MPI Library for Linux* OS Reference Manual

4 Statistics Gathering Mode
The Intel® MPI Library has a built-in statistics gathering facility that collects essential performance
data without disturbing the application execution. The collected information is output onto a text file.
This section describes the environment variables used to control the built-in statistics gathering facility,
and provides example output files.

I_MPI_STATS

Control statistics collection.

Syntax

I_MPI_STATS=[n-] m

Arguments

n, m Possible stats levels of the output information

1 Output the amount of data sent by each process

2 Output the number of calls and amount of transferred data

3 Output statistics combined according to the actual arguments

4 Output statistics defined by a buckets list

10 Output collective operation statistics for all communication contexts

Description

Set this variable to control the amount of the statistics information collected and output onto the log
file. No statistics are output by default.

NOTE: n, m represent the positive integer numbers define range of output information. The statistics
from level n to level m inclusive are output. Omitted n value assumes to be 1.

I_MPI_STATS_SCOPE

Select the subsystem(s) to collect statistics for.

Syntax

I_MPI_STATS_SCOPE=<subsystem>[:<ops>][;<subsystem>[:<ops>][…]]

Arguments

<subsystem> Define the target subsystem(s)

all Collect statistics data for all operations. This is the default value

coll Collect statistics data for all collective operations

p2p Collect statistics data for all point-to-point operations

<ops> Define the target operations as a comma separated list

Allgather MPI_Allgather

Document number: 315399-008 101

Intel® MPI Library for Linux* OS Reference Manual

Allgatherv MPI_Allgatherv

Allreduce MPI_Allreduce

Alltoall MPI_Alltoall

Alltoallv MPI_Alltoallv

Alltoallw MPI_Alltoallw

Barrier MPI_Barrier

Bcast MPI_Bcast

Exscan MPI_Exscan

Gather MPI_Gather

Gatherv MPI_Gatherv

Reduce_scatter MPI_Reduce_scatter

Reduce MPI_Reduce

Scan MPI_Scan

Scatter MPI_Scatter

Scatterv MPI_Scatterv

Send Standard transfers (MPI_Send, MPI_Isend, MPI_Send_init)

Bsend Buffered transfers (MPI_Bsend, MPI_Ibsend, MPI_Bsend_init)

Csend Point-to-point operations inside the collectives. This internal operation
serves all collectives

Rsend Ready transfers (MPI_Rsend, MPI_Irsend, MPI_Rsend_init)

Ssend Synchronous transfers (MPI_Ssend, MPI_Issend,
MPI_Ssend_init)

Description

Set this variable to select the target subsystem to collects statistics for. All collective and point-to-
point operations, including the point-to-point operations performed inside the collectives are covered
by default.

Examples

1. The default settings are equivalent to:
I_MPI_STATS_SCOPE=coll;p2p

2. Use the following settings to collect statistics for the MPI_Bcast, MPI_Reduce, and all point-to-
point operations:
I_MPI_STATS_SCOPE=p2p;coll:bcast,reduce

3. Use the following settings to collect statistics for the point-to-point operations inside the
collectives:
I_MPI_STATS_SCOPE=p2p:csend

I_MPI_STATS_BUCKETS

Identify a list of ranges for message sizes and communicator sizes that will be used for collecting
statistics.

Syntax

I_MPI_STATS_BUCKETS=<msg>[@<proc>][,<msg>[@<proc>]]…

Document number: 315399-008 102

Intel® MPI Library for Linux* OS Reference Manual

Arguments

<msg> Specify range of message sizes in bytes

<l> Single value of message size

<l>-<m> Range from <l> to <m>

<proc> Specify range of processes (ranks) for collective operations

<p> Single value of communicator size

<p>-<q> Range from <p> to <q>

Description

Set the I_MPI_STATS_BUCKETS variable to define a set of ranges for message sizes and
communicator sizes.

Level 4 of the statistics provides profile information for these ranges.

If I_MPI_STATS_BUCKETS variable is not used, then level 4 statistics is not gathered.

If a range is omitted then the maximum possible range is assumed.

Examples

To specify short messages (from 0 to 1000 bytes) and long messages (from 50000 to 100000 bytes),
use the following setting:

-env I_MPI_STATS_BUCKETS 0-1000,50000-100000

To specify messages that have 16 bytes in size and circulate within four process communicators, use
the following setting:

-env I_MPI_STATS_BUCKETS “16@4”

NOTE: When the @ symbol is present, the variable value must be enclosed in quotes.

I_MPI_STATS_FILE

Define the statistics output file name.

Syntax

I_MPI_STATS_FILE=<name>

Arguments

<name> Define the statistics output file name

Description

Set this variable to define the statistics output file. The stats.txt file is created in the current directory
by default.

The statistics data is blocked and ordered according to the process ranks in the MPI_COMM_WORLD
communicator. The timing data is presented in microseconds. For example, with the following settings
in effect

I_MPI_STATS=4
I_MPI_STATS_SCOPE=p2p;coll:allreduce

Document number: 315399-008 103

Intel® MPI Library for Linux* OS Reference Manual

the statistics output for a simple program that performs only one MPI_Allreduce operation may
look as follows:

Intel(R) MPI Library Version 4.0

____ MPI Communication Statistics ____

Stats level: 4

P2P scope:< FULL >

Collectives scope:< Allreduce >


~~~~ Process 0 of 2 on node svlmpihead01 lifetime = 414.13 

 

Data Transfers 

Src Dst Amount(MB) Transfers 

----------------------------------------- 

000 --> 000 0.000000e+00 0 

000 --> 001 7.629395e-06 2 

========================================= 

Totals  7.629395e-06 2 

 

Communication Activity 

Operation Volume(MB) Calls 

----------------------------------------- 

P2P  

Csend  7.629395e-06 2 

Send  0.000000e+00 0 

Bsend  0.000000e+00 0 

Rsend  0.000000e+00 0 

Ssend  0.000000e+00 0 

Collectives 

Allreduce       7.629395e-06 2 

========================================= 

 

Communication Activity by actual args 

P2P  

Operation Dst Message size Calls 

--------------------------------------------- 

Csend 

1  1 4  2 

Collectives 

Operation  Context  Algo Comm size  Message size  Calls  Cost(%) 

---------------------------------------------------------------------------- 

Allreduce 

1   0   1 2   4   2       44.96 

Document number: 315399-008 104 



Intel® MPI Library for Linux* OS Reference Manual 

============================================================================ 

 

~~~~ Process 1 of 2 on node svlmpihead01 lifetime = 306.13 


Data Transfers

Src Dst Amount(MB) Transfers

001 --> 000 7.629395e-06 2

001 --> 001 0.000000e+00 0

===

Totals 7.629395e-06 2

Communication Activity

Operation Volume(MB) Calls

P2P

Csend 7.629395e-06 2

Send 0.000000e+00 0

Bsend 0.000000e+00 0

Rsend 0.000000e+00 0

Ssend 0.000000e+00 0

Collectives

Allreduce 7.629395e-06 2

===

Communication Activity by actual args

P2P

Operation Dst Message size Calls

Csend

1 0 4 2

Collectives

Operation Context Comm size Message size Calls Cost(%)

--

Allreduce

1 0 2 4 2 37.93

==

____ End of stats.txt file ____

In the example above all times are measured in microseconds. The message sizes are counted in
bytes. MB means megabyte equal to 220 or 1 048 576 bytes. The process life time is calculated as a
stretch of time between MPI_Init and MPI_Finalize. The Algo field indicates the number of

Document number: 315399-008 105

Intel® MPI Library for Linux* OS Reference Manual

algorithm used by this operation with listed arguments. The Cost field represents a particular
collective operation execution time as a percentage of the process life time.

Document number: 315399-008 106

Intel® MPI Library for Linux* OS Reference Manual

5 Fault Tolerance
Intel® MPI Library provides extra functionality to enable fault tolerance support in the MPI
applications. The MPI standard does not define behavior of MPI implementation if one or several
processes of MPI application are abnormally aborted. By default, Intel® MPI Library aborts the whole
application if any process stops.

Set the environment variable I_MPI_FAULT_CONTINUE to on to change this behavior. For example,

$ mpiexec -env I_MPI_FAULT_CONTINUE on -n 2 ./test

An application can continue working in the case of MPI processes an issue if the issue meets the
following requirements:

• An application sets error handler MPI_ERRORS_RETURN to communicator MPI_COMM_WORLD (all
new communicators inherit error handler from it)

• An application uses master-slave model and the application will be stopped only if the master is
finished or does not respond

• An application uses only point-to-point communication between a master and a number of
slaves. It does not use inter slave communication or MPI collective operations.

• Handle a certain MPI error code on a point-to-point operation with a particular failed slave rank
for application to avoid further communication with this rank. The slave rank can be
blocking/non-blocking send, receive, probe and test,

• Any communication operation can be used on subset communicator. If error appears in
collective operation, any communication inside this communicator will be prohibited.

• Master failure means the job stops.

5.1 Environment Variables

I_MPI_FAULT_CONTINUE

Turn on/off support for fault tolerant applications.

Syntax

I_MPI_FAULT_CONTINUE=<arg>

Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on support for fault tolerant applications

disable | no | off | 0 Turn off support for fault tolerant applications. This is default value

Description

Set this variable to provide support for fault tolerant applications.

Document number: 315399-008 107

Intel® MPI Library for Linux* OS Reference Manual

5.2 Usage Model
An application sets MPI_ERRORS_RETURN error handler and checks return code after each
communication call. If a communication call does not return, MPI_SUCCESS destination process
should be marked unreachable and exclude communication with it. For example:

if(live_ranks[rank]) {

 mpi_err = MPI_Send(buf, count, dtype, rank, tag, MPI_COMM_WORLD);

if(mpi_err != MPI_SUCCESS) {

 live_ranks[rank] = 0;

}

}

In the case of non-blocking communications, errors can appear during wait/test operations.

Document number: 315399-008 108

Intel® MPI Library for Linux* OS Reference Manual

6 ILP64 Support
The term ILP64 means that int, long, and pointer data entities all occupy 8 bytes. This differs from the
more conventional LP64 model in which only long and pointer data entities occupy 8 bytes while int
entities stay at 4 byte size. More information on the historical background and the programming
model philosophy can be found for example in http://www.unix.org/version2/whatsnew/lp64_wp.html

6.1 Using ILP64
Use the following options to enable the ILP64 interface

• Use the Fortran compiler driver option -i8 for separate compilation and the –ilp64 option for
separate linkage. For example,

$ mpiifort –i8 –c test.f

$ mpiifort –ilp64 –o test test.o

• Use the mpiexec –ilp64 option to preload the ILP64 interface. For example,

$ mpiexec –ilp64 –n 2 ./myprog

6.2 Known Issues and Limitations
• Datatype counts and other arguments with values larger than 231-1 are not supported.

• Special MPI types MPI_FLOAT_INT, MPI_DOUBLE_INT, MPI_LONG_INT, MPI_SHORT_INT,
MPI_2INT, MPI_LONG_DOUBLE_INT, MPI_2INTEGER are not changed and still use a 4-byte
integer field.

• Predefined communicator attributes MPI_APPNUM, MPI_HOST, MPI_IO, MPI_LASTUSEDCODE,
MPI_TAG_UB, MPI_UNIVERSE_SIZE, and MPI_WTIME_IS_GLOBAL are returned by the functions
MPI_GET_ATTR and MPI_COMM_GET_ATTR as 4-byte integers. The same holds for the predefined
attributes that may be attached to the window and file objects.

• Do not use the –i8 option to compile MPI callback functions, such as error handling functions,
user-defined reduction operations, etc.

• You have to use a special ITC library if you want to use the Intel® Trace Collector with the Intel
MPI ILP64 executable files. If necessary, the Intel MPI mpiifort compiler driver will select the
correct ITC library automatically.

• Use the mpif.h file instead of the MPI module in Fortran90* applications. The Fortran module
supports 32-bit INTEGER size only.

• There is currently no support for C and C++ applications.

Document number: 315399-008 109

http://www.unix.org/version2/whatsnew/lp64_wp.html

Intel® MPI Library for Linux* OS Reference Manual

7 Unified Memory Management
The Intel® MPI Library provides a way to replace the memory management subsystem by a user-
defined package. You may optionally set the following function pointers:

• i_malloc

• i_calloc

• i_realloc

• i_free

These pointers also affect the C++ new and delete operators.

The respective standard C library functions are used by default.

The following contrived source code snippet illustrates the usage of the unified memory subsystem:

 #include <i_malloc.h>
 #include <my_malloc.h>

 int main(int argc, int argv)
 {
 // override normal pointers
 i_malloc = my_malloc;
 i_calloc = my_calloc;
 i_realloc = my_realloc;
 i_free = my_free;

 #ifdef _WIN32
 // also override pointers used by DLLs
 i_malloc_dll = my_malloc;
 i_calloc_dll = my_calloc;
 i_realloc_dll = my_realloc;
 i_free_dll = my_free;
 #endif

 // now start using Intel(R) libraries
 }

Document number: 315399-008 110

Intel® MPI Library for Linux* OS Reference Manual

8 Integration into Eclipse* PTP

The Intel® MPI Library can be used with the Eclipse* Parallel Tools Platform (PTP). You can launch
parallel applications on the existing MPD ring from the Eclipse PTP graphical user interface. The MPD
ring must be started prior to the PTP startup.

Perform the following configuration steps to use PTP with the Intel® MPI Library:

1. Set the PTPPATH environment variable to specify the location of the ptplib.py module.

2. Select Window->Preferences from the Eclipse main menu. Select PTP->MPICH 2 preference page.

3. Specify the full path to the ptp_impi_proxy.py file, for example,
<installdir>/bin/ptp_impi_proxy.py. Click the Apply button.

4. Go to the PTP preference page.

5. Select MPICH2* (MPD) in both Control System and Monitoring System drop down menus. If
MPICH2* (MPD) is already selected, click the OK button and restart Eclipse.

Document number: 315399-008 111

Intel® MPI Library for Linux* OS Reference Manual

6. Switch to the PTP Runtime perspective.

7. In the Machines view you will see the cluster nodes on which the MPD ring is currently working.

8. Refer to the PTP User’s Guide for more information. The PTP documentation is available at:
http://www.eclipse.org/ptp/doc.php

Document number: 315399-008 112

http://www.eclipse.org/ptp/doc.php

Intel® MPI Library for Linux* OS Reference Manual

9 Glossary

hyper-threading
technology

A feature within the IA-32 family of processors, where each processor core
provides the functionality of more than one logical processor.

logical processor The basic modularity of processor hardware resource that allows a software
executive (OS) to dispatch task or execute a thread context. Each logical
processor can execute only one thread context at a time.

multi-core processor A physical processor that contains more than one processor core.

multi-processor
platform

A computer system made of two or more physical packages.

processor core The circuitry that provides dedicated functionalities to decode, execute
instructions, and transfer data between certain sub-systems in a physical
package. A processor core may contain one or more logical processors.

physical package The physical package of a microprocessor capable of executing one or more
threads of software at the same time. Each physical package plugs into a
physical socket. Each physical package may contain one or more processor
cores.

processor topology Hierarchical relationships of “shared vs. dedicated” hardware resources
within a computing platform using physical package capable of one or more
forms of hardware multi-threading.

Document number: 315399-008 113

Intel® MPI Library for Linux* OS Reference Manual

10 Index
$HOME/.mpd.conf, 42
(I_MPI_RDMA_RNDV_WRITE, 77
-{cc,cxx,fc,f77,f90}=<compiler>, 11
-a <alias>, 21
-check_mpi, 10
–check_mpi [<checking_library>], 19
-compchk, 11
-config=<name>, 9
-configfile <filename>, 21
cpuinfo, 46
-dynamic_log, 10
-ecfn <filename>, 21
-echo, 10, 36
Eclipse Parallel Tools Platform, 111
-env <ENVVAR> <value>, 22, 32
-envall, 22, 32
-envexcl <list of env var names>, 22
-envlist <list of env var names>, 22, 31, 32
-envnone, 22, 32
-envuser, 22
-fast, 10
-g, 10, 19, 24, 41
-gcc-version=<nnn>, 11
-gdb, 20
-gdba <jobid>, 20
-genv <ENVVAR> <value>, 19, 31
-genvall, 19, 31
-genvnone, 19, 31
-genvuser, 19
-gm, 17
-GM, 17
-grr <# of processes>, 18
-h, 17, 36, 37, 38, 39, 40, 41, 48, 49
--help, 17, 36, 37, 38, 39, 40, 41, 42, 48, 49
–help, 17
-host <nodename>, 22
I_MPI_{CC,CXX,FC,F77,F90}, 12, 13
I_MPI_{CC,CXX,FC,F77,F90}_PROFILE, 12
I_MPI_ADJUST_<opname>, 91
I_MPI_ALLGATHER_MSG, 96
I_MPI_ALLREDUCE_MSG, 97
I_MPI_ALLTOALL_MSG, 96
I_MPI_ALLTOALL_NUM_PROCS, 96
I_MPI_BCAST_MSG, 95
I_MPI_BCAST_NUM_PROCS, 95
I_MPI_CACHE_BYPASS, 69, 70
I_MPI_CACHE_BYPASS_THRESHOLDS, 70

I_MPI_CHECK_COMPILER, 13
I_MPI_CHECK_PROFILE, 10, 13
I_MPI_COMPATIBILITY, 100
I_MPI_COMPILER_CONFIG_DIR, 14
I_MPI_CONN_EVD_QLEN, 79
I_MPI_DAPL_BUFFER_NUM, 76
I_MPI_DAPL_BUFFER_SIZE, 76
I_MPI_DAPL_CHECK_MAX_RDMA_SIZE, 78, 79
I_MPI_DAPL_CONN_EVD_SIZE, 79
I_MPI_DAPL_DIRECT_COPY_THRESHOLD, 74, 75
I_MPI_DAPL_MAX_MSG_SIZE, 78
I_MPI_DAPL_PROVIDER, 64, 73
I_MPI_DAPL_RDMA_RNDV_WRITE, 77
I_MPI_DAPL_RNDV_BUFFER_ALIGNMENT, 77
I_MPI_DAPL_SCALABLE_PROGRESS, 76
I_MPI_DAPL_TRANSLATION_CACHE, 74
I_MPI_DAPL_UD, 64, 80, 81, 82, 83, 84
I_MPI_DAPL_UD_ACK_RECV_POOL_SIZE, 82
I_MPI_DAPL_UD_ACK_SEND_POOL_SIZE, 82
I_MPI_DAPL_UD_CONN_EVD_SIZE, 83
I_MPI_DAPL_UD_DIRECT_COPY_THRESHOLD, 81
I_MPI_DAPL_UD_PROVIDER, 64, 81
I_MPI_DAPL_UD_RECV_BUFFER_NUM, 81
I_MPI_DAPL_UD_RECV_EVD_SIZE, 84
I_MPI_DAPL_UD_REQ_EVD_SIZE, 83
I_MPI_DAPL_UD_RNDV_BUFFER_ALIGNMENT, 84
I_MPI_DAPL_UD_SEND_BUFFER_NUM, 82
I_MPI_DAPL_UD_TRANSLATION_CACHE, 83
I_MPI_DAT_LIBRARY, 74
I_MPI_DEBUG, 10, 21, 23, 24
I_MPI_DEVICE, 16, 17, 21, 23, 63, 64
I_MPI_DYNAMIC_CONNECTION, 68, 69, 73, 75
I_MPI_DYNAMIC_CONNECTION_MODE, 75
I_MPI_EAGER_THRESHOLD, 66, 67
I_MPI_EXTRA_FILESYSTEM, 98, 99
I_MPI_EXTRA_FILESYSTEM_LIST, 98, 99
I_MPI_FABRICS, 63, 64, 65, 66, 74, 81
I_MPI_FABRICS_LIST, 64, 65, 66, 90
I_MPI_FALLBACK, 64, 65, 66, 90
I_MPI_FALLBACK_DEVICE, 16, 17, 65, 66
I_MPI_FAST_COLLECTIVES, 94, 95
I_MPI_GATHER_MSG, 98
I_MPI_INTRANODE_DIRECT_COPY, 67
I_MPI_INTRANODE_EAGER_THRESHOLD, 66, 67, 73
I_MPI_INTRANODE_SHMEM_BYPASS, 73
I_MPI_JOB_CHECK_LIBS, 19, 25
I_MPI_JOB_CONFIG_FILE, 43

Document number: 315399-008 114

Intel® MPI Library for Linux* OS Reference Manual

I_MPI_JOB_CONTEXT, 39, 43, 44
I_MPI_JOB_FAST_STARTUP, 27, 28
I_MPI_JOB_SIGNAL_PROPAGATION, 26
I_MPI_JOB_STARTUP_TIMEOUT, 25
I_MPI_JOB_TAGGED_PORT_OUTPUT, 44
I_MPI_JOB_TIMEOUT, 25, 26
I_MPI_JOB_TIMEOUT_SIGNAL, 26
I_MPI_JOB_TRACE_LIBS, 19, 24, 33, 34, 35
I_MPI_MPD_CHECK_PYTHON, 44
I_MPI_MPD_TMPDIR, 45
I_MPI_NETMASK, 85, 86
I_MPI_OFA_NUM_ADAPTERS, 87
I_MPI_OFA_NUM_PORTS, 87
I_MPI_OFA_NUM_RDMA_CONNECTIONS, 88
I_MPI_OFA_RAIL_SCHEDULER, 88
I_MPI_OFA_SWITCHING_TO_RDMA, 88
I_MPI_OUTPUT_CHUNK_SIZE, 27
I_MPI_PERHOST, 24, 35, 45
I_MPI_PIN, 52, 53, 55
I_MPI_PIN_DOMAIN, 57
I_MPI_PIN_MODE, 52, 53
I_MPI_PIN_PROCESSOR_LIST, 55
I_MPI_PMI_EXTENSIONS, 27
I_MPI_RDMA_BUFFER_NUM, 76, 79
I_MPI_RDMA_BUFFER_SIZE, 76, 77
I_MPI_RDMA_CHECK_MAX_RDMA_SIZE, 78
I_MPI_RDMA_CONN_EVD_SIZE, 79
I_MPI_RDMA_MAX_MSG_SIZE, 78
I_MPI_RDMA_RNDV_BUF_ALIGN, 77
I_MPI_RDMA_RNDV_BUFFER_ALIGNMENT, 77, 84,

85
I_MPI_RDMA_RNDV_WRITE, 77
I_MPI_RDMA_SCALABLE_PROGRESS, 76
I_MPI_RDMA_TRANSLATION_CACHE, 74, 89
I_MPI_RDMA_VBUF_TOTAL_SIZE, 76, 77
I_MPI_RDMA_WRITE_IMM, 80
I_MPI_REDSCAT_MSG, 97
I_MPI_ROOT, 14
I_MPI_SCALABLE_OPTIMIZATION, 68
I_MPI_SCATTER_MSG, 98
I_MPI_SHM_BUFFER_SIZE, 71
I_MPI_SHM_BYPASS, 73
I_MPI_SHM_CACHE_BYPASS, 69
I_MPI_SHM_CELL_NUM, 71
I_MPI_SHM_CELL_SIZE, 66, 71, 72
I_MPI_SHM_FBOX_SIZE, 72
I_MPI_SHM_LMT_BUFFER_NUM, 70, 71
I_MPI_SHM_LMT_BUFFER_SIZE, 71
I_MPI_SHM_NUM_BUFFERS, 70, 71
I_MPI_SHM_SINGLE_SEGMENT_THRESHOLD, 72
I_MPI_SOCK_SCALABLE_OPTIMIZATION, 68
I_MPI_SPIN_COUNT, 67

I_MPI_STATS, 101, 102, 103
I_MPI_STATS_BUCKETS, 102, 103
I_MPI_STATS_FILE, 103
I_MPI_STATS_SCOPE, 101, 102, 103
I_MPI_TCP_NETMASK, 85
I_MPI_TIMER_KIND, 100
I_MPI_TMI_LIBRARY, 86
I_MPI_TMI_USE_IPROBE, 86
I_MPI_TRACE_PROFILE, 9, 12, 13
I_MPI_TUNER_DATA_DIR, 28
I_MPI_USE_DAPL_INTRANODE, 73
I_MPI_USE_DYNAMIC_CONNECTIONS, 68, 69
I_MPI_USE_RENDEZVOUS_RDMA_WRITE, 77
I_MPI_WAIT_MODE, 68
-ib, 16
-IB, 16
-idb, 20
IDB_HOME, 20, 28
-idba <jobid>, 20
-ifhn <interface/hostname>, 21, 36
-ilp64, 10
-l, 21, 36, 39, 40
-m, 21, 37
-machinefile <machine file>, 18
mpd, 29, 36, 37, 38, 39, 40, 41, 42, 43, 44, 49, 53
mpd.hosts, 37, 38
mpdallexit, 38
mpdboot, 29, 36, 37, 38, 43, 44
mpdcheck, 40
mpdcleanup, 38, 39
mpdexit, 38
mpdhelp, 42
mpdkilljob, 42
mpdlistjobs, 41, 42
mpdringtest, 40
mpdsigjob, 41
mpdtrace, 29, 38, 39
mpiexec, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30,

34, 50, 64, 65, 90, 91
mpirun, 29
mpitune, 17, 29, 48, 50
-mt_mpi, 8
-mx, 16, 17
-MX, 17
-n <# of processes> or -np <# of processes>, 22, 32
-noconf, 21
-nolocal, 18
NUM_RDMA_BUFFER, 76
-O, 10
-ordered-output, 21
PATH, 8, 10
-path <directory>, 22

Document number: 315399-008 115

Intel® MPI Library for Linux* OS Reference Manual

Document number: 315399-008 116

-perhost <# of processes>, 18
-ppn <# of processes>, 18
-profile=<profile_name>, 9, 12
-rdma, 16
-RDMA, 16
-rr, 18
-s <spec>, 21
-show, 10
-static, 9
-static_mpi, 9
-t or –trace, 9
TMPDIR, 45

TOTALVIEW, 28
-trace [<profiling_library>] or -t [<profiling_library>], 19
-tune, 17, 50
-tv, 19
-tva <jobid>, 20
-tvsu, 20
-umask <umask>, 23
-v, 11, 37, 40
-version or -V, 17, 30
VT_ROOT, 9, 10, 14
-wdir <directory>, 22, 31

	Contents
	Disclaimer and Legal Notices
	Revision History
	1 About this Document
	1.1 Intended Audience
	1.2 Using Doc Type Field
	1.3 Conventions and Symbols
	1.4 Related Information

	2 Command Reference
	2.1 Compiler Commands
	2.1.1 Compiler Command Options
	2.1.2 Configuration Files
	2.1.3 Profiles
	2.1.4 Environment Variables

	2.2 Job Startup Commands
	2.2.1 Extended Device Control Options
	2.2.2 Global Options
	2.2.3 Local Options
	2.2.4 Configuration Files
	2.2.5 Environment Variables

	2.3 Simplified Job Startup Command
	2.4 Experimental Scalable Process Management System (Hydra)
	2.4.1 Global Options
	2.4.1.1 Bootstrap Options
	2.4.1.2 Communication Sub-system Options
	2.4.1.3 Other Options

	2.4.2 Local Options
	2.4.3 Environment Variables

	2.5 Multipurpose Daemon Commands
	2.5.1 Configuration Files
	2.5.2 Environment Variables

	2.6 Processor Information Utility

	3 Tuning Reference
	3.1 Automatic Tuning Utility
	3.1.1 Cluster-specific Tuning
	3.1.1.1 Replacing the Default Benchmark

	3.1.2 Application-specific Tuning
	3.1.3 Tuning Utility Output

	3.2 Process Pinning
	3.2.1 Process Identification
	3.2.2 Environment Variables
	3.2.3 Interoperability with OpenMP*

	3.3 Fabrics Control
	3.3.1 Communication Fabrics Control
	3.3.2 Shared Memory Control
	3.3.3 DAPL-capable Network Fabrics Control
	3.3.4 DAPL UD-capable Network Fabrics Control
	3.3.5 TCP-capable Network Fabrics Control
	3.3.6 TMI-capable Network Fabrics Control
	3.3.7 OFA*-capable Network Fabrics Control
	3.3.8 Failover Support in the OFA* Device

	3.4 Dynamic Process Support
	3.5 Collective Operation Control
	3.5.1 I_MPI_ADJUST family
	3.5.2 I_MPI_MSG family

	3.6 Extended File System Support
	3.6.1 Environment variables

	3.7 Compatibility Control
	3.8 Miscellaneous

	4 Statistics Gathering Mode
	5 Fault Tolerance
	5.1 Environment Variables
	5.2 Usage Model

	6 ILP64 Support
	6.1 Using ILP64
	6.2 Known Issues and Limitations

	7 Unified Memory Management
	8 Integration into Eclipse* PTP
	9 Glossary
	10 Index

