
Intel Corporation Document Number: 320714-002

Intel® MPI Benchmarks

User Guide and Methodology Description

Copyright © 1997–2010 Intel Corporation

All Rights Reserved

Document Number: 320714-002

Revision: 3.2.1

World Wide Web: http://www.intel.com

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 1 of 59

Contents
1 Introduction .. 6

1.1 Changes in IMB_3.2.1 versus IMB_3.2 .. 6
1.2 Changes in IMB_3.2 versus IMB_3.1 ... 7

1.2.1 Run time control by default ... 7
1.2.2 Makefiles ... 7
1.2.3 Microsoft* Visual Studio* Project Folders 7

1.3 Changes in IMB_3.1 versus IMB_3.0 ... 7
1.3.1 New benchmarks .. 7
1.3.2 New command line flags for better control 8
1.3.3 Miscellaneous changes .. 8

1.4 Changes in IMB_3.0 versus IMB_2.3 ... 8

2 Installation and Quick Start of IMB ... 9

2.1 Installing and running ... 9

3 IMB-MPI1 .. 11

3.1 General ... 11
3.2 The benchmarks... 11
3.3 IMB-MPI1 benchmark definitions .. 12

3.3.1 Benchmark classification ... 12
3.3.1.1 Single Transfer benchmarks .. 13
3.3.1.2 Parallel Transfer benchmarks .. 13
3.3.1.3 Collective benchmarks ... 13

3.3.2 Definition of Single Transfer benchmarks 14
3.3.2.1 PingPong .. 14
3.3.2.2 PingPing 14
3.3.2.3 Sendrecv .. 16
3.3.2.4 Exchange ... 16

3.3.3 Definition of Collective benchmarks 17
3.3.3.1 Reduce .. 18
3.3.3.2 Reduce_scatter ... 18
3.3.3.3 Allreduce ... 18
3.3.3.4 Allgather ... 18
3.3.3.5 Allgatherv .. 19
3.3.3.6 Scatter .. 19
3.3.3.7 Scatterv .. 19
3.3.3.8 Gather... 19
3.3.3.9 Gatherv ... 20
3.3.3.10 Alltoall .. 20
3.3.3.11 Alltoallv ... 20
3.3.3.12 Bcast .. 20
3.3.3.13 Barrier .. 21

4 MPI-2 part of IMB... 22

4.1 The benchmarks... 22
4.2 IMB-MPI2 benchmark definitions .. 23

4.2.1 Benchmark classification ... 23
4.2.1.1 Single Transfer benchmarks .. 23
4.2.1.2 Parallel Transfer benchmarks .. 24
4.2.1.3 Collective benchmarks ... 24

4.2.2 Benchmark modes .. 24
4.2.2.1 Blocking / non-blocking mode (only IMB-IO) 24
4.2.2.2 Aggregate / Non Aggregate mode 24

4.2.3 Definition of the IMB-EXT benchmarks 25
4.2.3.1 Unidir_Put ... 26

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 2 of 59

4.2.3.2 Unidir_Get .. 26
4.2.3.3 Bidir_Put ... 27
4.2.3.4 Bidir_Get .. 28
4.2.3.5 Accumulate ... 28
4.2.3.6 Window .. 29

4.2.4 Definition of the IMB-IO benchmarks (blocking case) 31
4.2.4.1 S_[ACTION]_indv .. 32
4.2.4.2 S_[ACTION]_expl ... 33
4.2.4.3 P_[ACTION]_indv ... 34
4.2.4.4 P_[ACTION]_expl ... 35
4.2.4.5 P_[ACTION]_shared ... 36
4.2.4.6 P_[ACTION]_priv ... 37
4.2.4.7 C_[ACTION]_indv .. 38
4.2.4.8 C_[ACTION]_expl ... 38
4.2.4.9 C_[ACTION]_shared ... 38
4.2.4.10 Open_Close ... 39

4.2.5 Non-blocking I/O Benchmarks .. 39
4.2.5.1 Exploiting CPU ... 40
4.2.5.2 Displaying results .. 40

4.2.6 Multi - versions .. 40

5 Benchmark Methodology ... 41

5.1 Running IMB, command line control ... 41
5.1.1 Default case .. 42
5.1.2 Command line control ... 42

5.1.2.1 Benchmark selection arguments .. 42
5.1.2.2 -npmin selection .. 42
5.1.2.3 -multi <outflag> selection .. 43
5.1.2.4 -off_cache cache_size[,cache_line_size] selection 43
5.1.2.5 –iter ... 44
5.1.2.6 -time .. 44
5.1.2.7 -mem ... 44
5.1.2.8 -input <File> selection ... 44
5.1.2.9 –msg len <File> selection .. 45
5.1.2.10 –map PxQ selection .. 45

5.2 IMB parameters and hard-coded settings 45
5.2.1 Parameters controlling IMB .. 45
5.2.2 Communicators, active processes 47
5.2.3 Other preparations ... 47

5.2.3.1 Window (IMB_EXT) .. 47
5.2.3.2 File (IMB-IO) ... 47
5.2.3.3 Info .. 47
5.2.3.4 View (IMB-IO) ... 48

5.2.4 Message / I-O buffer lengths .. 48
5.2.4.1 IMB-MPI1, IMB-EXT ... 48
5.2.4.2 IMB-IO .. 48

5.2.5 Buffer initialization ... 48
5.2.6 Warm-up phase (MPI1, EXT) ... 49
5.2.7 Synchronization ... 49
5.2.8 The actual benchmark .. 49

5.2.8.1 MPI1 case ... 50
5.2.8.2 EXT and blocking I/O case ... 50
5.2.8.3 Non-blocking I/O case .. 50

6 Output .. 51

6.1 Sample 1 – IMB-MPI1 PingPong Allreduce...................................... 51
6.2 Sample 2 – IMB-MPI1 PingPing Allreduce 52
6.3 Sample 3 – IMB-IO p_write_indv .. 54

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 3 of 59

6.4 Sample 4 – IMB-EXT.exe ... 56

7 Further details ... 59

7.1 Memory requirements ... 59
7.2 Results checking .. 59

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 4 of 59

Disclaimer and Legal Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR
ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL
INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely
on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them. The information here is subject to change without notice. Do not finalize a design with this informa-
tion.

The products described in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each pro-
cessor family, not across different processor families. See http://www.intel.com/products/processor_number for details.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG
CODECs, or MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

The software described in this document may contain software defects which may cause the product to deviate from
published specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or copied in ac-
cordance with the terms of the license. The information in this manual is furnished for informational use only, is subject
to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation as-
sumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that
may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "unde-
fined." Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in
developer’s software code when running on an Intel processor. Intel reserves these features or instructions for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized
use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo,
Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom,
Intel Atom Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst,
Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark,
The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the
U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1997 - 2010, Intel Corporation. All rights reserved.

http://www.intel.com/�
http://www.intel.com/products/processor_number�

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 5 of 59

Revision History

Document
Number

Revision
Number

Description Revision Date

320714-001 2.3 Describes the initial version IMB, derived
from PMB (Pallas MPI Benchmarks)

Nov. 2004

320714-001 3.0 Descriptions added of environment amend-
ments, new Alltoallv benchmark

June 2006

320714-001 3.1 Description added of: Windows version; 4
new benchmarks (Scatter(v), Gath-
er(v)) ; IMB-IO functional fix

July 2007

320714-001 3.2 Run time control as default
Microsoft* Visual Studio* solution templates
included

August 2008

320714-002 3.2.1 Documented the following updates:
• Fix of memory corruption when the -msg

• Fix in accumulate benchmark related to using
the CHECK conditional compilation macro

len
command-line option is used with the Intel® MPI
Benchmark executables

• Fix for integer overflow in dynamic calculations
on the number of iterations

• Recipes for building IA-32 executables within
Microsoft* Visual Studio* 2005 and Microsoft*
Visual Studio* 2008 project folders associated
with the Intel® MPI Benchmarks

April 2010

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 6 of 59

1 Introduction
This document presents the Intel® MPI Benchmarks (IMB) suite. Its objectives are:

• Provide a concise set of benchmarks targeted at measuring the most important MPI functions.

• Set forth a precise benchmark methodology.

• Do not impose much of an interpretation on the measured results: report bare timings instead.
Show throughput values, if and only if these are well defined.

This release (Version 3.2.1) is the successor of the quite well known package PMB (Version 2.2) from
Pallas GmbH, Intel MPI Benchmarks (IMB) 2.3, 3.0, 3.1, and 3.2.

This document accompanies version 3.2.1 of IMB. The code is written in ANSI C plus standard MPI
(about 10,000 lines of code, 108 functions in 37 source files).

The IMB 3.2.1 package consists of 3 parts:

• IMB-MPI1

• 2 MPI-2 functionality parts
IMB-EXT (One-sided Communications benchmarks), and
IMB-IO (I/O benchmarks).

For each part, a separate executable can be built. If you do not have the MPI-2 extensions available, you
can install and use just IMB-MPI1. Only standard MPI-1 functions are used, no dummy library is needed.

Section 2 is a brief installation guide.

Section 3 is dedicated to IMB-MPI1. Section 3.3 defines the single benchmarks in detail. IMB introduces
a classification of its benchmarks. Single Transfer, Parallel Transfer, and Collective are the classes.
Roughly speaking, single transfers run dedicated, without obstructions from other transfers, undisturbed
results are to be expected (PingPong being the most well known example). Parallel transfers test the
system under global load, with concurrent actions going on. Finally, collective is a proper MPI classifica-
tion, where these benchmarks test the quality of the implementation for the higher level collective func-
tions.

Chapter 4 is dedicated to the MPI-2 functionality of IMB.

Section 5 defines the methodology and rules of IMB, section 6 shows templates of output tables. In sec-
tion 7, further important details are explained, in particular a results checking mode for IMB.

1.1 Changes in IMB_3.2.1 versus IMB_3.2
Compared to 3.2, IMB 3.2.1 includes the following updates:

• Fix of memory corruption when the -msg

• Fix in accumulate benchmark related to using the CHECK conditional compilation macro

len command-line option is used with the Intel® MPI
Benchmark executables

• Fix for integer overflow in dynamic calculations on the number of iterations
• Recipes for building IA-32 executables within Microsoft* Visual Studio* 2005 and Microsoft* Vis-

ual Studio* 2008 project folders associated with the Intel® MPI Benchmarks

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 7 of 59

1.2 Changes in IMB_3.2 versus IMB_3.1
IMB_3.2 has different default settings with respect to IMB_3.1, and there are now Microsoft* Visual Stu-
dio* project folders that can be used for Microsoft* Windows* platforms. In turn, Makefiles for Windows
nmake that had been contained in IMB_3.1 have been removed.

1.2.1 Run time control by default
The improved run time control that is associated with the flag –time, and that was introduced in IMB_3.1
(see 1.2.2 and 5.1.2.6), has become a default for the 3 executables (with a maximum run time per sam-
ple set to 10 s by parameter SECS_PER_SAMPLE in the include file IMB_settings.h).

1.2.2 Makefiles
Windows* nmake files have been removed (and replaced by Microsoft* Visual Studio* solutions, see
1.1.3).

The Linux version Makefiles have received new targets:

• Target “MPI1” (default) for building IMB-MPI1

• Target “EXT” for building IMB-EXT

• Target “IO” for building IMB-IO

• Target “all” for building all three of the above.

1.2.3 Microsoft* Visual Studio* Project Folders
IMB 3.2 contains Microsoft* Visual Studio* solutions based on an installation of Intel® MPI Library. A
dedicated folder for the Microsoft* Windows* versions has been created, however without duplicating
source files: the solutions refer to the source files that are located at their standard location within the
Intel® MPI Benchmarks directory structure.

Since such solutions are highly version dependent, we refrain from elaborate documentation here and
refer to the corresponding ReadMe.txt files that unpack with the folder and will be updated continuously.
We recommend familiarity with Microsoft* Visual Studio philosophy and the run time environment of your
Windows cluster at hand.

1.3 Changes in IMB_3.1 versus IMB_3.0
The changes against the previous version, 3.0, are new benchmarks, new flags and a Windows* version
of IMB 3.1.
As to the new control flags, most important are

• a better control of the overall repetition counts, run time and memory exploitation

• a facility to avoid cache re-usage of message buffers as far as possible

• a fix of IMB-IO semantics (see 4.2.2.2.1)

1.3.1 New benchmarks
The 4 benchmarks

• Gather

• Gatherv

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 8 of 59

• Scatter

• Scatterv
were added and are to be used in the usual IMB style.

1.3.2 New command line flags for better control
The 4 flags added are

-off_cache, -iter, -time, -mem (see 5.1.2 for the details).

-off_cache:
when measuring performance on high speed interconnects or, in particular, across the shared memory
within a node, traditional IMB results eventually included a very beneficial cache re-usage of message
buffers which led to idealistic results. The flag –off_cache allows for (largely) avoiding cache effects and
lets IMB use message buffers which are very likely not resident in cache.

-iter, -time:
are there for enhanced control of the overall run time, which is crucial for large clusters, where collectives
tend to run extremely long in traditional IMB settings.

(!) In IMB_3.2, the -time flag has been implemented as default

-mem
is used to determine an a priori maximum (per process) memory usage of IMB for the overall message
buffers.

1.3.3 Miscellaneous changes
• in the “Exchange” benchmark, the 2 buffers sent by MPI_Isend are separate now

• the command line is repeated in the output

• memory management is now completely encapsulated in functions “IMB_v_alloc /
IMB_v_free”

1.4 Changes in IMB_3.0 versus IMB_2.3
The changes of IMB_3.0 against version 2.3 had been:

• Added a call to the function “MPI_Init_thread” to determine the MPI threading environment. The MPI
threading environment is reported each time an Intel MPI Benchmark application is executed.

• Added a call to the function “MPI_Get_version” to report the version of the MPI library implementation
that the three benchmark applications are linking to.

• Added the “Alltoallv” benchmark.
• Added a command-line flag “-h[elp]“ to display the calling sequence for each benchmark applica-

tion.
• Removed outdated Makefile templates. Now there are three complete makefiles called Make-

file, make_ict, and make_mpich.
• Better command line argument checking, clean message and break on most invalid arguments.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 9 of 59

2 Installation and Quick Start of IMB
In order to run IMB-MPI1, you need:

• cpp, ANSI C compiler, gmake on Linux* or Unix*.

• For Microsoft Windows, it is recommend that you use the enclosed Microsoft Visual* C++ solu-
tions as a basis.

• MPI installation, including a startup mechanism for parallel MPI programs.

See 7.1 for the memory requirements of IMB.

2.1 Installing and running
After unpacking, the directory contains:

a file ReadMe_first

and 5 subdirectories

./doc (ReadMe_IMB.txt; IMB_Users_Guide.pdf, this file)

./src (program source- and Make-files)

./WINDOWS (Visual Studio Solutions)

./license (license agreements text)

./versions_news (version history and news)

Please read the license agreements first:

• license.txt specifies the source code license granted to you

• use-of-trademark-license.txt specifies the license for using the name and/or trademark "Intel®
MPI Benchmarks"

To get a quick start, see ./doc/ReadMe_IMB.txt.

On Linux, you can remove legacy binary object files and executables by typing the command:

make clean

You can then build selected executables with the command:

make MPI1 (or EXT or IO)

or all three executables with the command:

make all

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 10 of 59

The above command assumes that the environment variables CC has been set appropriately prior to the
makefile command invocation.

On Microsoft Windows, you can use the enclosed solution files as basis.

After installation, use your style of starting MPI programs, e.g.
mpirun –np <P> IMB-MPI1 (IMB-EXT,IMB-IO)

to get the full suite of all benchmarks. For more selective running, see 5.1.2

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 11 of 59

3 IMB-MPI1
This section is dedicated to the part of IMB measuring the ‘classical’ message passing functionality of
MPI-1.

3.1 General
The idea of IMB is to provide a concise set of elementary MPI benchmark kernels. With one executable,
all of the supported benchmarks, or a subset specified by the command line, can be run. The rules, such
as time measurement (including a repetitive call of the kernels for better clock synchronization), mes-
sage lengths, selection of communicators to run a particular benchmark (inside the group of all started
processes) are program parameters.

IMB has a standard and an optional configuration (see 5.2.1). In the standard case, all parameters men-
tioned above are fixed and must not be changed.

In standard mode, message lengths are varied from 0,1,2,4,8,16 … to
4194304 bytes. Through a command line flag, an arbitrary set of message lengths can be input by a file
(flag –msglen, see 5.1.2.9).

The minimum P_min and maximum number P of processes can be selected via command line, the
benchmarks run on P_min, 2P_min, 4P_min, ... 2xP_min<P and P processes. See chapter 5.1.2.2 for the
details.

You have some choice for the mapping of processes. For instance, when running on a clustered system,
a benchmark such as PingPong, can be run intra node and inter node, without changing a mapping file
(-map flag, see 5.1.2.10)

3.2 The benchmarks
The current version of IMB-MPI1 contains the benchmarks:

• PingPong
• PingPing
• Sendrecv
• Exchange
• Bcast
• Allgather
• Allgatherv
• Scatter
• Scatterv
• Gather
• Gatherv
• Alltoall
• Alltoallv
• Reduce
• Reduce_scatter
• Allreduce
• Barrier

The exact definitions will be given in section 3.3. Section 5 describes the benchmark methodology.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 12 of 59

IMB-MPI1 allows for running all benchmarks in more than one process group. For example, when run-
ning PingPong on N≥4 processes, you may request (see 5.1.2.3) that N/2 disjoint groups of 2 processes
each be formed, all and simultaneously running PingPong.

Note that these multiple versions have to be carefully distinguished from their standard equivalents. They
will be called:

• Multi-PingPong
• Multi-PingPing
• Multi-Sendrecv
• Multi-Exchange
• Multi-Bcast
• Multi-Allgather
• Multi-Allgatherv
• Multi-Scatter
• Multi-Scatterv
• Multi-Gather
• Multi-Gatherv
• Multi-Alltoall
• Multi-Alltoallv
• Multi-Reduce
• Multi-Reduce_scatter
• Multi-Allreduce
• Multi-Barrier

For a distinction, sometimes we will refer to the standard (non Multi) benchmarks as primary bench-
marks.

The way of interpreting the timings of the Multi-benchmarks is quite easy, given a definition for the
primary cases: per group, this is as in the standard case. Finally, the max timing (min throughput) over all
groups is displayed. On request, all per group information can be reported, see 5.1.2.3.

3.3 IMB-MPI1 benchmark definitions
In this chapter, the single benchmarks are described. Here we focus on the elementary patterns of the
benchmarks. The methodology of measuring these patterns (message lengths, sample repetition counts,
timer, synchronization, number of processes and communicator management, display of results) are
defined in chapters 5 and 6.

3.3.1 Benchmark classification
For a clear structuring of the set of benchmarks, IMB introduces classes of benchmarks: Single Transfer,
Parallel Transfer, and Collective. This classification refers to different ways of interpreting results, and to
a structuring of the code itself. It does not actually influence the way of using IMB. Also holds this classi-
fication hold for IMB-MPI2 (see 4.2.1).

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 13 of 59

IMB-MPI1

Single Transfer Parallel Transfer Collective
PingPong Sendrecv Bcast
PingPing Exchange Allgather
 Allgatherv
 Multi-PingPong Alltoall
 Multi-PingPing Alltoallv
 Multi-Sendrecv Scatter
 Multi-Exchange Scatterv
 Gather
 Gatherv
 Reduce
 Reduce_scatter
 Allreduce
 Barrier
 Multi-versions of these

3.3.1.1 Single Transfer benchmarks
The benchmarks in this class are to focus on a single message transferred between two processes. As
for the PingPong benchmark, this is the usual way of looking at it. From an IMB interpretation, PingP-
ing measures the same as PingPong, under the particular circumstance that a message is obstructed
by an oncoming one (sent simultaneously by the same process that receives the own one).

Single transfer benchmarks only run with 2 active processes (see 5.2.2 for the definition of active).

For PingPing, pure timings will be reported, and the throughput is related to a single message. Ex-
pected numbers, very likely, are between half and full PingPong throughput. With this, PingPing de-
termines the throughput of messages under non optimal conditions (namely, oncoming traffic).

See 3.3.2.1 for exact definition.

3.3.1.2 Parallel Transfer benchmarks
These benchmarks focus on global mode, say, patterns. The activity at a certain process is in concur-
rency with other processes, and thus the benchmark measures message passing efficiency under global
load.

For the interpretation of Sendrecv and Exchange, more than 1 message (per sample) counts. As to
the throughput numbers, the total turnover (the number of sent plus the number of received bytes) at a
certain process is taken into account. For instance, for the case of 2 processes, Sendrecv becomes
the bi-directional test: perfectly bi-directional systems are rewarded by a double PingPong throughput
here.

Thus, the throughputs are scaled by certain factors. See 3.3.3.1 and 3.3.3.2 for exact definitions. As to
the timings, raw results without scaling will be reported.

The Multi mode secondarily introduces into this class

• Multi-PingPong
• Multi-PingPing
• Multi-Sendrecv
• Multi-Exchange

3.3.1.3 Collective benchmarks
This class contains all benchmarks that are collective in proper MPI convention. Not only is the message
passing power of the system relevant here, but also the quality of the implementation.

For simplicity, we also include the Multi versions of these benchmarks into this class.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 14 of 59

Raw timings and no throughput are reported.

Note that certain collective benchmarks (namely the reductions) play a particular role as they are not
pure message passing tests, but also depend on an efficient implementation of certain numerical opera-
tions.

3.3.2 Definition of Single Transfer benchmarks
This section describes the single transfer benchmarks in detail. Each benchmark is run with varying
message lengths of X bytes, and timings are averaged over multiple samples. See 5.2.4 for the descrip-
tion of the methodology. Here we describe the view of one single sample, with a fixed message length X
bytes. The basic MPI data-type for all messages is MPI_BYTE.

Throughput values are defined in MBytes / sec = 220 bytes / sec scale (throughput = X / 220 * 106 / time = X /
1.048576 / time, when time is in µsec).

3.3.2.1 PingPong
PingPong is the classical pattern used for measuring startup and throughput of a single message sent
between two processes.

3.3.2.2 PingPing
PingPong, and PingPing measure startup and throughput of single messages, with the crucial differ-
ence that messages are obstructed by oncoming messages. For this, two processes communicate
(MPI_Isend/MPI_Recv/MPI_Wait) with each other, with the MPI_Isend’s issued simultaneously.

Measured pattern As symbolized between in Figure 1; two ac-
tive processes only (Q=2, see 5.2.2)

based on MPI_Send, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = ∆t/2 (in µsec) as indicated in Figure 1

reported throughput X/1.048576/time

Measured pattern As symbolized between in Figure 2; two ac-
tive processes only (Q=2, 5.2.2)

based on MPI_Isend/MPI_Wait, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = ∆t (in µsec) as indicated in Figure 2

reported throughput X/1.048576/time

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 15 of 59

Figure 1: PingPong pattern

Figure 2: PingPing pattern

PROCESS 2

MPI_Isend(request=R)

MPI_Recv
MPI_Wait(R)

PROCESS 1

MPI_Isend(request=R)

MPI_Recv
MPI_Wait(R)

∆t

X bytes X bytes

PROCESS 1

MPI_Send

MPI_Recv

PROCESS 2

MPI_Recv
MPI_Send

∆t

time=∆t/2

 X bytes

 X bytes

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 16 of 59

Definition of Parallel Transfer benchmarks

This section describes the parallel transfer benchmarks in detail. Each benchmark is run with varying
message lengths of X bytes, and timings are averaged over multiple samples. See section 5 for the de-
scription of the methodology. Here we describe the view of one single sample, with a fixed message
length of X bytes. The basic MPI data-type for all messages is MPI_BYTE.

The throughput calculations of the benchmarks described here take into account the (per sample) mul-
tiplicity nmsg of messages outgoing from or incoming at a particular process. In the Sendrecv bench-
mark, a particular process sends and receives X bytes, the turnover is 2X bytes, nmsg=2. In the Ex-
change case, we have 4X bytes turnover, nmsg

Throughput values are defined in MBytes/sec = 220 bytes / sec scale (
throughput = n

=4.

msg*X/220 * 106/time = nmsg

3.3.2.3 Sendrecv

*X / 1.048576 / time, when time is in µsec).

Based on MPI_Sendrecv, the processes form a periodic communication chain. Each process sends to
the right and receives from the left neighbor in the chain.

The turnover count is 2 messages per sample (1 in, 1 out) for each process.

Sendrecv is equivalent with the Cshift benchmark and, in case of 2 processes, the PingPing
benchmark of IMB1.x. For 2 processes, it will report the bi-directional bandwidth of the system, as ob-
tained by the (optimized) MPI_Sendrecv function.

Figure 3: Sendrecv pattern

3.3.2.4 Exchange
Exchange is a communications pattern that often occurs in grid splitting algorithms (boundary ex-
changes). The group of processes is seen as a periodic chain, and each process exchanges data with
both left and right neighbor in the chain.

Measured pattern As symbolized between in Figure 3

based on MPI_Sendrecv

MPI_Datatype MPI_BYTE

reported timings time = ∆t (in µsec) as indicated in Figure 3

reported throughput 2X/1.048576/time

PR. I+1

MPI_
Sendrecv

PR. I-1

MPI_
Sendrecv

PR. I

MPI_
Sendrecv

 X bytes X bytes ∆t

Periodic chain

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 17 of 59

The turnover count is 4 messages per sample (2 in, 2 out) for each process.

For the 2 Isend messages, separate buffers are used (new in IMB 3.1).

Figure 4: Exchange pattern

3.3.3 Definition of Collective benchmarks
This section describes the Collective benchmarks in detail. Each benchmark is run with varying message
lengths of X bytes, and timings are averaged over multiple samples. See section 5 for the description of
the methodology. Here we describe the view of one single sample, with a fixed message length of X
bytes. The basic MPI data-type for all messages is MPI_BYTE for the pure data movement functions and
MPI_FLOAT for the reductions.

For all Collective benchmarks, only bare timings and no throughput data is displayed.

Measured pattern As symbolized between in Figure 4

based on MPI_Isend/MPI_Waitall, MPI_Recv

MPI_Datatype MPI_BYTE

reported timings time = ∆t (in µsec) as indicated in Figure 4

reported throughput 4X/1.048576/time

PR. I+1

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

PR. I-1

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

PR. I

MPI_Isend
MPI_Isend
MPI_Recv
MPI_Recv
MPI_Waitall

Periodic chain

Each carries X bytes

∆t

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 18 of 59

3.3.3.1 Reduce

3.3.3.2 Reduce_scatter

measured pattern MPI_Reduce_scatter

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

reported timings bare time

reported throughput none

3.3.3.3 Allreduce

3.3.3.4 Allgather

Benchmark for the MPI_Reduce function. It reduces a vector of length
L = X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, and the MPI operation is MPI_SUM.

The root of the operation is changed round robin.

See also the remark in the end of 3.3.1.3.

measured pattern MPI_Reduce

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

root i%num_procs in iteration i

reported timings bare time

reported throughput none

Benchmark for the MPI_Reduce_scatter function. It reduces a vector of length
L = X/sizeof(float)float items. The MPI data-type is MPI_FLOAT, the MPI operation is MPI_SUM. In the
scatter phase, the L items are split as evenly as possible. Exactly, when
np = #processes, L = r*np+s (s = L mod np),

then process with rank i gets r+1 items when i<s, and r items when i≥s.

See also the remark in the end of 3.3.1.3.

Benchmark for the MPI_Allreduce function. It reduces a vector of length
L = X/sizeof(float) float items. The MPI data-type is MPI_FLOAT, the MPI operation is MPI_SUM.

See also the remark in the end of 3.3.1.3.

measured pattern MPI_Allreduce

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

reported timings bare time

reported throughput none

Benchmark for the MPI_Allgather function. Every process inputs X bytes and receives the gathered
X*(#processes) bytes.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 19 of 59

Measured pattern MPI_Allgather

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

3.3.3.5 Allgatherv

Measured pattern MPI_Allgatherv

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

3.3.3.6 Scatter

3.3.3.7 Scatterv
Benchmark for the MPI_Scatterv function. The root process inputs X*(#processes) bytes (X for each
process); all processes receive X bytes.

The root of the operation is changed round robin.

Measured pattern MPI_Scatterv

MPI_Datatype MPI_BYTE

root i%num_procs in iteration i
reported timings bare time

reported throughput none

3.3.3.8 Gather
Benchmark for the MPI_Gather function. All processes input X bytes, and the root process receives
X*(#processes) bytes (X from each process).
The root of the operation is changed round robin.

Functionally is the same as Allgather. However, with the MPI_Allgatherv function it shows whether
MPI produces overhead due to the more complicated situation as compared to MPI_Allgather.

Benchmark for the MPI_Scatter function. The root process inputs X*(#processes) bytes (X for each
process); all processes receive X bytes.

The root of the operation is changed round robin.

Measured pattern MPI_Scatter

MPI_Datatype MPI_BYTE

root i%num_procs in iteration i
reported timings bare time

reported throughput none

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 20 of 59

Measured pattern MPI_Gather

MPI_Datatype MPI_BYTE

root i%num_procs in iteration i
reported timings bare time

reported throughput none

3.3.3.9 Gatherv
Benchmark for the MPI_Gatherv function. All processes input X bytes, and the root process receives
X*(#processes) bytes (X from each process).
The root of the operation is changed round robin.

Measured pattern MPI_Gather

MPI_Datatype MPI_BYTE

root i%num_procs in iteration i
reported timings bare time

reported throughput none

3.3.3.10 Alltoall

3.3.3.11 Alltoallv

3.3.3.12 Bcast

Benchmark for the MPI_Alltoall function. Every process inputs X*(#processes) bytes (X for each
process) and receives X*(#processes) bytes (X from each process).

Measured pattern MPI_Alltoall

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

Benchmark for the MPI_Alltoall function. Every process inputs X*(#processes) bytes (X for each
process) and receives X*(#processes) bytes (X from each process).

Measured pattern MPI_Alltoallv

MPI_Datatype MPI_BYTE

reported timings bare time

reported throughput none

Benchmark for MPI_Bcast. A root process broadcasts X bytes to all.

The root of the operation is changed round robin.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 21 of 59

measured pattern MPI_Bcast

MPI_Datatype MPI_BYTE

root i%num_procs in iteration i

reported timings bare time

reported throughput None

3.3.3.13 Barrier
measured pattern MPI_Barrier

reported timings bare time

reported throughput none

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 22 of 59

4 MPI-2 part of IMB
This section describes how the MPI-2 semantics of IMB, IMB-EXT and IMB-IO, are handled.

4.1 The benchmarks
Table 1 below contains a list of all IMB-MPI2 benchmarks. The exact definitions are given in section 4.2,
in particular refer to 4.2.2.2 for an explanation of the Aggregate Mode, 4.2.5 for the Non-blocking Mode
column. Section 5 describes the benchmark methodology.

The non-blocking modes of IMB-IO read / write benchmarks are defined as different benchmarks,
with Read / Write replaced by IRead / IWrite in the benchmark names.

Benchmark Aggregate Mode Non-blocking Mode

IMB-EXT
Window
Unidir_Put ×
Unidir_Get ×
Bidir_Get ×
Bidir_Put ×
Accumulate ×
Multi- versions of the
above

×

Benchmark Aggregate Mode Nonblocking Mode

IMB-IO

Open_Close
S_Write_indv × S_IWrite_indv
S_Read_indv S_IRead_indv
S_Write_expl × S_IWrite_expl
S_Read_expl S_IRead_expl
P_Write_indv × P_IWrite_indv
P_Read_indv P_IRead_indv
P_Write_expl × P_IWrite_expl
P_Read_expl P_IRead_expl
P_Write_shared × P_IWrite_shared
P_Read_shared P_IRead_shared
P_Write_priv × P_IWrite_priv
P_Read_priv P_IRead_priv
C_Write_indv × C_IWrite_indv
C_Read_indv C_IRead_indv
C_Write_expl × C_IWrite_expl
C_Read_expl C_IRead_expl
C_Write_shared × C_IWrite_shared
C_Read_shared C_IRead_shared
Multi-versions of the
above

(×) Multi-versions of the
above

Table 1: IMB-MPI-2 benchmarks

The naming conventions for the benchmarks are as follows:

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 23 of 59

• Unidir/Bidir stand for unidirectional/bidirectional one-sided communications. These are the
one-sided equivalents of PingPong and PingPing.

• the Multi- prefix is defined as in 3.2. It is to be interpreted as multi-group version of the
benchmark.

• prefixes S_/P_/C_ mean Single/Parallel/Collective. The classification is the same as in the
MPI1 case. In the I/O case, a Single transfer is defined as a data transfer between one MPI
process and one individual window or file. Parallel means that eventually more than 1 process par-
ticipates in the overall pattern, whereas Collective is meant in proper MPI sense. See 3.3.1.

• the postfixes mean: expl: I/O with explicit offset; indv: I/O with an individual file pointer;
shared: I/O with a shared file pointer; priv: I/O with an individual file pointer to one private file
for each process (opened for MPI_COMM_SELF on each process).

4.2 IMB-MPI2 benchmark definitions
In this section, all IMB-MPI2 benchmarks are described. The definitions focus on the elementary patterns
of the benchmarks. The methodology of measuring these patterns (transfer sizes, sample repetition
counts, timer, synchronization, number of processes and communicator management, display of results)
is defined in sections 5 and 6.

4.2.1 Benchmark classification
To clearly structure the set of benchmarks, IMB introduces three classes of benchmarks: Single Trans-
fer, Parallel Transfer, and Collective. This classification refers to different ways of interpreting results,
and to a structuring of the benchmark codes. It does not actually influence the way of using IMB. Note
that this is the classification already introduced for IMB-MPI1 (3.3.1). Two special benchmarks, measur-
ing accompanying overheads of one sided communications (MPI_Win_create / MPI_Win_free)
and of I/O (MPI_File_open / MPI_File_close), have not been assigned a class.

Single Transfer Parallel Transfer Collective Other

Unidir_Get Multi-Unidir_Get Accumulate Window
Unidir_Put Multi-Unidir_Put Multi-Accumulate (also Multi)
Bidir_Get Multi-Bidir_Get
Bidir_Put Multi-Bidir_Put

S_[I]Write_indv P_[I]Write_indv C_[I]Write_indv Open_close
S_[I]Read_indv P_[I]Read_indv C_[I]Read_indv (also Multi)
S_[I]Write_expl P_[I]Write_expl C_[I]Write_expl
S_[I]Read_expl P_[I]Read_expl C_[I]Read_expl
 P_[I]Write_shared C_[I]Write_shared
 P_[I]Read_shared C_[I]Read_shared
 P_[I]Write_priv Multi- versions
 P_[I]Read_priv

Table 2: IMB-MPI2 benchmark classification

4.2.1.1 Single Transfer benchmarks
The benchmarks in this class focus on a single data transferred between one source and one target. In
IMB-MPI2, the source of the data transfer can be an MPI process or, in case of Read benchmarks, an
MPI file. Analogously, the target can be an MPI process or an MPI file. Note that with this definition,

• single transfer IMB-EXT benchmarks only run with 2 active processes

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 24 of 59

• single transfer IMB-IO benchmarks only run with 1 active process (see 5.2.2 for the definition of
“active“).

Single transfer benchmarks, roughly speaking, are local mode. The particular pattern is purely local to
the participating processes. There is no concurrency with other activities. Best case results are to be
expected.

Raw timings will be reported, and the well-defined throughput.

4.2.1.2 Parallel Transfer benchmarks
These benchmarks focus on global mode, say, patterns. The activity at a certain process is in concur-
rency with other processes, the benchmark timings are produced under global load. The number of par-
ticipating processes is arbitrary.

Time is measured as maximum over all single processes’ timings, throughput is related to that time and
the overall, additive amount of transferred data (sum over all processes).

This definition is applied per group in the Multi - cases, see 5.1.2.3, and the results of the worst group
are displayed.

4.2.1.3 Collective benchmarks
This class contains benchmarks of functions that are collective in the proper MPI sense. Not only is the
power of the system relevant here, but also the quality of the implementation for the corresponding high-
er level functions.

Time is measured as maximum over all single processes’ timings, no throughput is calculated.

4.2.2 Benchmark modes
Certain benchmarks have different modes to run.

4.2.2.1 Blocking / non-blocking mode (only IMB-IO)
This distinction is in the proper MPI-IO sense. Blocking and non-blocking mode of a benchmark are se-
parated in two single benchmarks, see Table 1. See 4.2.5 for the methodology.

4.2.2.2 Aggregate / Non Aggregate mode
For certain benchmarks, IMB defines a distinction between aggregate and non aggregate mode:

• all one sided communications benchmarks

• all blocking (!) IMB-IO Write benchmarks, using some flavor of MPI-IO file writing.

The key point is where to assure completion of a data transfers – either after each single one (non ag-
gregate) or after a bunch of multiple transfers (aggregate). It is important to define what “assure comple-
tion” means.

4.2.2.2.1 Assure completion of transfers

Assure completion means:

• MPI_Win_fence (IMB-EXT)
• A triplet
MPI_File_sync / MPI_Barrier (file_communicator) / MPI_File_sync (IMB-IO
Write). Following the MPI standard, this is the minimum sequence of operations after which all
processes of the file’s communicator have a consistent view after a write. This fixes the non suf-
ficient definition in IMB_3.0.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 25 of 59

4.2.2.2.2 Mode definition

The basic pattern of these benchmarks is shown in Figure 5. Here,

• M is some repetition count

• a transfer is issued by the corresponding one sided communication call (for IMB-EXT) and by
an MPI-IO write call (IMB-IO)

• disjoint means: the multiple transfers (if M>1) are to/from disjoint sections of the window or file.
This is to circumvent misleading optimizations when using the same locations for multiple trans-
fers.

IMB runs the corresponding benchmarks with two settings:

• M = 1 (non aggregate mode)

• M = n_sample (aggregate mode), with n_sample as defined later, refer to 5.2.8.

Figure 5: Aggregation of M transfers (IMB-EXT and blocking Write benchmarks)

The variation of M should provide important information about the system and the implementation, crucial
for application code optimizations. For instance, the following possible internal strategies of an imple-
mentation could highly influence the timing outcome of the above pattern.

• accumulative strategy. Several successive transfers (up to M in
Figure 5) are accumulated (for example by a caching mechanism), without an immediate comple-
tion. At certain stages (system and runtime dependent), at best only in the assure completion part,
the accumulated transfers are completed as a whole. This approach may save expensive syn-
chronizations. The expectation is that this strategy would provide for (much) better results in the
aggregate case as compared to the non aggregate one.

• non-accumulative strategy. Every single transfer is automatically completed before the return
from the corresponding function. Expensive synchronizations are taken into account eventually.
The expectation is that this strategy would produce (about) equal results for aggregate and non
aggregate case.

4.2.3 Definition of the IMB-EXT benchmarks
This section describes the benchmarks in detail. They will run with varying transfer sizes X (in bytes), and
timings will be averaged over multiple samples. See 5 for the description of the methodology. Here we
describe the view of one single sample, with a fixed transfer size X.

Note that the Unidir (Bidir) benchmarks are exact equivalents of the message passing PingPong
(PingPing, respectively). Their interpretation and output is analogous to their message passing equiva-
lents.

 Select some repetition count M
 time = MPI_Wtime();
 issue M disjoint transfers
 assure completion of all transfers
 time = (MPI_Wtime() - time) / M

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 26 of 59

4.2.3.1 Unidir_Put
Benchmark for the MPI_Put function. Table 3 below shows the basic definitions. Figure 6 is a schematic
view of the pattern.

Table 3 : Unidir_Put definition

Figure 6: Unidir_Put pattern

4.2.3.2 Unidir_Get
Benchmark for the MPI_Get function.

Table 4 below shows the basic definitions. Figure 7 is a schematic view of the pattern.

measured pattern as symbolized between in Figure 6;
2 active processes only

based on MPI_Put

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in µsec) as indicated in Figure 6, non aggregate
(M=1) and aggregate (cf. 0; M=n_sample, see 5.2.8)

reported throughput X/t, aggregate and non aggregate

measured pattern as symbolized between in Figure 7;
2 active processes only

based on MPI_Get

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in µsec) as indicated in Figure 7, non aggregate
(M=1) and aggregate (cf. 0; M=n_sample, see 5.2.8)

reported throughput X/t, aggregate and non aggregate

PROCESS 2

MPI_Win_fence

PROCESS 1

M fold MPI_Put

(disjoint)

MPI_Win_fence

∆ t(M)

 X bytes

t = t(M) = ∆ t(M)/M

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 27 of 59

Table 4: Unidir_Get definition

Figure 7: Unidir_Get pattern

4.2.3.3 Bidir_Put
Benchmark for MPI_Put, with bi-directional transfers.

Table 5 below shows the basic definitions. Figure 8 is a schematic view of the pattern.

measured pattern as symbolized between in Figure 8;
2 active processes only

based on MPI_Put

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in µsec) as indicated in Figure 8, non aggregate
(M=1) and aggregate (cf. 0; M=n_sample, see 5.2.8)

reported throughput X/t, aggregate and non aggregate

Table 5: Bidir_Put definition

PROCESS 2

MPI_Win_fence

PROCESS 1

M fold MPI_Get

(disjoint)

MPI_Win_fence

∆ t(M) X bytes

PROCESS 2

M fold MPI_Put

(disjoint)

MPI_Win_fence

PROCESS 1

M fold MPI_Put

(disjoint)

MPI_Win_fence

t = t(M) = ∆ t(M)/M

∆ t(M)
X bytes

t = t(M) = ∆ t(M)/M

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 28 of 59

Figure 8: Bidir_Put pattern

4.2.3.4 Bidir_Get
Benchmark for the MPI_Get function, with bi-directional transfers.

Table 6 below shows the basic definitions. Figure 9 is a schematic view of the pattern.

measured pattern as symbolized between in Figure 9;
2 active processes only

based on MPI_Get

MPI_Datatype MPI_BYTE (origin and target)

reported timings t=t(M) (in µsec) as indicated in Figure 9, non aggregate
(M=1) and aggregate (cf. 0; M=n_sample, see 5.2.8)

reported throughput X/t, aggregate and non aggregate

Table 6: Bidir_Get definition

Figure 9: Bidir_Get pattern

4.2.3.5 Accumulate
Benchmark for the MPI_Accumulate function. It reduces a vector of length L = X/sizeof(float) float items.
The MPI data-type is MPI_FLOAT, and the MPI operation is MPI_SUM.

Table 7 below shows the basic definitions. Figure 10 is a schematic view of the pattern.

measured pattern as symbolized between in Figure 10

based on MPI_Accumulate

MPI_Datatype MPI_FLOAT

MPI_Op MPI_SUM

Root 0

reported timings t=t(M) (in µsec) as indicated in Figure 10, non aggregate
(M=1) and aggregate (cf. 0; M=n_sample, see 5.2.8)

reported throughput none

PROCESS 2

M fold MPI_Get

(disjoint)

MPI_Win_fence

PROCESS 1

M fold MPI_Get

(disjoint)

MPI_Win_fence

∆ t(M)
X bytes

t = t(M) = ∆ t(M)/M

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 29 of 59

Table 7: Accumulate definition

Figure 10: Accumulate pattern

4.2.3.6 Window
Benchmark measuring the overhead of an MPI_Win_create / MPI_Win_fence / MPI_Win_free
combination. In order to prevent the implementation from optimizations in case of an unused window, a
negligible non trivial action is performed inside the window. The MPI_Win_fence function is called to
properly initialize an access epoch (this is a correction as compared to earlier releases of the Intel® MPI
Benchmarks).

Table 8 below shows the basic definitions. Figure 11 is a schematic view of the pattern.

 all active processes

M fold MPI_Accumulate (X bytes rank 0)
(disjoint)

MPI_Win_fence

∆ t(M)

t = t(M) = ∆ t(M)/M

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 30 of 59

measured pattern MPI_Win_create / MPI_Win_fence /
MPI_Win_free

reported timings t=∆t (in µsec) as indicated in Figure 11

reported throughput none

Table 8: Window definition

Figure 11: Window pattern

 all active processes

MPI_Win_create (size = X)
MPI_Win_fence
MPI_Put (1 byte Window)
MPI_Win_free

∆ t

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 31 of 59

4.2.4 Definition of the IMB-IO benchmarks (blocking case)
This section describes the blocking I/O benchmarks in detail (see 4.2.5 for the non-blocking case). The
benchmarks will run with varying transfer sizes X (in bytes), and timings are averaged over multiple sam-
ples. See section 5 for the description of the methodology. Here we describe the view of one single sam-
ple with a fixed I/O size of X. Basic MPI data-type for all data buffers is MPI_BYTE.

All benchmark flavors have a Write and a Read component. In the sequel, a symbol [ACTION] will be
used to denote a Read or a Write alternatively.

Every benchmark contains an elementary I/O action, denoting the pure read/write. Moreover, in the
Write cases, a file synchronization is included, with different placements for aggregate and non aggre-
gate modes.

Figure 12: I/O benchmarks, aggregation for output

M fold elementary I/O action (output),
disjoint file sections

MPI_File_sync

∆ t(M)

Output: M fold aggregation

non-aggregate mode:
t = ∆ t(M = 1)

aggregate mode:
t = ∆ t(M = n_sample) / M

(choice of M = n_sample: see 5.2.8)

 single elementary I/O action (input) t = ∆ t

Input: No aggregation

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 32 of 59

4.2.4.1 S_[ACTION]_indv
File I/O performed by a single process. This pattern mimics the typical case that one particular (master)
process performs all of the I/O.

Table 9 below shows the basic definitions. Figure 13: S_[ACTION]_indv pattern is a schematic view of
the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized Figure 1

based on
resp. for nonblocking
mode

MPI_File_write / MPI_File_read
MPI_File_iwrite / MPI_File_iread

etype MPI_BYTE

filetype MPI_BYTE

MPI_Datatype MPI_BYTE

reported timings t (in µsec) as indicated in Figure 12, aggregate and non
aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

Table 9: S_[ACTION]_indv definition

Figure 13: S_[ACTION]_indv pattern

PROCESS 1 PROCESS 2 .. N

MPI_File_[ACTION] No I/O action

 FILE

 X bytes

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 33 of 59

4.2.4.2 S_[ACTION]_expl
Mimics the same situation as S_[ACTION]_indv, with a different strategy to access files, however.

Table 10 below shows the basic definitions. Figure 14 is a schematic view of the pattern.

Table 10: S_[ACTION]_expl definition

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 14

based on
resp. for nonblocking
mode

MPI_File_write_at / MPI_File_read_at
MPI_File_iwrite_at /
MPI_File_iread_at

etype MPI_BYTE

filetype MPI_BYTE

MPI_Datatype MPI_BYTE

reported timings t (in µsec) as indicated in Figure 12, aggregate and non
aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

 PROCESS 1 PROCESS 2 .. N

MPI_File_[ACTION]_at No I/O action

 FILE

 X bytes

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 34 of 59

Figure 14: S_[ACTION]_expl pattern

4.2.4.3 P_[ACTION]_indv
This pattern accesses the file in a concurrent manner. All participating processes access a common file.

Table 11 below shows the basic definitions. Figure 15 is a schematic view of the pattern.

Table 11: P_[ACTION]_indv definition

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 15 (Nproc = number of
processes)

based on
resp. for nonblocking
mode

MPI_File_write / MPI_File_read
MPI_File_iwrite / MPI_File_iread

etype MPI_BYTE

filetype tiled view, disjoint contiguous blocks

MPI_Datatype MPI_BYTE

reported timings t (in µsec) as indicated in Figure 12, aggregate and non
aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

PR. I+1 PR. I-1 PR. I

common tiled file (disjoint contiguous blocks)

X / Nproc bytes

MPI_File_[ACTION]

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 35 of 59

Figure 15: P_[ACTION]_indv pattern

4.2.4.4 P_[ACTION]_expl
P_[ACTION]_expl follows the same access pattern as P_[ACTION]_indv, with an explicit file pointer
type, however.

Table 12 below shows the basic definitions. Figure 16 is a schematic view of the pattern.

Table 12: P_[ACTION]_expl definition

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 16 (Nproc = number of
processes)

based on
resp. for nonblocking
mode

MPI_File_write_at / MPI_File_read_at
MPI_File_iwrite_at /
MPI_File_iread_at

etype MPI_BYTE

filetype MPI_BYTE

MPI_Datatype MPI_BYTE

reported timings t (in µsec) as indicated in Figure 12, aggregate and non
aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

PR. I+1

PR. I-1

 PR. I

MPI_File_[ACTION]_at

common file (disjoint contiguous blocks)

X / Nproc bytes

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 36 of 59

Figure 16: P_[ACTION]_expl pattern

4.2.4.5 P_[ACTION]_shared
Concurrent access to a common file by all participating processes, with a shared file pointer.

Table 13 below shows the basic definitions. Figure 17 is a schematic view of the pattern.

Table 13: P_[ACTION]_shared definition

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 17
(Nproc = number of processes)

based on

resp. for nonblocking
mode

MPI_File_write_shared /
MPI_File_read_shared
MPI_File_iwrite_shared /
MPI_File_iread_shared

etype MPI_BYTE

filetype MPI_BYTE

MPI_Datatype MPI_BYTE

reported timings t (in µsec) as indicated in Figure 12, aggregate and non
aggregate for Write case

reported throughput X/t, aggregate and non aggregate for Write case

 PR. I+1

PR. I -1

 PR. I

MPI_File_[ACTION]_shared

X / Nproc bytes

shared file (disjoint contiguous blocks)

some order of blocks (random)

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 37 of 59

Figure 17: P_[ACTION]_shared pattern

4.2.4.6 P_[ACTION]_priv
This pattern tests the (very important) case that all participating processes perform concurrent I/O, how-
ever to different (private) files. It is of particular interest for systems allowing completely independent I/O
from different processes. In this case, this pattern should show parallel scaling and optimum results.

Table 14 below shows the basic definitions. Figure 18 is a schematic view of the pattern.

measured pattern as symbolized in Figure 12

elementary I/O action as symbolized in Figure 18
(Nproc = number of processes)

based on
resp. for nonblocking
mode

MPI_File_write / MPI_File_read
MPI_File_iwrite / MPI_File_iread

etype MPI_BYTE

filetype MPI_BYTE

MPI_Datatype MPI_BYTE

reported timings ∆ t (in µsec) as indicated in Figure 12, aggregate and
non aggregate for Write case

reported throughput X/∆t, aggregate and non aggregate for Write case

Table 14: P_[ACTION]_priv definition

Figure 18: P_[ACTION]_priv pattern

PR. I+1

PR. I-1

 PR. I

MPI_File_[ACTION]

private file for each process

X / Nproc bytes

File I-1 File I File I+1

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 38 of 59

4.2.4.7 C_[ACTION]_indv
C_[ACTION]_indv tests collective access from all processes to a common file, with an individual file
pointer.

Table 15 below shows the basic definitions, and a schematic view of the pattern is shown in Figure 15.

based on

resp. for nonblocking
mode

MPI_File_read_all /
MPI_File_write_all
MPI_File_.._all_begin -
MPI_File_.._all_end

all other parameters,
measuring method

see 4.2.4.3

Table 15: C_[ACTION]_indv definition

4.2.4.8 C_[ACTION]_expl
This pattern performs collective access from all processes to a common file, with an explicit file pointer

Table 16 below shows the basic definitions, and a schematic view of the pattern is shown in Figure 16.

based on

resp. for nonblocking
mode

MPI_File_read_at_all /
MPI_File_write_at_all
MPI_File_.._at_all_begin -
MPI_File_.._at_all_end

all other parameters,
measuring method

see 4.2.4.4

Table 16: C_[ACTION]_expl definition

4.2.4.9 C_[ACTION]_shared
Finally, here a collective access from all processes to a common file, with a shared file pointer is ben-
chmarked.

Table 17 below shows the basic definitions, and a schematic view of the pattern is shown in Figure 17,
with the crucial difference that here the order of blocks is preserved.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 39 of 59

based on

resp. for nonblocking
mode

MPI_File_read_ordered /
MPI_File_write_ordered
MPI_File_.._ordered_begin-
MPI_File_.._ordered_end

all other parameters,
measuring method

see 4.2.4.5

Table 17: C_[ACTION]_shared definition

4.2.4.10 Open_Close
Benchmark of an MPI_File_open / MPI_File_close pair. All processes open the same file. In
order to prevent the implementation from optimizations in case of an unused file, a negligible non trivial
action is performed with the file, see Figure 19. Table 18 below shows the basic definitions.

measured pattern MPI_File_open / MPI_File_close

etype MPI_BYTE

filetype MPI_BYTE

reported timings t=∆t (in µsec) as indicated in Figure 19

reported throughput none

Table 18: Open_Close definition

Figure 19: Open_Close pattern

4.2.5 Non-blocking I/O Benchmarks
Each of the non-blocking benchmarks (see Table 1) has a blocking equivalent explained in section 4.2.4.
All the definitions can be transferred identically, except their behavior with respect to:

• aggregation (the non-blocking versions only run in aggregate mode)

• synchronism

As to synchronism, only the meaning of an elementary transfer differs from the equivalent blocking
benchmark. Basically, an elementary transfer looks as follows.

 all active processes

MPI_File open
MPI_File_write (1 byte File)
MPI_File_close

∆ t

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 40 of 59

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

{

Initiate transfer

Exploit CPU

Wait for end of transfer

}

time = (MPI_Wtime()-time)/n_sample

The “Exploit CPU“ section is arbitrary. A benchmark such as IMB can only decide for one particular way
of exploiting the CPU, and will answer certain questions in that special case. There is no way to cover
generality, only hints can be expected.

4.2.5.1 Exploiting CPU
IMB uses the following method to exploit the CPU. A kernel loop is executed repeatedly. The kernel is a
fully vectorizable multiply of a 100 × 100 matrix with a vector. The function is scaleable in the following
way:
CPU_Exploit(float desired_time, int initialize);

The input value of desired_time determines the time for the function to execute the kernel loop (with a
slight variance, of course). In the very beginning, the function has to be called with initialize=1 and an
input value for desired_time. It will determine an Mflop/s rate and a timing t_CPU (as close as possible to
desired_time), obtained by running without any obstruction. Then, during the proper benchmark, it will be
called (concurrent with the particular I/O action), with initialize=0 and always performing the same type
and number of operations as in the initialization step.

4.2.5.2 Displaying results
Three timings are crucial to interpret the behavior of non-blocking I/O, overlapped with CPU exploitation:

• t_pure = time for the corresponding pure blocking I/O action, non overlapping with CPU activity

• t_CPU = time the CPU_Exploit periods (running concurrently with nonblocking I/O) would use
when running dedicated

• t_ovrl = time for the analogous non-blocking I/O action, concurrent with CPU activity (exploiting
t_CPU when running dedicated)

A perfect overlap would mean: t_ovrl = max(t_pure,t_CPU).
No overlap would mean: t_ovrl = t_pure+t_CPU.
The actual amount of overlap is
overlap = (t_pure + t_CPU - t_ovrl)/min(t_pure,t_CPU) (*)

IMB results tables will report the timings t_ovrl,t_pure,t_CPU and the estimated overlap obtained by (*)
above. In the beginning of a run the Mflop/s rate corresponding to t_CPU is displayed.

4.2.6 Multi - versions
The definition and interpretation of the Multi- prefix is analogous to the definition in the MPI1 section
(see 3.2).

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 41 of 59

5 Benchmark Methodology
Some control mechanisms are hard coded (like the selection of process numbers to run the benchmarks
on), some are set by preprocessor parameters in a central include file. There is a standard and an op-
tional mode to control IMB. In standard mode, all configurable sizes are predefined and should not be
changed. This assures comparability for a result tables in standard mode. In optional mode, you can set
those parameters at own choice. For instance, this mode can be used to extend the results tables as to
larger transfer sizes.

The following graph shows the flow of control inside IMB. All emphasized items will be explained in more
detail.

Figure 20: Control flow of IMB

The control parameters that are obviously necessary are either command line arguments (see 5.1.2) or
parameter selections inside the IMB include files settings.h / settting_io.h (see 5.2).

5.1 Running IMB, command line control
After installation, the executables IMB-MPI1, IMB-EXT and/or IMB-IO should exist.

Given P, the (normally user selected) number of MPI processes to run IMB, a startup procedure has to
load parallel IMB. Lets assume, for sake of simplicity, that this done by
mpirun -np P IMB-<..> [arguments]

P=1 is allowed and sensible for all IO and (if you like) also for all message passing benchmarks except
the Single Transfer ones. Control arguments (in addition to P) can be passed to IMB via (argc,argv).
Command line arguments are only read by process 0 in MPI_COMM_WORLD. However, the command line
options are broadcast to all other processes.

For (all_selected_benchmarks)

 For (all_selected_process_numbers)

 Select MPI communicator MY_COMM to run the benchmark, (see 5.2.2)

 For (all_selected_transfer(message)_sizes X) (see 5.2.4)

 Initialize message resp. I/O buffers (see 5.2.5)

Other preparations (see 5.2.3)

 MY_COMM != MPI_COMM_NULL

 Yes No

 Synchronize processes of MY_COMM

(see 5.2.7)
Execute benchmark (transfer size = X)
(see 3.3.1, 4.2.5)

 MPI_Barrier (MPI_COMM_WORLD)

 Output results (see 6)

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 42 of 59

5.1.1 Default case
Just invoke
mpirun -np P IMB-<..>

All benchmarks will run on Q=[1,] 2, 4, 8, ..., largest 2x<P, P processes (Q=1 as discussed above IMB-IO).
For example P=11, then Q=[1,]2,4,8,11 processes will be selected. Single Transfer IMB-IO benchmarks
will run only with Q=1, Single Transfer IMB-EXT benchmarks only with Q=2.

The Q processes driving the benchmark are called the active processes.

5.1.2 Command line control
The command line will be repeated in the Output (new in IMB 3.1). The general command line syntax is:
IMB-MPI1 [-h{elp}]

 [-npmin <NPmin>]

 [-multi <MultiMode>]

 [-off_cache <cache_size[,cache_line_size]>

[-iter
<msgspersample[,overall_vol[,msgs_nonaggr]]>]

 [-time <max_runtime per sample>]

 [-mem <max. mem usage per process>]

 [-msglen <Lengths_file>]

 [-map <PxQ>]

 [-input <filename>]

 [benchmark1 [,benchmark2 [,...]]]

(where the 11 major [] may appear in any order).

− Examples:
mpirun -np 8 IMB-IO

mpirun –np 10 IMB-MPI1 PingPing Reduce

mpirun -np 11 IMB-EXT -npmin 5

mpirun -np 14 IMB-IO P_Read_shared -npmin 7

mpirun –np 2 IMB-MPI1 pingpong –off_cache -1

(get out-of-cache data for PingPong)

mpirun –np 512 IMB-MPI1 –npmin 512
 alltoallv –iter 20 –time 1.5 –mem 2

(very large configuration – restrict iterations to 20, max. 1.5 seconds run time
per message size, max. 2 GBytes for message buffers)

mpirun -np 3 IMB-EXT -input IMB_SELECT_EXT

mpirun –np 14 IMB-MPI1 –multi 0 PingPong Barrier
 -map 2x7

5.1.2.1 Benchmark selection arguments
A sequence of blank-separated strings, each being the name of one IMB-<..> benchmark (in exact spel-
ling, case insensitive). The benchmark names are listed in Table 1.

Default (no benchmark selection): select all benchmarks.

5.1.2.2 -npmin selection

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 43 of 59

The argument after -npmin has to be an integer P_min, specifying the minimum number of processes
to run all selected benchmarks.

• P_min may be 1

• P_min > P is handled as P_min = P

Default:

(no -npmin selection): see 5.1.1.

Given P_min, the selected process numbers are P_min, 2P_min, 4P_min, ..., largest 2xP_min <P, P.

5.1.2.3 -multi <outflag> selection
For selecting Multi/non-Multi mode. The argument after –multi is the meta-symbol <outflag>
and this meta-symbol represents an integer value of either 0 or 1. This flag just controls the way of dis-
playing results.

• Outflag = 0: only display max timings (min throughputs) over all active groups

• Outflag = 1: report on all groups separately (may become longish)

Note:
When the number of processes running the benchmark is more than half of the overall
(MPI_COMM_WORLD) number, the multi benchmark coincides with the non multi one, as no more than 1
group can be created.

Default:

(no –multi selection): run primary (non Multi) versions.

5.1.2.4 -off_cache cache_size[,cache_line_size] selection
The argument after off_cache can be either 1 single number (cache_size), or 2 comma separated
numbers (cache_size,cache_line_size), or just -1,

By default, without this flag, the communications buffer is the same within all repetitions of one message
size sample; most likely, cache reusage is yielded and thus throughput results that might be non realistic.

With -off_cache, it is attempted to avoid cache re-usage.

cache_size is a float for an upper bound of the size of the last level cache in Mbytes, cache_line_size is
assumed to be the size (Bytes) of a last level cache line (can be an upper estimate).

The sent/recv'd data are stored in buffers of size ~ 2 x MAX(cache_size, message_size); when repeti-
tively using messages of a particular size, their addresses are advanced within those buffers so that a
single message is at least 2 cache lines after the end of the previous message. Only when those buffers
have been marched through (eventually), will they then will be re-used from the beginning.

A cache_size and a cache_line_size are assumed as statically defined in => IMB_mem_info.h; these are
used when -off_cache -1 is entered.

Remark: -off_cache is effective for IMB-MPI1, IMB-EXT, but not IMB-IO

Examples:

 -off_cache -1 (use defaults of IMB_mem_info.h);

 -off_cache 2.5 (2.5 MB last level cache, default line size);

 -off_cache 16,128 (16 MB last level cache, line size 128);

NOTE: the off_cache mode might also be influenced by eventual internal caching with the MPI li-
brary. This could make the interpretation intricate.

Default:

no cache control, data likely to come out of cache most of the time

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 44 of 59

5.1.2.5 –iter
The argument after -iter can be 1 single, 2 comma separated, or 3 comma separated integer numbers,
which override the defaults

 MSGSPERSAMPLE, OVERALL_VOL, MSGS_NONAGGR of =>IMB_settings.h (Table 19)

 examples

 -iter 2000 (override MSGSPERSAMPLE by value 2000)

 -iter 1000,100 (override OVERALL_VOL by 100)

 -iter 1000,40,150 (override MSGS_NONAGGR by 150)

Default:

iteration control through parameters MSGSPERSAMPLE,OVERALL_VOL,MSGS_NONAGGR =>
IMB_settings.h (Table 19).

NOTE: !! New in versions from IMB 3.2 on !!

The iter selection is overridden by a dynamic selection that is a new default in IMB 3.2: when a maximum
run time (per sample) is expected to be exceeded, the iteration number will be cut down; see -time flag.

5.1.2.6 -time
The argument after -time is a float, specifying that a benchmark will run at most that many seconds per
message size the combination with the -iter flag or its defaults is so that always the maximum num-
ber of repetitions is chosen that fulfills all restrictions.

Per sample, the rough number of repetitions to fulfill the -time request is estimated in preparatory runs
that use ~ 1 second overhead.

Default:

-time is activated; the float value specifying the run time seconds per sample is set in IMB_settings.h /
IMB_settings_io.h (variable SECS_PER_SAMPLE, current value 10)

5.1.2.7 -mem
The argument after -mem is a float, specifying that at most that many GBytes are allocated per process
for the message buffers benchmarks / message. If the size is exceeded, a warning will be output, stating
how much memory would have been necessary, if the overall run is to not be interrupted.

Default:

the memory is restricted by MAX_MEM_USAGE => IMB_mem_info.h

5.1.2.8 -input <File> selection
An ASCII input file is used to select the benchmarks to run, for example a file IMB_SELECT_EXT looking
as follows:

By aid of this file,

IMB benchmark selection file

every line must be a comment (beginning with #), or it
must contain exactly 1 IMB benchmark name

#Window
Unidir_Get
#Unidir_Put
#Bidir_Get
#Bidir_Put
Accumulate

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 45 of 59

mpirun IMB-EXT -input IMB_SELECT_EXT

would run IMB-EXT benchmarks Unidir_Get and Accumulate.

5.1.2.9 –msglen <File> selection
Enter any set of nonnegative message lengths to an ASCII file, line by line. Call it, for example, “Lengths”
and call IMB with arguments:

-msglen Lengths

This lengths value then overrides the default message lengths (see 5.2.4). For IMB-IO, the file defines
the I/O portion lengths.

5.1.2.10 –map PxQ selection
Numbers processes along rows of the matrix

0 P .. (Q-2)P (Q-1)P
1
…
P-1 2P-1 (Q-1)P-1 QP-1

For example, in order to run Multi-PingPong between two nodes of size P, with each process on one
node communicating with its counterpart on the other, call:

mpirun –np <2P> IMB-MPI1 –map <P>x2 PingPong

5.2 IMB parameters and hard-coded settings

5.2.1 Parameters controlling IMB
There are 9 parameters (set by preprocessor definition) controlling default IMB (note, however, that
MSGSPERSAMPLE, MSGS_NONAGGR, OVERALL_VOL can be overridden by the –iter, -time, -mem
flags). The definition is in the files

settings.h (IMB-MPI1, IMB-EXT) and settings_io.h (IMB-IO).

A complete list and explanation of settings.h is in Table 19 below.

Both include files are almost identical in structure, but differ in the standard settings. Note that some
names in IMB_settings_io.h contain MSG (for “message“), in consistency with IMB_settings.h.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 46 of 59

Table 19: IMB (MPI1/EXT) parameters (settings.h)

IMB allows for two sets of parameters: standard and optional.

Below a sample of file settings_io.h is shown. Here, IMB_OPTIONAL is set, so that user defined
parameters are used. I/O sizes 32 and 64 Mbytes (and a smaller repetition count) are selected, extend-
ing the standard mode tables.

If IMB_OPTIONAL is deactivated, the obvious standard mode values are taken.

Remark:
IMB has to be re-compiled after a change of settings.h/settings_io.h.

Parameter
(standard mode value)

Meaning

IMB_OPTIONAL
(not set)

has to be set when optional settings are to be activated

MINMSG second smallest data transfer size is max(unit,2MINLOG
(0)

MSGLOG)
(the smallest always being 0), where
unit = sizeof(float) for reductions, unit = 1 else

MAXMSG largest message size is 2MAXLOG
(22)

MSGLOG

Sizes 0, 2i (i=MINMSGLOG,..,MAXMSGLOG) are used

MSG max. repetition count for all IMB-MPI1 benchmarks SPERSAMPLE
(1000)

MSG max. repetition count for non aggregate benchmarks (rele-
vant only for IMB-EXT)

S_NONAGGR
(100)

OVERALL_VOL
(40 MBytes)

for all sizes < OVERALL_VOL, the repetition count is
eventually reduced so that not more than OVERALL_VOL
bytes overall are processed. This avoids unnecessary
repetitions for large message sizes. Finally, the real repeti-
tion count for message size X is

MSG

min(

SPERSAMPLE (X=0),

MSG

Note that OVERALL_VOL does not restrict the size of the
max. data transfer. 2MAX

SPERSAMPLE,max(1,OVERALL_VOL/X))
(X>0)

MSGLOG is the largest size, indepen-
dent of OVERALL_VOL

SECS_PER_SAMPLE
(10)

Number of iterations is dynamically set so that this number
of run time seconds is not exceeded per message length

N_BARR
(2)

Number of MPI_Barrier for synchronization (5.2.7)

TARGET_CPU_SECS
(0.01)

CPU seconds (as float) to run concurrent with non-blocking
benchmarks (currently irrelevant for IMB-MPI1)

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 47 of 59

#define FILENAME "IMB_out"
#define IMB_OPTIONAL
#ifdef IMB_OPTIONAL
#define MINMSGLOG 25
#define MAXMSGLOG 26
#define MSGSPERSAMPLE 10
#define MSGS_NONAGGR 10
#define OVERALL_VOL 16*1048576
#define SECS_PER_SAMPLE 10
#define TARGET_CPU_SECS 0.1 /* unit seconds */
#define N_BARR 2
#else
/*DON'T change anything below here !!*/
#define MINMSGLOG 0
#define MAXMSGLOG 24
#define MSGSPERSAMPLE 50
#define MSGS_NONAGGR 10
#define OVERALL_VOL 16*1048576
#define TARGET_CPU_SECS 0.1 /* unit seconds */
#define N_BARR 2
#endif

5.2.2 Communicators, active processes
Communicator management is repeated in every “select MY_COMM“ step in Figure 20. If it exists, the
previous communicator is freed. When running Q<=P processes, the first Q ranks of MPI_COMM_WORLD
are put into one group, and the remaining P-Q get MPI_COMM_NULL in Figure 20.

The group of MY_COMM is called the active processes group.

5.2.3 Other preparations

5.2.3.1 Window (IMB_EXT)
An Info is set (see section 5.2.3.3) and MPI_Win_create is called, creating a window of size X for
MY_COMM. Then, MPI_Win_fence is called to start an access epoch.

5.2.3.2 File (IMB-IO)
The file initialization consists of:

• selecting a file name:
This parameter is located in include file settings_io.h. In a Multi case, a suffix
_g<groupid> is appended to the name. If the file name is per process, a (second event) suffix
_<rank> will be appended.

• deleting the file if exists:
open it with MPI_MODE_DELETE_ON_CLOSE
close it

• selecting a communicator to open the file, which will be:
MPI_COMM_SELF for S_ benchmarks and P_[ACTION]_priv,
MY_COMM as selected in 5.2.2 above else.

• selecting a mode = MPI_MODE_CREATE | MPI_MODE_RDWR

• selecting an info, see 5.2.3.3

5.2.3.3 Info
IMB uses an external function User_Set_Info which you are allowed to implement at best for the cur-
rent machine. The default version is:

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 48 of 59

IMB uses no assumptions and imposes no restrictions on how this routine will be implemented.

5.2.3.4 View (IMB-IO)
The file view is determined by the settings:

• disp = 0
• datarep = native

• etype, filetype as defined in the single definitions in section 0

• info as defined in 5.2.3.3

5.2.4 Message / I-O buffer lengths

5.2.4.1 IMB-MPI1, IMB-EXT
Set in settings.h (see 5.2.1), used unless –msglen flag is selected (ref. 5.1.2.9).

5.2.4.2 IMB-IO
Set in settings_io.h (see 5.2.1), and is used unless –msglen flag is selected (ref. 5.1.2.9).

5.2.5 Buffer initialization
Communication and I/O buffers are dynamically allocated as void* and used as MPI_BYTE buffers for
all benchmarks except Accumulate. See 7.1 for the memory requirements. To assign the buffer con-
tents, a cast to an assignment type is performed. On the one hand, a sensible data-type is mandatory for
Accumulate. On the other hand, this facilitates results checking which may become necessary even-
tually (see 7.2).

IMB sets the buffer assignment type by typedef assign_type in
settings.h/settings_io.h

Currently, int is used for IMB-IO, float for IMB-EXT (as this is sensible for Accumulate). The values are
current set by a CPP macro:
#define BUF_VALUE(rank,i) (0.1*((rank)+1)+(float)(i)

(IMB-EXT), and

#include ″mpi.h″

void User_Set_Info (MPI_Info* opt_info)

#ifdef MPIIO

{/* Set info for all MPI_File_open calls */

*opt_info = MPI_INFO_NULL;

}

#endif

#ifdef EXT

{/* Set info for all MPI_Win_create calls */

*opt_info = MPI_INFO_NULL;

}

#endif

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 49 of 59

#define BUF_VALUE(rank,i) 10000000*(1+rank)+i%10000000

(IMB-IO).

In every initialization, communication buffers are seen as typed arrays and initialized as to:
((assign_type*)buffer)[i] = BUF_VALUE(rank,i);

where rank is the MPI rank of the calling process.

5.2.6 Warm-up phase (MPI1, EXT)
Before starting the actual benchmark measurement for IMB-MPI1 and IMB-EXT, the selected bench-
mark is executed N_WARMUP (defined in settings.h, see 5.2.1) times with a sizeof(assign_type)
message length. This is to hide eventual initialization overheads of the message passing system.

5.2.7 Synchronization
Before the actual benchmark is run, the constant N_BARR (constant defined in IMB_settings.h and
IMB_settings_io.h, with a current value of 2) is used to regulate calls to:
MPI_Barrier(MPI_COMM_WORLD)

(ref. Figure 20) so as to assure that all processes are synchronized.

5.2.8 The actual benchmark
In order to reduce measurement errors caused by insufficient clock resolution, every benchmark is run
repeatedly. The repetition count for MPI1- or aggregate EXT / IO benchmarks is MSG

n_sample =

SPERSAMPLE (con-
stant defined in settings.h/settings_io.h, current values 1000 / 50). In order to avoid excessive
runtimes for large transfer sizes X, an upper bound is set to OVERALL_VOL/X (OVERALL_VOL constant
defined in settings.h / settings_io.h, current values 4 / 16 Mbytes). Finally,

MSG

n_sample = max(1,min(

SPERSAMPLE (X=0)

MSG

is the repetition count for all aggregate benchmarks, given transfer size X.

SPERSAMPLE,OVERALL_VOL/X)) (X>0)

The repetition count for non aggregate benchmarks is defined completely analogously,
with MSGSPERSAMPLE replaced by MSG

In the following, elementary transfer means the pure function (MPI_[Send, …], MPI_Put, MPI_Get,
MPI_Accumulate, MPI_File_write_XX, MPI_File_read_XX), without any further function call.
Recall that assure transfer completion means MPI_Win_fence (one sided communications),
MPI_File_sync (I/O Write benchmarks), and is empty for all other benchmarks.

S_NONAGGR (a reduced count is sensible as non aggregate run-
times are normally much longer).

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 50 of 59

5.2.8.1 MPI1 case
for (i=0; i<N_BARR; i++) MPI_Barrier(MY_COMM)

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 execute MPI pattern

time = (MPI_Wtime()-time)/n_sample

5.2.8.2 EXT and blocking I/O case

5.2.8.3 Non-blocking I/O case
As explained in section 4.2.5, a non-blocking benchmark has to provide three timings (blocking pure I/O
time t_pure, non-blocking I/O time t_ovrl (concurrent with CPU activity), pure CPU activity time t_CPU).
Thus, the actual benchmark consists of

• Calling the equivalent blocking benchmark as defined in 5.2.8 and taking benchmark time as
t_pure

• Closing and re-opening the particular file(s)

• Once again synchronizing the processes

• Running the non blocking case, concurrent with CPU activity (exploiting t_CPU when running
undisturbed), taking the effective time as t_ovrl.

The desired CPU time to be matched (approximately) by t_CPU is set in
settings_io.h:
#define TARGET_CPU_SECS 0.1 /* unit seconds */

For the aggregate case, the kernel loop looks like:
for (i=0; i<N_BARR; i++)MPI_Barrier(MY_COMM)

/* Negligible integer (offset) calculations ... */

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 execute elementary transfer

assure completion of all transfers

time = (MPI_Wtime()-time)/n_sample

In the non aggregate case, every single transfer is safely completed:
for (i=0; i<N_BARR; i++)MPI_Barrier(MY_COMM)

/* Negligible integer (offset) calculations ... */

time = MPI_Wtime()

for (i=0; i<n_sample; i++)

 {

 execute elementary transfer
 assure completion of transfer
 }

time = (MPI_Wtime()-time)/n_sample

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 51 of 59

6 Output
The output results are most easily explained by sample outputs, and therefore you should examine the
tables below. What you would see is the following:

• General information
Machine, System, Release, and, Version are obtained by the code IMB_g_info.c.

• (New in IMB 3.1)
The calling sequence (command line flags) are repeated in the output chart.

• Non multi case numbers
After a benchmark completes, 3 time values are available: Tmax, Tmin, Tavg, the maximum,
minimum and average time, respectively, extended over the group of active processes. The time
unit is µsec.
Single Transfer Benchmarks:
Display X = message size [bytes], T=Tmax[µsec],
bandwidth = X / 1.048576 / T
Parallel Transfer Benchmarks:
Display X = message size, Tmax, Tmin and Tavg, bandwidth based on time = Tmax
Collective Benchmarks:
Display X = message size (except for Barrier), Tmax, Tmin and Tavg

• Multi case numbers
–multi 0: the same as above, with max, min, avg over all groups.
–multi 1: the same for all groups, max, min, avg over single groups.

6.1 Sample 1 – IMB-MPI1 PingPong Allreduce
<..> np 2 IMB-MPI1 PingPong Allreduce

#---
Intel (R) MPI Benchmark Suite V3.2, MPI-1 part
#---
Date : Thu Sep 4 13:20:07 2008
Machine : x86_64
System : Linux
Release : 2.6.9-42.ELsmp
Version : #1 SMP Wed Jul 12 23:32:02 EDT 2006
MPI Version : 2.0
MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down
dynamically when a certain run time (per message size sample) # is expected to be
exceeded. Time limit is defined by variable # "SECS_PER_SAMPLE" (=> IMB_settings.h)
or through the flag => -time

Calling sequence was:

./IMB-MPI1 PingPong Allreduce

Minimum message length in bytes: 0
Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE
MPI_Datatype for reductions : MPI_FLOAT
MPI_Op : MPI_SUM

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 52 of 59

List of Benchmarks to run:

PingPong
Allreduce

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000
 1 1000
 2 1000
 4 1000
 8 1000
 16 1000
 32 1000
 64 1000
 128 1000
 256 1000
 512 1000
 1024 1000
 2048 1000
 4096 1000
 8192 1000
 16384 1000
 32768 1000
 65536 640
 131072 320
 262144 160
 524288 80
1048576 40
2097152 20
4194304 10
#---
Benchmarking Allreduce
(#processes = 2)
#---
 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 4 1000
 8 1000
 16 1000
 32 1000
 64 1000
 128 1000
 256 1000
 512 1000
 1024 1000
 2048 1000
 4096 1000
 8192 1000
 16384 1000
 32768 1000
 65536 640
 131072 320
 262144 160
 524288 80
1048576 40
2097152 20
4194304 10

All processes entering MPI_Finalize

6.2 Sample 2 – IMB-MPI1 PingPing Allreduce
<..> –np 6 IMB-MPI1
 pingping allreduce -map 2x3 -msglen Lengths -multi 0

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 53 of 59

Lengths file:
0
100
1000
10000
100000
1000000

#---
Intel (R) MPI Benchmark Suite V3.2, MPI-1 part
#---
Date : Thu Sep 4 13:26:03 2008
Machine : x86_64
System : Linux
Release : 2.6.9-42.ELsmp
Version : #1 SMP Wed Jul 12 23:32:02 EDT 2006
MPI Version : 2.0
MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down
dynamically when a certain run time (per message size sample) # is expected to be
exceeded. Time limit is defined by variable # "SECS_PER_SAMPLE" (=> IMB_settings.h)
or through the flag => -time

Calling sequence was:

IMB-MPI1 pingping allreduce -map 3x2 -msglen Lengths
-multi 0

Message lengths were user defined

MPI_Datatype : MPI_BYTE
MPI_Datatype for reductions : MPI_FLOAT
MPI_Op : MPI_SUM

List of Benchmarks to run:
(Multi-)PingPing
(Multi-)Allreduce
#--
Benchmarking Multi-PingPing
(3 groups of 2 processes each running simultaneous)
Group 0: 0 3

Group 1: 1 4

Group 2: 2 5

#-- # bytes #rep.s
t_min[usec] t_max[usec] t_avg[usec] Mbytes/sec
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41

#--
Benchmarking Multi-Allreduce
(3 groups of 2 processes each running simultaneous)
Group 0: 0 3

Group 1: 1 4

Group 2: 2 5

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 54 of 59

#-- #bytes #repetitions
t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41

#--
Benchmarking Allreduce
#processes = 4; rank order (rowwise):
0 3

1 4

(2 additional processes waiting in MPI_Barrier)
#-- # bytes #repetitions
t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41
#--
Benchmarking Allreduce
#processes = 6; rank order (rowwise):
0 3

1 4

2 5

#--
bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
 0 1000
 100 1000
 1000 1000
 10000 1000
 100000 419
1000000 41

All processes entering MPI_Finalize

6.3 Sample 3 – IMB-IO p_write_indv
<..> IMB-IO –np 2 p_write_indv -npmin 2
#---
Date : Thu Sep 4 13:43:34 2008
Machine : x86_64
System : Linux
Release : 2.6.9-42.ELsmp
Version : #1 SMP Wed Jul 12 23:32:02 EDT 2006
MPI Version : 2.0
MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down
dynamically when a certain run time (per message size sample) # is expected to be
exceeded. Time limit is defined by variable # "SECS_PER_SAMPLE" (=> IMB_settings.h)
or through the flag => -time

Calling sequence was:

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 55 of 59

./IMB-IO p_write_indv -npmin 2

Minimum io portion in bytes: 0
Maximum io portion in bytes: 16777216

List of Benchmarks to run:

P_Write_Indv

#--
Benchmarking P_Write_Indv
#processes = 2
#--

MODE: AGGREGATE

 #bytes #rep.s t_min[usec] t_max t_avg Mb/sec
 0 50
 1 50
 2 50
 4 50
 8 50
 16 50
 32 50
 64 50
 128 50
 256 50
 512 50
 1024 50
 2048 50
 4096 50
 8192 50
 16384 50
 32768 50
 65536 50
 131072 50
 262144 50
 524288 32
 1048576 16
 2097152 8
 4194304 4
 8388608 2
16777216 1

#--
Benchmarking P_Write_Indv
#processes = 2
#--

MODE: NON-AGGREGATE

 #bytes #rep.s t_min[usec] t_max t_avg Mb/sec
 0 10
 1 10
 2 10
 4 10
 8 10
 16 10
 32 10
 64 10
 128 10
 256 10
 512 10
 1024 10
 2048 10
 4096 10
 8192 10
 16384 10
 32768 10
 65536 10

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 56 of 59

 131072 10
 262144 10
 524288 10
 1048576 10
 2097152 8
 4194304 4
 8388608 2
16777216 1

All processes entering MPI_Finalize

6.4 Sample 4 – IMB-EXT.exe
<..> -n 2 IMB-EXT.exe

#---

Intel (R) MPI Benchmark Suite V3.2, MPI-2 part

#---

Date : Fri Sep 05 12:26:52 2008

Machine : Intel64 Family 6 Model 15 Stepping 6, GenuineIntel

System : Windows Server 2008

Release : 6.0.6001

Version : Service Pack 1

MPI Version : 2.0

MPI Thread Environment: MPI_THREAD_SINGLE

New default behavior from Version 3.2 on:

the number of iterations per message size is cut down
dynamically when a certain run time (per message size sample)
is expected to be exceeded. Time limit is defined by variable
"SECS_PER_SAMPLE" (=> IMB_settings.h)
or through the flag => -time

Calling sequence was:

\\master-node\MPI_Share_Area\IMB_3.1\src\IMB-EXT.exe

Minimum message length in bytes: 0

Maximum message length in bytes: 4194304

MPI_Datatype : MPI_BYTE

MPI_Datatype for reductions : MPI_FLOAT

MPI_Op : MPI_SUM

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 57 of 59

List of Benchmarks to run:

Window

Unidir_Get

Unidir_Put

Bidir_Get

Bidir_Put

Accumulate

#--

Benchmarking Window

#processes = 2

#---

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 100

 4 100

 8 100

 16 100

 32 100

 64 100

 128 100

 256 100

 512 100

 1024 100

 2048 100

 4096 100

 8192 100

 16384 100

 32768 100

 65536 100

 131072 100

 262144 100

 524288 80

 1048576 40

 2097152 20

 4194304 10

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 58 of 59

…

All processes entering MPI_Finalize

The above example listing shows the results of running IMB-EXT.exe on a Microsoft Windows cluster using 2
processes. Note that the listing shows only the result for the “Window” benchmark. The performance diagnostics
for “Unidir_Get”, “Unidir_Put”, “Bidir_Get” “Bidir_Put”, and “Accumulate” have been omitted.

 Intel ® MPI Benchmarks

Intel Corporation Document Number: 320714-002 59 of 59

7 Further details

7.1 Memory requirements
Benchmarks Standard mode memory

demand per process
 (Q active processes)

Optional mode memory demand per
process (X = max. occurring mes-
sage size)

Alltoall Q × 8 MBytes Q × 2X bytes

Allgather,
Allgatherv

(Q+1) × 4 MBytes (Q+1) × X bytes

Exchange 12 MBytes 3X bytes

All other MPI1
benchmarks

8 MBytes 2X bytes

IMB-EXT 80 Mbytes 2 max(X,OVERALL_VOL) bytes

IMB-IO 32 Mbytes 2X bytes

(to all of the above, add roughly 2x cache size in case –cache is not selected)

 disk space overall disk space overall

IMB-IO 16 Mbytes max(X,OVERALL_VOL) bytes

Table 20: Memory requirements with standard settings

7.2 Results checking
By activating the cpp flag –DCHECK through the CPPFLAGS variable (see section 2.1), and recompiling,
every message passing result from the IMB executables will be checked against the expected outcome
(note that the contents of each buffer is well defined, see section 5.2.5). Output tables will contain an
additional column displaying the diffs as floats (named defects).

Attention: -DCHECK results are not valid as real benchmark data! Do not forget to deactivate
DCHECK and recompile in order to get proper results.

	Introduction
	Changes in IMB_3.2.1 versus IMB_3.2
	Changes in IMB_3.2 versus IMB_3.1
	Run time control by default
	Makefiles
	Microsoft* Visual Studio* Project Folders

	Changes in IMB_3.1 versus IMB_3.0
	New benchmarks
	New command line flags for better control
	Miscellaneous changes

	Changes in IMB_3.0 versus IMB_2.3

	Installation and Quick Start of IMB
	Installing and running

	IMB-MPI1
	General
	The benchmarks
	IMB-MPI1 benchmark definitions
	Benchmark classification
	Single Transfer benchmarks
	Parallel Transfer benchmarks
	Collective benchmarks

	Definition of Single Transfer benchmarks
	PingPong
	PingPing
	Sendrecv
	Exchange

	Definition of Collective benchmarks
	Reduce
	Reduce_scatter
	Allreduce
	Allgather
	Allgatherv
	Scatter
	Scatterv
	Gather
	Gatherv
	Alltoall
	Alltoallv
	Bcast
	Barrier

	MPI-2 part of IMB
	The benchmarks
	IMB-MPI2 benchmark definitions
	Benchmark classification
	Single Transfer benchmarks
	Parallel Transfer benchmarks
	Collective benchmarks

	Benchmark modes
	Blocking / non-blocking mode (only IMB-IO)
	Aggregate / Non Aggregate mode
	Assure completion of transfers
	Mode definition

	Definition of the IMB-EXT benchmarks
	Unidir_Put
	Unidir_Get
	Bidir_Put
	Bidir_Get
	Accumulate
	Window

	Definition of the IMB-IO benchmarks (blocking case)
	S_[ACTION]_indv
	S_[ACTION]_expl
	P_[ACTION]_indv
	P_[ACTION]_expl
	P_[ACTION]_shared
	P_[ACTION]_priv
	C_[ACTION]_indv
	C_[ACTION]_expl
	C_[ACTION]_shared
	Open_Close

	Non-blocking I/O Benchmarks
	Exploiting CPU
	Displaying results

	Multi - versions

	Benchmark Methodology
	Running IMB, command line control
	Default case
	Command line control
	Benchmark selection arguments
	-npmin selection
	-multi <outflag> selection
	-off_cache cache_size[,cache_line_size] selection
	–iter
	-time
	-mem
	-input <File> selection
	–msglen <File> selection
	–map PxQ selection

	IMB parameters and hard-coded settings
	Parameters controlling IMB
	Communicators, active processes
	Other preparations
	Window (IMB_EXT)
	File (IMB-IO)
	Info
	View (IMB-IO)

	Message / I-O buffer lengths
	IMB-MPI1, IMB-EXT
	IMB-IO

	Buffer initialization
	Warm-up phase (MPI1, EXT)
	Synchronization
	The actual benchmark
	MPI1 case
	EXT and blocking I/O case
	Non-blocking I/O case

	Output
	Sample 1 – IMB-MPI1 PingPong Allreduce
	Sample 2 – IMB-MPI1 PingPing Allreduce
	Sample 3 – IMB-IO p_write_indv
	Sample 4 – IMB-EXT.exe

	Further details
	Memory requirements
	Results checking

