Neutron Star Matter

Jochen Wambach

TU-Darmstadt and GSI
Germany

Compact Stars in the QCD Phase Diagram III

Guarujá, Brazil, December 12 - 15, 2012

Neutron Stars

topics to be discussed:

- bulk properties
- quark core

Neutron Stars

equation of state

most recent analysis A. Steiner et al. 2012
pressure vs density

PSR J1614-2230 $\quad M_{*}=1.97 \pm 0.04 M_{\odot}$
mass-radius constraints

more info from binary NS mergers through GW signals

Neutron Stars

symmetry energy

nuclear EoS

symmetry energy

Neutron Stars

symmetry energy

tight correlation between 'neutron skin' of ${ }^{208} \mathrm{~Pb}$ and the slope L of the nuclear symmetry energy at nucler saturation
J. Piekarewicz 2012

Neutron Stars

nuclear polarizability

$$
\begin{gathered}
\begin{array}{c}
\text { correlation between 'neutron skin' of }{ }^{208} \mathrm{~Pb} \\
\text { and the dipole polarizability }
\end{array} \\
\alpha_{D}=\frac{8 \pi}{9} e^{2} \int d \omega \frac{S_{D}(\omega)}{\omega} \rightarrow \quad \alpha_{D}=20.1 \pm 0.6 \quad \text { A. Tamii et al. } 2011
\end{gathered}
$$

$$
\Delta r_{n p}=0.156 \pm 0.025 \mathrm{fm}
$$

Neutron Stars

systematics

Binary NS mergers

gravitational-wave signal

A. Bauswein et al. 2012

GW spectrum

merger of two $M_{*}=1.35 M_{\odot}$ neutron stars
frequency-radius correlation

strong constraint on the high-density EoS

Neutron Star Interior

quark matter

QCD phase diagram (schematic):

- frequent assumption:
$\langle\bar{q} q\rangle,\langle q q\rangle$ constant in space
- how about inhomogeneous phases ?

Inhomogeneous phases:

(incomplete) historical overview

- 1960s:
- spin-density waves in nuclear matter (Overhauser)
- crystalline superconductors (Fulde, Ferrell, Larkin, Ovchinnikov)
- 1970s - 1990s:
- p-wave pion condensation (Migdal)
- chiral density wave (Dautry, Nyman)
- after 2000:
- 1+1 D Gross-Neveu model (Thies et al.)
- crystalline color superconductors (Alford, Bowers, Rajagopal)
- quarkyonic matter (Kojo, McLerran, Pisarski, ...)

Broniowski et al. (1991)

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!

Model

- NJL model:

$$
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]
$$

- bosonize: $\quad \sigma(x)=\bar{\psi}(x) \psi(x), \quad \vec{\pi}(x)=\bar{\psi}(x) i \gamma_{5} \vec{\tau} \psi(x)$

$$
\Rightarrow \quad \mathcal{L}=\bar{\psi}\left(i \not \partial-m+2 G_{S}\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right) \psi-G_{S}\left(\sigma^{2}+\vec{\pi}^{2}\right)
$$

- mean-field approximation:

$$
\sigma(x) \rightarrow\langle\sigma(x)\rangle \equiv S(\vec{x}), \quad \pi_{a}(x) \rightarrow\left\langle\pi_{a}(x)\right\rangle \equiv P(\vec{x}) \delta_{a 3}
$$

- $S(\vec{x}), P(\vec{x})$ time independent classical fields
- retain space dependence!
- mean-field thermodynamic potential:

$$
\Omega_{M F}(T, \mu)=-\frac{T}{V} \ln \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(\int_{x \in\left[0, \frac{1}{T}\right] \times V}\left(\mathcal{L}_{M F}+\mu \bar{\psi} \gamma^{0} \psi\right)\right)
$$

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- effective Hamiltonian (in chiral representation):

$$
\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \cdot \vec{\partial}
\end{array}\right)
$$

- constituent mass functions: $M(\vec{x})=m-2 G[S(\vec{x})+i P(\vec{x})]$

Mean-field model

- mean-field Lagrangian:

$$
\mathcal{L}_{M F}=\bar{\psi}(x) \mathcal{S}^{-1}(x) \psi(x)-G_{S}\left[S^{2}(\vec{x})+P^{2}(\vec{x})\right]
$$

- bilinear in ψ and $\bar{\psi} \Rightarrow$ quark fields can be integrated out!
- inverse dressed propagator:

$$
\mathcal{S}^{-1}(x)=i \not \partial-m+2 G_{S}\left(S(\vec{x})+i \gamma_{5} \tau_{3} P(\vec{x})\right) \equiv \gamma^{0}\left(i \partial_{0}-\mathcal{H}_{M F}\right)
$$

- effective Hamiltonian (in chiral representation):

$$
\mathcal{H}_{M F}=\mathcal{H}_{M F}[S, P]=\left(\begin{array}{cc}
-i \vec{\sigma} \cdot \vec{\partial} & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \cdot \vec{\partial}
\end{array}\right)
$$

- constituent mass functions: $M(\vec{x})=m-2 G[S(\vec{x})+i P(\vec{x})]$
- $\mathcal{H}_{M F}$ hermitean \Rightarrow can (in principle) be diagonalized (eigenvalues E_{λ})
- $\mathcal{H}_{\text {MF }}$ time-independent \Rightarrow Matsubara sum as usual

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\Omega_{M F}(T, \mu ; S, P)=-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(S^{2}(\vec{x})+P^{2}(\vec{x})\right)
$$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(s^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(s^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$.
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$

Mean-field thermodynamic potential

- thermodynamic potential:

$$
\begin{aligned}
\Omega_{M F}(T, \mu ; S, P) & =-\frac{T}{V} \operatorname{Tr} \ln \left(\frac{1}{T}\left(i \partial_{0}-\mathcal{H}_{M F}+\mu\right)\right)+\frac{G_{S}}{V} \int_{V} d^{3} x\left(s^{2}(\vec{x})+P^{2}(\vec{x})\right) \\
& =-\frac{1}{V} \sum_{\lambda}\left[\frac{E_{\lambda}-\mu}{2}+T \ln \left(1+e^{\frac{E_{\lambda}-\mu}{T}}\right)\right]+\frac{1}{V} \int_{V} d^{3} x \frac{|M(\vec{x})-m|^{2}}{4 G_{s}}
\end{aligned}
$$

- remaining tasks:
- Calculate eigenvalue spectrum $E_{\lambda}[M(\vec{x})]$ of $\mathcal{H}_{M F}$ for given mass function $M(\vec{x})$.
- Minimize $\Omega_{M F}$ w.r.t. $M(\vec{x})$
- general case: extremely difficult!

Periodic structures

- crystal with a unit cell spanned by vectors $\vec{a}_{i}, i=1,2,3$
\rightarrow periodic mass function: $M\left(\vec{x}+\vec{a}_{i}\right)=M(\vec{x})$

Periodic structures

- crystal with a unit cell spanned by vectors $\vec{a}_{i}, i=1,2,3$
\rightarrow periodic mass function: $M\left(\vec{x}+\vec{a}_{i}\right)=M(\vec{x})$
- Fourier decomposition: $\quad M(\vec{x})=\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} i^{i \vec{q}_{k} \cdot \vec{x}}$
- reciprocal lattice: $\frac{\vec{q}_{k} \cdot \vec{a}}{2 \pi} \in \mathbb{Z}$

Periodic structures

- crystal with a unit cell spanned by vectors $\vec{a}_{i}, i=1,2,3$
\rightarrow periodic mass function: $M\left(\vec{x}+\vec{a}_{i}\right)=M(\vec{x})$
- Fourier decomposition: $\quad M(\vec{x})=\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} i \vec{q}_{k} \cdot \vec{x}$
- reciprocal lattice: $\frac{\vec{q}_{k} \cdot \vec{a}}{2 \pi} \in \mathbb{Z}$
- mean-field Hamiltonian in momentum space:

$$
\mathcal{H}_{\vec{p}_{m}, \vec{p}_{n}}=\left(\begin{array}{cc}
-\vec{\sigma} \cdot \vec{p}_{m} \delta_{\vec{p}_{m}, \vec{p}_{n}} & \sum_{\vec{q}_{k}} M_{\vec{q}_{k}} \delta_{\vec{p}_{m}, \vec{p}_{n}+\vec{q}_{k}} \\
\sum_{\vec{q}_{k}} M_{\vec{q}_{k}}^{*} \delta_{\vec{p}_{m}, \vec{p}_{n}-\vec{q}_{k}} & \vec{\sigma} \cdot \vec{p}_{m} \delta_{\vec{p}_{m}, \vec{p}_{n}}
\end{array}\right)
$$

- different momenta coupled by $M_{\vec{q}_{k}} \Rightarrow \mathcal{H}$ is nondiagonal in momentum space!
- \vec{q}_{k} discrete $\Rightarrow \mathcal{H}$ is still block diagonal

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\overrightarrow{q k}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{M F}$
- minimize $\Omega_{M F}$ w.r.t. $M_{\overrightarrow{q_{k}}}$
- minimize $\Omega_{M F}$ w.r.t. $\left\{\vec{a}_{i}\right\}$
\rightarrow still very hard!

Periodic structures: minimum free energy

- general procedure:
- choose a unit cell $\left\{\vec{a}_{i}\right\} \Rightarrow\left\{\vec{q}_{k}\right\}$
- choose Fourier components $M_{\vec{q}}$
- diagonalize $\mathcal{H}_{M F} \rightarrow \Omega_{M F}$
- minimize $\Omega_{M F}$ w.r.t. $M_{\overrightarrow{q_{k}}}$
- minimize $\Omega_{M F}$ w.r.t. $\left\{\vec{a}_{i}\right\}$
\rightarrow still very hard!
\rightarrow further simplifications necessary

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{x})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{X})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{\text {cow }}$ can be diagonalized analytically
- important observation: [D. Nickel, PRD (2009)]

The general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{x})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically
- important observation:
[D. Nickel, PRD (2009)]
The general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case
- $1+1 \mathrm{D}$ solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu)$ (chiral limit), $\operatorname{sn}(\xi \mid \nu):$ Jacobi elliptic functions

One dimensional modulations

- consider only one-dimensional modulations: $\quad M(\vec{x})=M(z)=\sum_{q_{k}} M_{k} e^{i k q z}$
- popular choice: $M(z)=M_{1} e^{i q z}$ (chiral density wave)
- $\Leftrightarrow \quad S(\vec{x})=\Delta \cos (q z), \quad P(\vec{x})=\Delta \sin (q z)$
- $\mathcal{H}_{C D W}$ can be diagonalized analytically
- important observation: [D. Nickel, PRD (2009)]

The general problem with 1D modulations in 3+1D can be mapped to the $1+1$ dimensional case

- $1+1 \mathrm{D}$ solutions known analytically: [M. Thies, J. Phys. A (2006)]
$M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \quad$ (chiral limit), $\quad \operatorname{sn}(\xi \mid \nu):$ Jacobi elliptic functions
- remaining task:
- minimize w.r.t. 2 parameters: Δ, ν
- (almost) as simple as CDW, but more powerful
- m = 0: 3 parameters

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

Phase diagram (chiral limit)

[D. Nickel, PRD (2009)]

- 1st-order line completely covered by the inhomogeneous phase!
- all phase boundaries 2nd order
- critical point coincides with Lifshitz point

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=310 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE UNIVERSITÄT DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=307.5 \mathrm{MeV})$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=308 \mathrm{MeV})$

normalized density ($\mu=308 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=309 \mathrm{MeV})$

normalized density ($\mu=309 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

TECHNISCHE
UNIVERSITATT
DARMSTADT

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$

- Quarks reside in the chirally restored regions.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=320 \mathrm{MeV})$

normalized density ($\mu=320 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=330 \mathrm{MeV})$

normalized density ($\mu=330 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=340 \mathrm{MeV})$

normalized density ($\mu=340 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Mass functions and density profiles ($T=0$)

- $M(z)=\sqrt{\nu} \Delta \operatorname{sn}(\Delta z \mid \nu) \rightarrow\left\{\begin{array}{lll}\Delta \tanh (\Delta z) & \text { for } & \nu \rightarrow 1 \\ \sqrt{\nu} \Delta \sin (\Delta z) & \text { for } & \nu \rightarrow 0\end{array}\right.$
$M(z)(\mu=345 \mathrm{MeV})$

normalized density ($\mu=345 \mathrm{MeV}$)

- Quarks reside in the chirally restored regions.
- Density gets smoothened with increasing μ and T.

Including vector interactions

[S. Carignano, D. Nickel, M. Buballa, PRD (2010)]

- additional interaction term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- homogeneous phases: strong G_{V}-dependence of the critical point

Including vector interactions

[S. Carignano, D. Nickel, M. Buballa, PRD (2010)]

TECHNISCHE UNIVERSITÄT DARMSTADT

- additional interaction term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Including vector interactions

[S. Carignano, D. Nickel, M. Buballa, PRD (2010)]

- additional interaction term:

$$
\mathcal{L}_{V}=-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

$T-\langle n\rangle$ phase diagram:

- independent of G_{v} !
- homogeneous phases: strong G_{V}-dependence of the critical point
- inhomogeneous regime: stretched in μ direction, Lifshitz point at constant T

Two-dimensional modulations

TECHNISCHE UNIVERSITAT DARMSTADT

- consider two shapes:
- square lattice ("egg carton")

$$
M(x, y)=M \cos (Q x) \cos (Q y)
$$

- hexagonal lattice

$$
M(x, y)=\frac{M}{3}\left[2 \cos (Q x) \cos \left(\frac{1}{\sqrt{3}} Q y\right)+\cos \left(\frac{2}{\sqrt{3}} Q y\right)\right]
$$

- minimize both cases numerically w.r.t. M and Q

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

Two-dimensional modulations: results

[S. Carignano, M. Buballa, arXiv:1203.5343]

- amplitudes and wave numbers:
- egg carton:

- hexagon:

free-energy gain at $T=0$:

- 2d not favored over 1d in this regime

Conclusions

- nuclear physics constrants on the NS EoS
- dipole polarizability of ${ }^{208} \mathrm{~Pb} \rightarrow$ neutron skin thickness
- skin thickness \rightarrow density dep. of symmetry energy
- gravitaional waves signals

Conclusions

- nuclear physics constrants on the NS EoS
- dipole polarizability of ${ }^{208} \mathrm{~Pb} \rightarrow$ neutron skin thickness
- skin thickness \rightarrow density dep. of symmetry energy
- gravitaional waves signals
- Inhomogeneous chiral phases
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ

Conclusions

- nuclear physics constrants on the NS EoS
- dipole polarizability of ${ }^{208} \mathrm{~Pb} \rightarrow$ neutron skin thickness
- skin thickness \rightarrow density dep. of symmetry energy
- gravitaional waves signals
- Inhomogeneous chiral phases
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- observational signatures?

Conclusions

- nuclear physics constrants on the NS EoS
- dipole polarizability of ${ }^{208} \mathrm{~Pb} \rightarrow$ neutron skin thickness
- skin thickness \rightarrow density dep. of symmetry energy
- gravitaional waves signals
- Inhomogeneous chiral phases
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- observational signatures?
- EoS and elastic properties?

Conclusions

- nuclear physics constrants on the NS EoS
- dipole polarizability of ${ }^{208} \mathrm{~Pb} \rightarrow$ neutron skin thickness
- skin thickness \rightarrow density dep. of symmetry energy
- gravitaional waves signals
- Inhomogeneous chiral phases
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- observational signatures?
- EoS and elastic properties?
- ν-transport and cooling?

Conclusions

- nuclear physics constrants on the NS EoS
- dipole polarizability of ${ }^{208} \mathrm{~Pb} \rightarrow$ neutron skin thickness
- skin thickness \rightarrow density dep. of symmetry energy
- gravitaional waves signals
- Inhomogeneous chiral phases
- 1st-order line and critical point covered by an inhomogeneous region
- inhomogeneous phase rather stable w.r.t. vector interactions
- 1d modulations favored at "moderate" μ
- 2d modulations might be favored at higher μ
- observational signatures?
- EoS and elastic properties?
- ν-transport and cooling?
- interplay with CSC?

