
Package ‘gputools’
May 25, 2010

Version 0.21

Date 2010-05-24

Title A few GPU enabled functions

Author Josh Buckner <bucknerj@umich.edu>, Mark Seligman
<mseligman@rapidbiologics.com>, Justin Wilson

Maintainer Josh Buckner <bucknerj@umich.edu>

Depends R (>= 2.8.0)

SystemRequirements Nvidia’s CUDA toolkit (>= release 2.3)

Description This package provides R interfaces to a handful of common statistical algorithms. These
algorithms are implemented in parallel using a mixture of Nvidia’s CUDA langauge, Nvidia’s
CUBLAS library, and EMI Photonics’ CULA libraries. On a computer equiped with an Nvidia
GPU some of these functions may be substantially more efficient than native R routines.

License GPL-3

URL http://brainarray.mbni.med.umich.edu/Brainarray/Rgpgpu

Repository CRAN

Date/Publication 2010-05-25 17:08:47

R topics documented:
chooseGpu . 2
getAucEstimate . 2
getGpuId . 3
gpuCor . 4
gpuDist . 5
gpuDistClust . 6
gpuFastICA . 7
gpuGlm . 10
gpuGranger . 15

1

http://brainarray.mbni.med.umich.edu/Brainarray/Rgpgpu

2 chooseGpu

gpuHclust . 16
gpuLm . 18
gpuLm.defaultTol . 22
gpuLm.fit . 22
gpuLsfit . 24
gpuMatMult . 25
gpuMi . 26
gpuQr . 27
gpuSolve . 28
gpuSvd . 29
gpuSvmPredict . 30
gpuSvmTrain . 32
gpuTtest . 33

Index 35

chooseGpu Choose which GPU device to use

Description

Selects the GPU device to use for computation. This is only useful on a machine equipped with
multiple GPU devices. The numbering starts at 0 and is assigned by the CUDA capable driver.

Choosing a device can only be done before any other GPU operation and only once per thread.

Usage

chooseGpu(deviceId = 0)

Arguments

deviceId an integer >= 0 designating the GPU to use for computation.

Value

chooseGpu should print out an integer specifying the device id chosen or an error message.

getAucEstimate 3

getAucEstimate Estimate the AUC of the ROC

Description

This function gives a quick estimate of the area under the curve (AUC) of the receiver operating
characteristic (ROC). It is a quick way to estimate the quality of a binary classifier. The algorithm
is based on a paper by David Hand and Robert Till (see references).

Usage

getAucEstimate(classes, scores)

Arguments

classes a vector of floating point numbers. Each entry i corresponds to the real class of
a point and should be either 0 or 1. The negative class is represented by 0 and
the positive class by 1. These entries correspond both in number and order to
the same points associated with the scores vector.

scores a vector of floating point numbers. Each entry i corresponds to the probabil-
ity that a point is in the positive class of a binary classification. This will be the
output of, for example, a binary classifier based on logistic regression. These en-
tries should correspond both in number and order to the same points associated
with the classes vector.

Value

a single floating point number of double precision. This number represents an estimate of the auc
score for the algorithm responsible for the scores vector. The estimation is according to the method
of David Hand and Robert Till (see references).

References

Hand, David J. and Till, Robert J. (2001). A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning. 45, 171–186.

Examples

generate some fake data
classes <- round(runif(20, min = 0, max = 1))

fake probability that point i is in the positive class
scores <- runif(20, min = 0, max = 1)

b <- getAucEstimate(classes, scores)
print(b)

4 gpuCor

getGpuId Discover the Id of the current GPU device

Description

Queries the CUDA driver for the GPU device currently assigned to this thread. This is the id of the
device that will be used for computation. If you wish to use a different device, use the chooseGpu
function.

Usage

getGpuId()

Value

The function returns a single integer indicating the id of the GPU device currently selected to carry
out computation according to the CUDA driver.

Examples

getGpuId()

gpuCor Calculate Various Correlation Coefficients With a GPU

Description

The correlation coefficient will be calculated for each pair x_i, y_j where x_i is a column
of x and y_j is a column of y. Currently, Pearson’s and Kendall’s correlation coefficient
are implemented. Pearson’s may be calculated for data sets containing NAs in which case, the
implementation behaves as R-native cor function with use="pairwise.complete".

Usage

gpuCor(x, y = NULL, use = "everything", method = "pearson")

Arguments

x a matrix of floating point values in which each column is a random variable.

y a matrix of floating point values in which each column is a random variable.

use a string. A character string giving a method for computing in the presence of
missing values. Options are "everything" or "pairwise.complete.obs". This cur-
rently only affects the "pearson" method.

method a string. Either "pearson" or "kendall".

gpuDist 5

Value

For method "pearson", a list with matrices ’pairs’, ’coefficients’, and ’ts’. The matrix entry i, j
for pairs represents the number of pairs of entries x_i^k, y_j^k (the k-th entry from x_i and
y_j respectively). These are the number of entries actually used to calculate the coefficients. Entry
i, j of the coefficients matrix is the correlation coefficient for x_i, y_j. Entry i, j of the
ts matrix is the t-score of the i, j entry of the coefficient matrix. If use="pairwise.complete.obs"
then only the pairs where both entries are not NA are used in the computations.

For method "kendall", a list of matrices ’pairs’ as above and ’coefficients’ as follows. The matrix
’coefficients’ is a matrix of floating point numbers where entry i, j is the correlation coefficient
for x_i, y_j. Calculation of t-scores for the kendall coefficients is not yet implemented.

See Also

cor

Examples

numAvars <- 5
numBvars <- 10
numSamples <- 30
A <- matrix(runif(numAvars*numSamples), numSamples, numAvars)
B <- matrix(runif(numBvars*numSamples), numSamples, numBvars)
gpuCor(A, B, method="pearson")
gpuCor(A, B, method="kendall")
A[3,2] <- NA
gpuCor(A, B, use="pairwise.complete.obs", method="pearson")

gpuDist Compute Distances Between Vectors on a GPU

Description

This function computes the distance between each vector of the ’points’ argument using the metric
specified by ’method’.

Usage

gpuDist(points, method = "euclidean", p = 2.0)

Arguments

points a matrix of floating point numbers in which each row is a vector in R^n space
where n is ncol(points).

method a string representing the name of the metric to use to calculate the distance
between the vectors of ’points’. Currently supported values are: "binary", "can-
berra", "euclidean", "manhattan", "maximum", and "minkowski".

p a floating point parameter for the Minkowski metric.

6 gpuDistClust

Value

a class of type "dist" containing floating point numbers representing the distances between vectors
from the ’points’ argument.

See Also

dist

Examples

numVectors <- 5
dimension <- 10
Vectors <- matrix(runif(numVectors*dimension), numVectors, dimension)
gpuDist(Vectors, "euclidean")
gpuDist(Vectors, "maximum")
gpuDist(Vectors, "manhattan")
gpuDist(Vectors, "minkowski", 4)

gpuDistClust Compute Distances and Hierarchical Clustering for Vectors on a GPU

Description

This function takes a set of vectors and performs clustering on them. The function will first calculate
the distance between all of the pairs of vectors and then use the distances to cluster the vectors. Both
of these steps are done on the GPU.

Usage

gpuDistClust(points, distmethod = "euclidean", clustmethod = "complete")

Arguments

points a matrix of floating point numbers in which each row is a vector in R^n space
where n is ncol(points).

distmethod a string representing the name of the metric to use to calculate the distance
between the vectors of ’points’. Currently supported values are: "binary", "can-
berra", "euclidean", "manhattan", "maximum".

clustmethod a string representing the name of the clustering method to be applied to dis-
tances. Currently supported method names include "average", "centroid", "com-
plete", "flexible", "flexible group", "mcquitty", "median", "single", "ward", and
"wpgma".

gpuFastICA 7

Value

Copied from the native R function ’hclust’ documentation. A class of type "hclust" with the follow-
ing attributes.

merge an n-1 by 2 matrix. Row i of ’merge’ describes the merging of clusters at step i
of the clustering. If an element j in the row is negative, then observation -j was
merged at this stage. If j is positive then the merge was with the cluster formed
at the (earlier) stage j of the algorithm. Thus negative entries in ’merge’ indicate
agglomerations of singletons, and positive entries indicate agglomerations of
non-singletons. Copied from the native R function ’hclust’ documentation.

order a vector giving the permutation of the original observations suitable for plotting,
in the sense that a cluster plot using this ordering and matrix ’merge’ will not
have crossings of the branches.

height a set of n-1 non-decreasing real values. The clustering height: that is, the value
of the criterion associated with the clustering ’method’ for the particular ag-
glomeration.

See Also

gpuDist, gpuHclust.

Examples

numVectors <- 5
dimension <- 10
Vectors <- matrix(runif(numVectors*dimension), numVectors, dimension)
myClust <- gpuDistClust(Vectors, "maximum", "mcquitty")
plot(myClust)

gpuFastICA GPU enabled FastICA algorithm

Description

This is an R and C code implementation of the FastICA algorithm of Aapo Hyvarinen et al.
(http://www.cis.hut.fi/aapo/) to perform Independent Component Analysis (ICA) and
Projection Pursuit.

Almost all of the code and documentation for this taken directly from the fastICA package. Only
the function call to do svd on the GPU is due to the author of this package.

If the installer can’t find cula, this function will be disabled.

Usage

gpuFastICA(X, n.comp, alg.typ = c("parallel","deflation"),
fun = c("logcosh","exp"), alpha = 1.0,
row.norm = FALSE, maxit = 200, tol = 1e-04, verbose = FALSE,
w.init = NULL)

http://www.cis.hut.fi/aapo/

8 gpuFastICA

Arguments

X a data matrix with n rows representing observations and p columns representing
variables.

n.comp number of components to be extracted

alg.typ if alg.typ == "parallel" the components are extracted simultaneously
(the default). if alg.typ == "deflation" the components are extracted
one at a time.

fun the functional form of the G function used in the approximation to neg-entropy
(see details)

alpha constant in range [1, 2] used in approximation to neg-entropy when fun ==
"logcosh"

row.norm a logical value indicating whether rows of the data matrix X should be standard-
ized beforehand.

maxit maximum number of iterations to perform

tol a positive scalar giving the tolerance at which the un-mixing matrix is considered
to have converged.

verbose a logical value indicating the level of output as the algorithm runs.

w.init Initial un-mixing matrix of dimension (n.comp,n.comp). If NULL (default) then
a matrix of normal r.v.’s is used.

Details

Independent Component Analysis (ICA)

The data matrix X is considered to be a linear combination of non-Gaussian (independent) compo-
nents i.e. X = SA where columns of S contain the independent components and A is a linear mixing
matrix. In short ICA attempts to ‘un-mix’ the data by estimating an un-mixing matrix W where XW
= S.

Under this generative model the measured ‘signals’ in X will tend to be ‘more Gaussian’ than
the source components (in S) due to the Central Limit Theorem. Thus, in order to extract the
independent components/sources we search for an un-mixing matrix W that maximizes the non-
gaussianity of the sources.

In FastICA, non-gaussianity is measured using approximations to neg-entropy (J) which are more
robust than kurtosis based measures and fast to compute.

The approximation takes the form

J(y) = [E{G(y)} − E{G(v)}]2 where v is a N(0,1) r.v.

The following choices of G are included as optionsG(u) = 1
α log cosh(αu) andG(u) = − exp(−u

2

2)

Algorithm

First, the data is centered by subtracting the mean of each column of the data matrix X.

The data matrix is then ‘whitened’ by projecting the data onto it’s principle component directions
i.e. X -> XK where K is a pre-whitening matrix. The number of components can be specified by
the user.

gpuFastICA 9

The ICA algorithm then estimates a matrix W s.t XKW = S . W is chosen to maximize the neg-
entropy approximation under the constraints that W is an orthonormal matrix. This constraint en-
sures that the estimated components are uncorrelated. The algorithm is based on a fixed-point
iteration scheme for maximizing the neg-entropy.

Projection Pursuit
In the absence of a generative model for the data the algorithm can be used to find the projection
pursuit directions. Projection pursuit is a technique for finding ‘interesting’ directions in multi-
dimensional datasets. These projections and are useful for visualizing the dataset and in density
estimation and regression. Interesting directions are those which show the least Gaussian distribu-
tion, which is what the FastICA algorithm does.

Value

A list containing the following components

X pre-processed data matrix

K pre-whitening matrix that projects data onto th first n.comp principal compo-
nents.

W estimated un-mixing matrix (see definition in details)

A estimated mixing matrix

S estimated source matrix

Author(s)

J L Marchini and C Heaton

References

A. Hyvarinen and E. Oja (2000) Independent Component Analysis: Algorithms and Applications,
Neural Networks, 13(4-5):411-430

Examples

#---
#Example 1: un-mixing two mixed independent uniforms
#---

S <- matrix(runif(10000), 5000, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- S%*%A

a <- gpuFastICA(X, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,
row.norm = FALSE,

maxit = 200, tol = 0.0001, verbose = TRUE)

par(mfrow = c(1, 3))
plot(a$X, main = "Pre-processed data")
plot(a$X%*%a$K, main = "PCA components")
plot(a$S, main = "ICA components")

10 gpuGlm

#--
#Example 2: un-mixing two independent signals
#--

S <- cbind(sin((1:1000)/20), rep((((1:200)-100)/100), 5))
A <- matrix(c(0.291, 0.6557, -0.5439, 0.5572), 2, 2)
X <- S%*%A

a <- gpuFastICA(X, 2, alg.typ = "parallel", fun = "logcosh", alpha = 1,
row.norm = FALSE,

maxit = 200, tol = 0.0001, verbose = TRUE)

par(mfcol = c(2, 3))
plot(1:1000, S[,1], type = "l", main = "Original Signals",

xlab = "", ylab = "")
plot(1:1000, S[,2], type = "l", xlab = "", ylab = "")
plot(1:1000, X[,1], type = "l", main = "Mixed Signals",

xlab = "", ylab = "")
plot(1:1000, X[,2], type = "l", xlab = "", ylab = "")
plot(1:1000, a$S[,1], type = "l", main = "ICA source estimates",

xlab = "", ylab = "")
plot(1:1000, a$S[, 2], type = "l", xlab = "", ylab = "")

#---
#Example 3: using FastICA to perform projection pursuit on a
mixture of bivariate normal distributions
#---

if(require(MASS)){
x <- mvrnorm(n = 1000, mu = c(0, 0), Sigma = matrix(c(10, 3, 3, 1), 2, 2))
x1 <- mvrnorm(n = 1000, mu = c(-1, 2), Sigma = matrix(c(10, 3, 3, 1), 2, 2))
X <- rbind(x, x1)

a <- gpuFastICA(X, 2, alg.typ = "deflation", fun = "logcosh", alpha = 1,
row.norm = FALSE,

maxit = 200, tol = 0.0001, verbose = TRUE)

par(mfrow = c(1, 3))
plot(a$X, main = "Pre-processed data")
plot(a$X%*%a$K, main = "PCA components")
plot(a$S, main = "ICA components")
}

gpuGlm Fitting generalized linear models using GPU–enabled QR decompo-
sition

gpuGlm 11

Description

Most of this documentation is copied from R’s documentation for glm. gpuGlm is used to fit
generalized linear models, specified by giving a symbolic description of the linear predictor and a
description of the error distribution.

Note: The QR decomposition employed by gpuLm is optimized for speed and uses minimal pivot-
ing.

Usage

gpuGlm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset, useSingle = TRUE,
control = gpuGlm.control(useSingle, ...), model = TRUE,
method = "gpuGlm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

gpuGlm.fit(x, y, weights = rep(1, nobs), start = NULL, etastart = NULL,
mustart = NULL, offset = rep(0, nobs), family = gaussian(), useSingle,
control = gpuGlm.control(useSingle), intercept = TRUE)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under ‘Details’.

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or
the result of a call to a family function. (See family for details of family
functions.)

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the envi-
ronment from which glm is called.

weights an optional vector of ‘prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit. Another possible value is
NULL, no action. Value na.exclude can be useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of

12 gpuGlm

length equal to the number of cases. One or more offset terms can be in-
cluded in the formula instead or as well, and if more than one is specified their
sum is used. See model.offset.

useSingle whether to use single precision arithmetic on the gpu. Only the ’TRUE’ option
is implemented so far.

control a list of parameters for controlling the fitting process. See the documentation for
glm.control for details.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

method the method to be used in fitting the model. The default method "gpuGlm.fit"
uses iteratively reweighted least squares (IWLS). The only current alternative is
"model.frame" which returns the model frame and does no fitting.

x, y For gpuGlm: logical values indicating whether the response vector and model
matrix used in the fitting process should be returned as components of the re-
turned value.
For gpuGlm.fit: x is a design matrix of dimension n * p, and y is a vector
of observations of length n.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

intercept logical. Should an intercept be included in the null model?

... For gpuGlm: arguments to be passed by default to glm.control: see argu-
ment control.
For weights: further arguments passed to or from other methods.

Details

A typical predictor has the form response ~ terms where response is the (numeric) re-
sponse vector and terms is a series of terms which specifies a linear predictor for response.
For binomial and quasibinomial families the response can also be specified as a factor
(when the first level denotes failure and all others success) or as a two-column matrix with the
columns giving the numbers of successes and failures. A terms specification of the form first +
second indicates all the terms in first together with all the terms in second with any dupli-
cates removed.

A specification of the form first:second indicates the the set of terms obtained by taking the in-
teractions of all terms in first with all terms in second. The specification first*second in-
dicates the cross of first and second. This is the same as first + second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the in-
teractions, all second-order, all third-order and so on: to avoid this pass a terms object as the
formula.

Non-NULL weights can be used to indicate that different observations have different dispersions
(with the values in weights being inversely proportional to the dispersions); or equivalently, when
the elements of weights are positive integers wi, that each response yi is the mean of wi unit-
weight observations. For a binomial GLM prior weights are used to give the number of trials when
the response is the proportion of successes: they would rarely be used for a Poisson GLM.

gpuGlm.fit is the workhorse function: it is not normally called directly but can be more efficient
where the response vector and design mattrix have already been calculated.

gpuGlm 13

If more than one of etastart, start and mustart is specified, the first in the list will be used.
It is often advisable to supply starting values for a quasi family, and also for families with unusual
links such as gaussian("log").

All of weights, subset, offset, etastart and mustart are evaluated in the same way as
variables in formula, that is first in data and then in the environment of formula.

For the background to warning messages about ‘fitted probabilities numerically 0 or 1 occurred’ for
binomial GLMs, see Venables & Ripley (2002, pp. 197–8).

Value

gpuGlm returns an object of class inheriting from "glm" which inherits from the class "lm". See
later in this section.

The function summary (i.e., summary.glm) can be used to obtain or print a summary of the
results and the function anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by glm.

weights extracts a vector of weights, one for each case in the fit (after subsetting and na.action).

An object of class "glm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the working residuals, that is the residuals in the final iteration of the IWLS fit.
Since cases with zero weights are omitted, their working residuals are NA.

fitted.values
the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.
linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero.

aic A version of Akaike’s An Information Criterion, minus twice the maximized
log-likelihood plus twice the number of parameters, computed by the aic com-
ponent of the family. For binomial and Poison families the dispersion is fixed
at one and the number of parameters is the number of coefficients. For gaus-
sian, Gamma and inverse gaussian families the dispersion is estimated from the
residual deviance, and the number of parameters is the number of coefficients
plus one. For a gaussian family the MLE of the dispersion is used so this is a
valid value of AIC, but for Gamma and inverse gaussian families it is not. For
families fitted by quasi-likelihood the value is NA.

null.deviance
The deviance for the null model, comparable with deviance. The null model
will include the offset, and an intercept if there is one in the model. Note that
this will be incorrect if the link function depends on the data other than through
the fitted mean: specify a zero offset to force a correct calculation.

14 gpuGlm

iter the number of iterations of IWLS used.

weights the working weights, that is the weights in the final iteration of the IWLS fit.
prior.weights

the weights initially supplied, a vector of 1s if none were.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y if requested (the default) the y vector used. (It is a vector even for a binomial
model.)

x if requested, the model matrix.

model if requested (the default), the model frame.

converged logical. Was the IWLS algorithm judged to have converged?

boundary logical. Is the fitted value on the boundary of the attainable values?

call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the fitter function used, currently always "gpuGlm.fit".

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

na.action (where relevant) information returned by model.frame on the special han-
dling of NAs.

In addition, non-empty fits will have components qr, R and effects relating to the final weighted
linear fit.

Objects of class "glm" are normally of class c("glm", "lm"), that is inherit from class "lm",
and well-designed methods for class "lm" will be applied to the weighted linear model at the
final iteration of IWLS. However, care is needed, as extractor functions for class "glm" such as
residuals and weights do not just pick out the component of the fit with the same name.

If a binomial glm model was specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights) and
the component y of the result is the proportion of successes.

Author(s)

The original R implementation of glm was written by Simon Davies working for Ross Ihaka at the
University of Auckland, but has since been extensively re-written by members of the R Core team.

The design was inspired by the S function of the same name described in Hastie & Pregibon (1992).

This function was adapted for Nvidia’s CUDA–supporting GPGPUs by Mark Seligman at Rapid
Biologics LLC. http://www.rapidbiologics.com

gpuGlm 15

References

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

See Also

anova.glm, summary.glm, etc. for glmmethods, and the generic functions anova, summary,
effects, fitted.values, and residuals.

lm for non-generalized linear models (which SAS calls GLMs, for ‘general’ linear models).

loglin and loglm for fitting log-linear models (which binomial and Poisson GLMs are) to con-
tingency tables.

bigglm in package biglm for an alternative way to fit GLMs to large datasets (especially those
with many cases).

esoph, infert and predict.glm have examples of fitting binomial glms.

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- gpuGlm(counts ~ outcome + treatment, family=poisson())
anova(glm.D93)
summary(glm.D93)

an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package="MASS")

anorex.1 <- gpuGlm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)

summary(anorex.1)

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

summary(gpuGlm(lot1 ~ log(u), data=clotting, family=Gamma))
summary(gpuGlm(lot2 ~ log(u), data=clotting, family=Gamma))

16 gpuGranger

gpuGranger Perform Granger Causality Tests for Vectors on a GPU

Description

This function performs, with the aid of a GPU, Granger Causality Tests on permutations of pairs of
columns of the input matrices ’x’ and ’y’.

Usage

gpuGranger(x, y=NULL, lag)

Arguments

x a matrix of floating point values. Each column represents a sequence of obser-
vations for a single random variable.

y an optional matrix of floating point values. Each column represents a sequence
of observations for a single random variable.

lag a positive integer by which to offset the sequence of observations to calculate
the coefficient for Granger causality.

Value

a list of two single precision floating point matrices both of the same dimension. The two matrices
are fStatistics and pValues. The fStatistics matrix holds the F-statistics from the Granger causality
tests. Each element of the pValues matrix is the p-value for the corresponding element of the
fStatistics matrix.

If y is NULL, the test is run on permutations of pairs of columns of x. To find the Granger causality
F-statistic estimating the answer to "Does variable x[,j] Granger-cause variable x[,i]?", look at
fStatistics[i, j] and pValues[i, j].

If y is not NULL, the test is run on permutations of pairs (x[,i], y[,j]). To find the Granger
causality F-statistic estimating the answer to "Does variable y[,j] Granger-cause variable x[,i]?",
look at fStatistics[i, j] and pValues[i, j].

Examples

permutations of pairs of cols of just x
numRandVars <- 5
numSamples <- 20
randVarSequences <- matrix(runif(numRandVars*numSamples), numSamples,
numRandVars)
gpuGranger(randVarSequences, lag = 5)

pairs of cols, one from x and one from y
numXRandVars <- 5
numXSamples <- 20
x <- matrix(runif(numXRandVars*numXSamples), numXSamples, numXRandVars)

gpuHclust 17

numYRandVars <- 3
numYSamples <- 20
y <- matrix(runif(numYRandVars*numYSamples), numYSamples, numYRandVars)

result <- gpuGranger(x, y, lag = 5)
print(result)

gpuHclust Perform Hierarchical Clustering for Vectors with a GPU

Description

This function performs clustering on a set of points. The distance between each pair of points
should be calculated first using a function like ’gpuDist’ or ’dist’.

Usage

gpuHclust(distances, method = "complete")

Arguments

distances a class of type "dist" containing floating point numbers representing distances
between points. R’s native dist function and the gpuDist function produce output
of this type.

method a string representing the name of the clustering method to be applied to dis-
tances. Currently supported method names include "average", "centroid", "com-
plete", "flexible", "flexible group", "mcquitty", "median", "single", "ward", and
"wpgma".

Value

Copied from the native R function ’hclust’ documentation. A class of type "hclust" with the follow-
ing attributes.

merge an n-1 by 2 matrix. Row i of ’merge’ describes the merging of clusters at step i
of the clustering. If an element j in the row is negative, then observation -j was
merged at this stage. If j is positive then the merge was with the cluster formed
at the (earlier) stage j of the algorithm. Thus negative entries in ’merge’ indicate
agglomerations of singletons, and positive entries indicate agglomerations of
non-singletons. Copied from the native R function ’hclust’ documentation.

order a vector giving the permutation of the original observations suitable for plotting,
in the sense that a cluster plot using this ordering and matrix ’merge’ will not
have crossings of the branches.

height a set of n-1 non-decreasing real values. The clustering height: that is, the value
of the criterion associated with the clustering ’method’ for the particular ag-
glomeration.

18 gpuLm

See Also

hclust, gpuDistClust

Examples

numVectors <- 5
dimension <- 10
Vectors <- matrix(runif(numVectors*dimension), numVectors, dimension)
distMat <- gpuDist(Vectors, "euclidean")
myClust <- gpuHclust(distMat, "single")
plot(myClust)

gpuLm Fitting Linear Models using a GPU–enabled QR

Description

Most of this documentation is copied from R’s documentation for lm. gpuLm is used to fit linear
models using a GPU enabled QR decomposition. It can be used to carry out regression, single stra-
tum analysis of variance and analysis of covariance (although aov may provide a more convenient
interface for these).

Note: The QR decomposition employed by gpuLm is optimized for speed and uses minimal pivot-
ing. If rank-revealing pivot is desired, then the function gpuQR, should be used. The most reliable
determination of rank, however, will be obtained with the svd command.

Usage

gpuLm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, useSingle = TRUE, offset, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the envi-
ronment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be NULL
or a numeric vector. If non-NULL, weighted least squares is used with weights
weights (that is, minimizing sum(w*e^2)); otherwise ordinary least squares
is used. See also ‘Details’,

gpuLm 19

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit. Another possible value is
NULL, no action. Value na.exclude can be useful.

method the method to be used; for fitting, currently only method = "qr" is sup-
ported; method = "model.frame" returns the model frame (the same as
with model = TRUE, see below).

model, x, y, qr
logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrix, the response, the qr decomposition) are returned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

useSingle an optional logical. In the future, setting this to FALSE will result in using
double precision arithmetic on the gpu, but this is not yet implemented

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of
length equal to the number of cases. One or more offset terms can be in-
cluded in the formula instead or as well, and if more than one are specified their
sum is used. See model.offset.

... additional arguments to be passed to the low level regression fitting functions
(see below).

Details

Models for lm are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) response vector and terms is a series of terms which specifies a
linear predictor for response. A terms specification of the form first + second indicates all
the terms in first together with all the terms in secondwith duplicates removed. A specification
of the form first:second indicates the set of terms obtained by taking the interactions of all
terms in first with all terms in second. The specification first*second indicates the cross
of first and second. This is the same as first + second + first:second.

If the formula includes an offset, this is evaluated and subtracted from the response.

If response is a matrix a linear model is fitted separately by least-squares to each column of the
matrix.

See model.matrix for some further details. The terms in the formula will be re-ordered so that
main effects come first, followed by the interactions, all second-order, all third-order and so on: to
avoid this pass a terms object as the formula (see aov and demo(glm.vr) for an example).

A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x.
See formula for more details of allowed formulae.

Non-NULL weights can be used to indicate that different observations have different variances
(with the values in weights being inversely proportional to the variances); or equivalently, when
the elements of weights are positive integers wi, that each response yi is the mean of wi unit-
weight observations (including the case that there are wi observations equal to yi and the data have
been summarized).

20 gpuLm

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical computations.
For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variables in formula,
that is first in data and then in the environment of formula.

Value

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis of vari-
ance table of the results. The generic accessor functions coefficients, effects, fitted.values
and residuals extract various useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following components:

coefficients a named vector of coefficients
residuals the residuals, that is response minus fitted values.
fitted.values

the fitted mean values.
rank the numeric rank of the fitted linear model.
weights (only for weighted fits) the specified weights.
df.residual the residual degrees of freedom.
call the matched call.
terms the terms object used.
contrasts (only where relevant) the contrasts used.
xlevels (only where relevant) a record of the levels of the factors used in fitting.
offset the offset used (missing if none were used).
y if requested, the response used.
x if requested, the model matrix used.
model if requested (the default), the model frame used.
na.action (where relevant) information returned by model.frame on the special han-

dling of NAs.

In addition, non-null fits will have components assign, effects and (unless not requested) qr
relating to the linear fit, for use by extractor functions such as summary and effects.

Using time series

Considerable care is needed when using lm with time series.

Unless na.action = NULL, the time series attributes are stripped from the variables before the
regression is done. (This is necessary as omitting NAs would invalidate the time series attributes,
and if NAs are omitted in the middle of the series the result would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series, so that the time
shift of a lagged or differenced regressor would be ignored. It is good practice to prepare a data
argument by ts.intersect(..., dframe = TRUE), then apply a suitable na.action
to that data frame and call gpuLm with na.action = NULL so that residuals and fitted values
are time series.

gpuLm 21

Note

Offsets specified by offset will not be included in predictions by predict.lm, whereas those
specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers (1992). The
implementation of model formula by Ross Ihaka was based on Wilkinson & Rogers (1973).

This function was adapted for Nvidia’s CUDA–supporting GPGPUs by Mark Seligman at Rapid
Biologics LLC. http://www.rapidbiologics.com

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for analysis
of variance. Applied Statistics, 22, 392–9.

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction intervals; confint
for confidence intervals of parameters.

lm.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression
fitting.

More lm() examples are available e.g., in anscombe, attitude, freeny, LifeCycleSavings,
longley, stackloss, swiss.

biglm in package biglm for an alternative way to fit linear models to large datasets (especially
those with many cases).

Examples

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
anova(lm.D9 <- gpuLm(weight ~ group))
summary(lm.D90 <- gpuLm(weight ~ group - 1))# omitting intercept
summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

22 gpuLm.fit

plot(lm.D9, las = 1) # Residuals, Fitted, ...
par(opar)

model frame :
stopifnot(identical(gpuLm(weight ~ group, method = "model.frame"),
model.frame(lm.D9)))

less simple examples in "See Also" above

gpuLm.defaultTol Function to switch tolerance depending on precision

Description

This function was written by Mark Seligman at Rapid Biologics, http://rapidbiologics.com

The function gpuLm.fit calls this function to determine a default tolerance. So gpuLm.defaultTol
should not need to be used directly.

Usage

gpuLm.defaultTol(useSingle = TRUE)

Arguments

useSingle logical. If TRUE, a tolerance will be returned appropriate for single precision
arithmetic. If FALSE, a tolerance will be returned appropriate for double preci-
sion arithmetic.

Value

a floating point number representing a tolerance to be used by gpuLm.fit

See Also

gpuLm.fit gpuLm

gpuLm.fit Fitter functions for gpu enabled linear models

Description

The C code called by this function was written by Mark Seligman at Rapid Biologics, http://rapidbiologics.com

The function gpuLm calls this function to fit linear models. So gpuLm.fit should not need to be
used directly.

gpuLm.fit 23

Usage

gpuLm.fit(x, y, w = NULL, offset = NULL, method = "qr",
useSingle, tol = gpuLm.defaultTol(useSingle), singular.ok = TRUE, ...)

Arguments

x design matrix of dimension n * p.

y vector of observations of length n, or a matrix with n rows.

w vector of weights (length n) to be used in the fitting process for the wfit func-
tions. Weighted least squares is used with weights w, i.e., sum(w * e^2) is
minimized.

offset numeric of length n). This can be used to specify an a priori known component
to be included in the linear predictor during fitting.

method currently, only method="qr" is supported.

useSingle logical. If TRUE, the gpu will use single precision arithmetic. In the future, if
FALSE the gpu may use double precision arithmetic, but this is not implemented
yet.

tol tolerance for the qr decomposition. Default is 1e-7.

singular.ok logical. If FALSE, a singular model is an error.

... currently disregarded.

Value

a list with components

coefficients p vector

residuals n vector or matrix
fitted.values

n vector or matrix

effects (not null fits)n vector of orthogonal single-df effects. The first rank of them
correspond to non-aliased coefficients, and are named accordingly.

weights n vector — only for the *wfit* functions.

rank integer, giving the rank

df.residual degrees of freedom of residuals

qr (not null fits) the QR decomposition, see qr.

See Also

gpuLm which should usually be used for linear least squares regression

24 gpuLsfit

Examples

require(utils)
set.seed(129)
n <- 7 ; p <- 2
X <- matrix(rnorm(n * p), n,p) # no intercept!
y <- rnorm(n)
w <- rnorm(n)^2

str(lmw <- gpuLm.fit(x=X, y=y, w=w))

gpuLsfit Least squares fit using GPU–enabled QR decomposition

Description

The least squares estimate of β in the model

Y = Xβ + ε

is found.

Most of this documentation is copied from R’s documentation for lsfit. The function gpuLsfit
performs a least–squares fit using a GPU enabled QR decomposition.

Note: The QR decomposition employed by gpuLm is optimized for speed and uses minimal pivot-
ing. If more precise pivoting is desired, then either the function gpuQR or, better still, svd should
be used.

Usage

gpuLsfit(x, y, wt=NULL, intercept=TRUE, useSingle = TRUE, tolerance=gpuLm.defaultTol(useSingle), yname=NULL)

Arguments

x a matrix whose rows correspond to cases and whose columns correspond to
variables.

y the responses, possibly a matrix if you want to fit multiple left hand sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

useSingle whether to use single precision arithmetic on the gpu. Only the ’TRUE’ option
is implemented so far.

tolerance the tolerance to be used in the matrix decomposition. This defaults to 1e-04 for
single–precision GPU computation.

yname names to be used for the response variables.

gpuLsfit 25

Details

If weights are specified then a weighted least squares is performed with the weight given to the jth
case specified by the jth entry in wt.

If any observation has a missing value in any field, that observation is removed before the analysis
is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for multiple
left-hand sides.

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (β as stated above).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

Author(s)

This function was adapted for Nvidia’s CUDA–supporting GPGPUs by Mark Seligman at Rapid
Biologics LLC. http://www.rapidbiologics.com

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

lsfit, lm, ls.print, ls.diag

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- gpuLsfit(x = unclass(gl(2,10)), y = weight)
ls.print(lsD9)

26 gpuMi

gpuMatMult Perform Matrix Multiplication with a GPU

Description

Performs matrix multiplication using a GPU. This function is merely a couple of wrappers for the
CUBLAS cublasSgemm function.

Usage

gpuMatMult(a, b)

Arguments

a a matrix of floating point values.

b a matrix of floating point values.

Value

A matrix of single precision floating point values. The matrix is just the product of arguments ’a’
and ’b’.

Examples

matA <- matrix(runif(2*3), 2, 3)
matB <- matrix(runif(3*4), 3, 4)
gpuMatMult(matA, matB)

gpuMi B spline based mutual information

Description

This function estimates the mutual information for permutations of pairs of columns of a matrix
using a B spline approach on a GPU device. Please note, the data must be values from the interval
[0.0, 1.0].

Usage

gpuMi(x, y = NULL, bins = 2, splineOrder = 1)

gpuQr 27

Arguments

x a matrix of floating point numbers from the interval [0.0, 1.0]. Each column rep-
resents a list of samples of a random variable. The mutual information between
each column of x and each column of y will be computed. If y is NULL then
each pair of columns of x will be compared.

y a matrix of floating point numbers from the interval [0.0, 1.0]. Each column rep-
resents a list of samples of a random variable. The mutual information between
each column of x and each column of y will be computed. If y is NULL then
each pair of columns of x will be compared.

bins a single integer value representing the number of equal intervals that [0.0, 1.0]
will be divided into in order to determine the bins in which to place each value
of the columns of x and y. In the case of splineOrder = 1, this determines the
histogram for traditional mutual information. For splineOrder > 1, a single value
may be placed in multiple adjoining bins with varying weights on membership.

splineOrder a single integer value giving the degree of the spline polynomials used to de-
fine both the number of bins a single value will be placed in and the weight of
membership given to the value.

Value

a matrix of single precision floating point values of order ncol(y) by ncol(x). Entry (i, j) of this
matrix represents the mutual information calculation for (y_i, x_j).

References

Carten O. Daub, Ralf Steuer, Joachim Selbig, and Sebastian Kloska. 2004. Estimating mutual
information using B-spline functions – an improved similarity measure for analysing gene expres-
sion data. BMC Bioinformatics. 5:118. Available from http://www.biomedcentral.com/
1471-2105/5/118

Examples

get 3 random variables each with 20 samples
x <- matrix(runif(60), 20, 3)
y <- matrix(runif(60), 20, 3)
do something interesting
y[,2] <- 3.0 * (x[,1] + x[,3])
z <- gpuMi(x, y, bins = 10, splineOrder = 3)
print(z)

gpuQr Estimate the QR decomposition for a matrix

http://www.biomedcentral.com/1471-2105/5/118
http://www.biomedcentral.com/1471-2105/5/118

28 gpuQr

Description

gpuQR estimates the QR decomposition for a matrix using column pivoting and householder ma-
trices. The work is done on a GPU.

Note: a rank-revealing pivoting scheme is employed, potentially resulting in pivot distinctly differ-
ent from ordinary "qr".

Usage

gpuQr(x, tol = 1e-07)

Arguments

x a matrix of floating point numbers. This is the matrix that will be decomposed
into Q and R factors.

tol a floating point value. It is used for estimating the rank of matrix x.

Value

an object of class ’qr’. This object has members qr, qraux, pivot, rank. It is meant to be identical to
the output of R’s base function ’qr’. From the documentation for R’s ’qr’ function: The attribute qr
is a matrix with the same dimension as ’x’. The upper triangle contains the R of the QR decomposi-
tion. The lower triangle contains partial information to construct Q. The attribute qraux is a vector
of length ’ncol(x)’ contains more information to construct Q. The attribute rank is a single integer
representing an estimation of the rank of input matrix x based on the results of the QR decompo-
sition. In some cases, this rank can be wildly different from the actual rank of the matrix x and so
is only an estimation. The attribute pivot contains the permutation applied to columns of x in the
process of calculating the QR decomposition.

Author(s)

The low–level implementation of this function for Nvidia’s CUDA–supporting GPGPUs was writ-
ten by Mark Seligman at Rapid Biologics LLC. http://www.rapidbiologics.com

References

Bischof, C. B. and Van Loan, C. F. (1987) The WY Representation for Products of Householder
Matrices SIAM J Sci. and Stat. Comp, 8, s2–s13.

Bjorck, Ake (1996) Numerical methods for least squares problems. SIAM.

Golub, Gene H. and Van Loan, C. F. (1996) Matrix Computations, Ed. 3, ch. 5.

Examples

get some random data of any shape at all
x <- matrix(runif(25), 5, 5)
qr <- gpuQr(x)
print(qr)

gpuSolve 29

gpuSolve Estimate the solution to a matrix vector equation

Description

This function estimates the solution to an equation of the form x * b = y where x is a matrix, b is an
unknown vector, and y is a known vector. It does much calculation on a GPU. If the y argument is
omitted, the function returns the inverse of x.

The function uses R’s base ’qr’ and then applies the gpu to the result to get the final solution.

Usage

gpuSolve(x, y=NULL)

Arguments

x a matrix of floating point numbers.

y a vector of floating point numbers of length nrow(x).

Value

a vector or matrix of floating point numbers. If y is not null, then the value is an estimate of the
vector b of length ncol(x) where x * b = y. If y is null or omitted, the value is a matrix, an estimate
of a matrix multiplicative pseudo inverse of x.

Examples

x <- matrix(runif(100), 10, 10)
y <- runif(10)
b <- gpuSolve(x, y)
cat("Solution:\n")
print(b)
x.inverse <- gpuSolve(x)
cat("an estimate of a pseudo inverse for x:\n")
print(x.inverse)

gpuSvd Singular Value Decomposition of a Matrix with a GPU

Description

Compute the singular-value decomposition of a rectangular matrix using the Cula library to compute
the decomposition using a GPU.

30 gpuSvd

Usage

gpuSvd(x, nu = min(n, p), nv = min(n, p))

Arguments

x a real matrix whose SVD decomposition is to be computed.

nu the number of left singular vectors to be computed. This must between 0 and n
= nrow(x).

nv the number of right singular vectors to be computed. This must be between 0
and p = ncol(x).

Details

The computation will be more efficient if nu <= min(n, p) and nv <= min(n, p), and
even more efficient if one or both are zero.

Value

The SVD decomposition of the matrix,

X = UDV ′,

where U and V are orthogonal, V ′ means V transposed, and D is a diagonal matrix with the
singular values Dii. Equivalently,D = U ′XV , which is verified in the examples, below.

The returned value is a list with components

d a vector containing the singular values of x, of length min(n, p).

u a matrix whose columns contain the left singular vectors of x, present if nu >
0. Dimension c(n, nu).

v a matrix whose columns contain the right singular vectors of x, present if nv >
0. Dimension c(p, nv).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

eigen, qr.

http://www.netlib.org/lapack/lug/lapack_lug.html

gpuSvmPredict 31

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
X <- hilbert(9)[,1:6]
(s <- gpuSvd(X))
D <- diag(s$d)
s$u %*% D %*% t(s$v) # X = U D V'
t(s$u) %*% X %*% s$v # D = U' X V

gpuSvmPredict A support vector machine style binary classifier

Description

This function classifies points in a data set with a support vector machine using a GPU. The neg-
ative category is represented by -1.f and the positive one by 1.f. The underlying code is adapted
from Austin Carpenter’s cuSVM which can be found at http://patternsonascreen.net/
cuSVM.html

Usage

gpuSvmPredict(data, supportVectors, svCoefficients, svOffset,
kernelWidth = 0.125, isRegression = FALSE)

Arguments

data a matrix of floating point numbers. Each row will be placed into one of two
categories -1.f or 1.f. Note that ncol(data) should equal ncol(supportVectors).

supportVectors
a matrix of floating point numbers. Each row of the matrix is a support vec-
tor. This matrix can be obtained from gpuSvmTrain, for example. Note that
ncol(supportVector) should equal ncol(data).

svCoefficients
a vector of floating point numbers representing coefficients corresponding to the
support vectors. This vector can be obtained from gpuSvmTrain, for example.
Each support vector supportVectors[i,] has coefficient svCoefficients[i].

svOffset a single floating point number. It is the offset for the prediction function. The
offset can be obtained from gpuSvmTrain, for example.

kernelWidth a single floating point number. This is the scalar Gaussian kernel parameter.

isRegression a single logical value indicating if the supportVectors result from regression.

Value

a vector of nrow(data) entries, each either -1.f or 1.f. Each entry i corresponds to the support vector
machine’s prediction for the category of data[i,].

http://patternsonascreen.net/cuSVM.html
http://patternsonascreen.net/cuSVM.html

32 gpuSvmTrain

References

Carpenter, Austin, cuSVM: a cuda implementation of support vector classification and regression,
http://http://patternsonascreen.net/cuSVM.html

Examples

y is discrete: -1 or 1 and we set isRegression to FALSE
y <- round(runif(100, min = 0, max = 1))
for(i in 1:5) { if(y[i] == 0) {y[i] <- -1}}

x <- matrix(runif(500), 100, 5)

a <- gpuSvmTrain(y, x, isRegression = FALSE)
print(a)

b <- gpuSvmPredict(x, a$supportVectors, a$svCoefficients, a$svOffset,
isRegression = FALSE)

print(b)

this time around, y : -1 or 1 and we set isRegression to FALSE
y <- runif(100, min = -1, max = 1)

x <- matrix(runif(500), 100, 5)

a <- gpuSvmTrain(y, x, isRegression = TRUE)
print(a)

b <- gpuSvmPredict(x, a$supportVectors, a$svCoefficients, a$svOffset,
isRegression = TRUE)

print(b)

gpuSvmTrain Train a support vector machine on a data set

Description

This function trains, with the aid of a GPU, a support vector machine using the input data x separated
into classes y. The function is capable of both regression (the entries of y are continuous) and non-
regression (each entry of y is either -1.f or 1.f). The underlying code is adapted from Austin Car-
penter’s cuSVM which can be found at http://patternsonascreen.net/cuSVM.html

Usage

gpuSvmTrain(y, x, C = 10, kernelWidth = 0.125, eps = 0.5,
stoppingCrit = 0.001, isRegression = FALSE)

http://http://patternsonascreen.net/cuSVM.html
http://patternsonascreen.net/cuSVM.html

gpuSvmTrain 33

Arguments

y a vector of floating point numbers. The length of y should equal the number of
rows of x. In the case of isRegression = FALSE, each entry of y is the category
of the row of data x. The negative category is indicated by -1 and the positive
category is indicated by 1. In the case of isRegression = TRUE, the values of
y may take any value between -1 and 1 inclusive. These categories are used to
train the svm.

x a matrix of floating point numbers. Each row i is a point with a category given
by y[i]. This is the data set used for training the svm.

C a single floating point number. This is the SVM regularization parameter.

kernelWidth a single floating point number. This is the scalar Gaussian kernel parameter.

eps a single floating point number. This is the epsilon used in regression mode.

stoppingCrit a single floating point number. This is the optimization stopping criterion.

isRegression a single logical value. If isRegression is set to TRUE then regression is per-
formed and the y value may be continuously valued. If not, then we use normal
svm training and each value in y must be either -1 or 1.

Value

a list consisting of the following elements: supportVectors, svCoefficients, and svOffset. The ele-
ment supportVectors is a matrix of single precision floating point numbers. These are the support
vectors corresponding to the coefficients in svCoefficients. Row i of supportVectors contains ncol(x)
columns and has coefficient svCoefficients[i]. The element svCoefficients is a single precision vec-
tor of the support vector coefficients. The element svOffset is a single floating point number of
single precision. It is the offset for the prediction function.

References

Carpenter, Austin, cuSVM: a cuda implementation of support vector classification and regression,
http://http://patternsonascreen.net/cuSVM.html

Examples

y is discrete: -1 or 1 and we set isRegression to FALSE
y <- round(runif(100, min = 0, max = 1))
for(i in 1:5) { if(y[i] == 0) {y[i] <- -1}}

x <- matrix(runif(500), 100, 5)

a <- gpuSvmTrain(y, x, isRegression = FALSE)
print(a)

b <- gpuSvmPredict(x, a$supportVectors, a$svCoefficients, a$svOffset,
isRegression = FALSE)

print(b)

this time around, y : -1 or 1 and we set isRegression to FALSE
y <- runif(100, min = -1, max = 1)

http://http://patternsonascreen.net/cuSVM.html

34 gpuTtest

x <- matrix(runif(500), 100, 5)

a <- gpuSvmTrain(y, x, isRegression = TRUE)
print(a)

b <- gpuSvmPredict(x, a$supportVectors, a$svCoefficients, a$svOffset,
isRegression = TRUE)

print(b)

gpuTtest T-Test Estimator with a GPU

Description

Given the number of samples and a Pearson correlation coefficient, this function estimates the t-
score on a GPU. If an entry in goodPairs is zero or one then you may get a NaN as the t-test result.

Usage

gpuTtest(goodPairs, coeffs)

Arguments

goodPairs a vector of positive integer values. Value i represents the number of samples
used to calculate the i-th value of the ’coeffs’ argument.

coeffs a vector of floating point values representing Pearson correlation coefficients.

Value

a vector of single precision floating point values. The i-th entry is an estimate of the t-score of the
i-th entry of the ’coeffs’ argument.

See Also

gpuCor.

Examples

goodPairs <- rpois(10, lambda=5)
coeffs <- runif(10)
gpuTtest(goodPairs, coeffs)

Index

∗Topic algebra
gpuMatMult, 25
gpuSvd, 29

∗Topic array
gpuLm.fit, 22
gpuMatMult, 25
gpuSvd, 29

∗Topic cluster
gpuDistClust, 6
gpuHclust, 16

∗Topic math
gpuDist, 5

∗Topic models
gpuGlm, 10

∗Topic multivariate
gpuFastICA, 7

∗Topic regression
gpuGlm, 10
gpuLm, 17
gpuLm.fit, 22
gpuLsfit, 24

anova, 12, 14, 19
anova.glm, 12, 14
anova.lm, 21
anscombe, 21
aov, 18, 19, 21
as.data.frame, 11, 18
attitude, 21

binomial, 14

chooseGpu, 2
class, 19
coef, 21
coefficients, 12
confint, 21

effects, 14, 20, 21
eigen, 30

esoph, 14

factor, 12
family, 11, 13
fitted, 21
fitted.values, 14
formula, 10, 18, 19
freeny, 21

getAucEstimate, 2
getGpuId, 3
glm, 21
glm.control, 11
gpuCor, 4, 34
gpuDist, 5, 6
gpuDistClust, 6, 17
gpuFastICA, 7
gpuGlm, 10
gpuGranger, 15
gpuHclust, 6, 16
gpuLm, 17, 22, 23
gpuLm.defaultTol, 22
gpuLm.fit, 22, 22
gpuLsfit, 24
gpuMatMult, 25
gpuMi, 26
gpuQr, 27
gpuSolve, 28
gpuSvd, 29
gpuSvmPredict, 30
gpuSvmTrain, 32
gpuTtest, 33

infert, 14

LifeCycleSavings, 21
lm, 14, 25
lm.fit, 19, 21
lm.influence, 21
lm.wfit, 21

35

36 INDEX

loglin, 14
loglm, 14
longley, 21
ls.diag, 25
ls.print, 25
lsfit, 25

model.frame, 14, 20
model.matrix, 19
model.matrix.default, 18
model.offset, 11, 19

na.exclude, 11, 18
na.fail, 11, 18
na.omit, 11, 18

offset, 11, 19
options, 11, 18

predict, 21
predict.glm, 14
predict.lm, 20, 21

qr, 23, 30
quasi, 12

residuals, 14, 21

stackloss, 21
summary, 12, 14
summary.glm, 12, 14
summary.lm, 21
swiss, 21

terms, 13, 20
ts.intersect, 20

vcov, 21

	chooseGpu
	getAucEstimate
	getGpuId
	gpuCor
	gpuDist
	gpuDistClust
	gpuFastICA
	gpuGlm
	gpuGranger
	gpuHclust
	gpuLm
	gpuLm.defaultTol
	gpuLm.fit
	gpuLsfit
	gpuMatMult
	gpuMi
	gpuQr
	gpuSolve
	gpuSvd
	gpuSvmPredict
	gpuSvmTrain
	gpuTtest
	Index

