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Introduction 

The understanding of the behavior of strongly interacting matter at finite T 

and/or density is of fundamental interest and has important applications in 

cosmology, in the astrophysics of neutron stars and in the physics of RHIC. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



High magnetic fields in non-central relativistic heavy ion collisions  

                                                                            (Kharzev, McLerran, Warringa (08)) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

L or B 

Recently, there has been quite a lot of interest in investigating how this 

phase diagram is affected by the presence of strong magnetic fields . The 

main motivation for this is their possible existence in physically relevant 

situations:   

Voloshin, QM2009 

eB ~ 104 – 105 MeV2      B ~ 1019 G 

Compact Stellar Objects: magnetars are estimated to have B ~1014-1015  G 

at the surface. It could be much higher in the interior (Duncan and Thompson 
(92/93)) 



Several theoretical/phenomenological questions arise: 
 

- How does the QCD phase diagram look like when one includes a non-

zero uniform B ? 

- Are there modifications in the nature of the phase transitions ? 

- Do chiral and deconfinement transitions behave differently ? 

- Which is the fate of the critical point(s) ? 

- ….. 

This has been investigated in a variety of approaches. For example [not an 

exhaustive list !] 
 

• NJL and relatives (Klevansky, Lemmer (89); Klimenko et al. (92,..); Gusynin, Miransky, Shokovy 
(94/95); Ferrer, Incera et al (03..), Hiller, Osipov (07/08); Menezes et al (09);Fukushima, Ruggieri, 
Gatto (10) [ PNJL ]; …) 

 

• PT (Shushpanov, Smilga (97); Agasian, Shushpanov (00); Cohen, McGady, Werbos (07);….  ) 
 

• Linear Sigma Model and MIT bag model: (Fraga, Mizher (08), Fraga, Palhares (12)) 

 

• Lattice QCD [at  = 0] (D’Elia (10/11), Bali et al (11/12)) 

 



• NJL model: simplest model with chiral quark  interactions. Local scalar 

and pseudoscalar four-fermion couplings  + UV regularization prescription 

NJL (Euclidean) 

lagrangian 

Nambu, Jona-Lasinio, PR (61) 

                                                         NJL model (CHIRAL DYNAMICS)  
  PNJL model  is a synthesis of 

                                                    Polyakov loop dynamics (CONFINEMENT) 
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    Polyakov, PLB (78)  
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deconfinement: 

Z(3) symmetry 

spontaneously 

broken 

confinement: 

Z(3) symmetry 

not broken 

pure gauge    Z(3) symmetry 

Effective potential  

(E)PNJL model 

Fukushima (03), Megias,Ruiz Arriola, Salcedo (06), Ratti, Thaler, Weise (06),… 

 

 



In the standard PNJL model the quark-quark coupling constant G is 

independent of the PL. To account for further correlations between the quark 

and gluon degrees of freedom a PL dependent G might be introduced. This 

leads to the so-called Entangled PJL (EPNJL) model (Sakai, Sasaki, Kouno, Yahiro 
(10)) 
 

 

 

 

 

 1 , 2  are chosen to be  1   = 2  = 0.2  so as to reproduce lattice results for 

the phase diagram at imaginary chemical potential. 
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In the quark sector the effects of finite T and  are considered by using the 

Matsubara formalism 
 

 

 
 

and the coupling  to the color background fields associated with the PL is 

introduced by using 
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For the Polyakov Loop effective potential we take  (Roessner, Ratti, Weise (07)) 

 

 

 

 
 

where 

 

 

and a0 = 3.51, a1 = -2.47, a2=15.2 , b3 = -1.75. This form of the potential and 

parameters have been shown to describe well the behavior of the PL found 

in pure gauge lattice calculations. 
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In the original work by Roessner et al. m was taken to T0 =270 MeV in order 

to reproduce the lattice value for the critical temperature in the pure gauge 

theory. It was latter suggested (Schaefer, Pawlowski, Wambach (07)) that the effect of 

the finite current quark mass m on the PL potential can be taken into 

account by a running of T0 with m and . For two light quarks it was 

estimated T0 = 208 (30) MeV. In our calculations we will consider both values 

of T0  but,  for simplicity, ignore any dependence of T0 on . 



The coupling of the quark fields to an external constant and homogenous 

magnetic field in the z-direction is done using minimal coupling i.e.  

 

 

 

 

 

As well-known, within the Mean Field Approximation that we use in what 

follows, this leads to the following modifications 

 
 

                                                                                                  Landau levels 
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                                                                                                  Degeneracy 
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Charge for each 

quark flavor 



The resulting thermodynamical potential in the mean feld approximation 

(MFA) reads 

 

 

 

 

 

 

 

 

 

 

where                                   and  
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For  = 0 one has 8=0. In order to have a real MFA for finite values of  

we set 8=0 also in that case. Then  
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The model parameters in the quark sector are chosen to reproduce the 

empirically known values of m and f at T==B=0 as well as 

phenomenological reasonable values of M0 (i.e. M at T= =B=0) 

 

 

 

 

 

Then, we solve numerically the gap equations given by  

 

 

 

 
 

to obtain M and  for each value of T,  and B 

0MFA MFA

M

 
 

 

G Λ2 Λ [MeV] mc [MeV] M0 [MeV] 

Set A 2.44 587.9 5.6 400 

Set B 2.19 631.5 5.5 340 

Cross over transitions are defined by the peak of the corresponding 

susceptibilities 

 
 

                                      chiral                            deconfinement   
 

/ /ch PLdM dT d dT   



0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

 

 

 

 [MeV]

T
 [

M
e
V

]

PNJL Set A

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

EPNJL Set A

 

 

 

 [MeV]

T
 [

M
e

V
]

0,0

0,2

0,4

0,6

0,8

1,0

0 100 200 300

0

5

10

15

20

25

=0 

 

 

 

=350 MeV

   full      M/M
0

dashed    

=0 =350 MeV

   full        
ch

dashed    


 

 

 

T [MeV]

PNJL Set A  T
0
=270 MeV

Results 

Full Line  

1st Order 

 

Dotted line 

Deconf COv 

 

Dashed Line 

Chiral rest 

COv 

Black Line  

T0=270 MeV 

 

Red line 

T0=208 MeV 

Typical results for B=0 



At T=0 there is an enhancement of the condensate with B: 

Magnetic catalysis (Gusynin, Miransky, Shokovy (94/95)) 

Magnetic catalysis (=T=0) 

Lattice Bali et al (12) 
PT Cohen et al(07) 
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• PNJL results in agreement with calculation by Ruggieri, Gatto (10) 
 

• Both critical temperatures increase with B. 
 

• In PNJL the splitting between the temperatures for chiral restoration 

and deconfinement increases with B.  
 

• In EPNJL both critical temperatures are quite similar, specially for 

lower value of T0 

Similar 

results 

obtained 

for Set B 

Dotted  Deconf.        Black       T0=270 MeV 

Dashed Chiral          Rest Red T0=208 MeV Critical temperatures for =0 



Comparison with result of other approaches 

LSM Mizhner, Fraga (10) 

Lattice D’Elia et al (10) 

Most models lead to an 

enhancement of critical 

temperatures with B 

Lattice Bali et al (12) 
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Similar results for EPNJL and 

other parameterizations Lattice results from Bali et al (12) 

As they stand these models fail to reproduce lattice behavior of 

condensate as a function of B for T close and above Tc 

Condensates as functions of B for various T 



                                                         EPNJL model 
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Results for Set A  

Phase diagrams for different values of B 
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Position of the CEP as of B  (Set A)  

Compared to PNJL, in EPNJL 

CEP moves to lower values of . 

Effect is larger for lower T0  

In PNJL CEP moves to higher values 

of T as compared with NJL. 



Appearence of intermediate phases even at T=0 for finite values of B (Klimenko et al 
(00)) 

320 330 340 350 360 370
0

10

20

30

40

50

60

 

 

 

 [MeV]

T
 [

M
e

V
]

For our Set B this occurs for  0 < B < 3 x 1019G 

0 100 200 300 400
0

50

100

150

200

 
 

T
 [
M

e
V

]

 [MeV]

300 320 340 360 380 400
0,0

0,2

0,4

0,6

0,8

1,0

 

 

  [MeV]

M
/ 

M
0

B=1.5.10
19

G

T=0

C
3 C

2
C

1

A
4

A
3

A
2

 



 

 (eB)
1/2

B

A
1

M
0

Schematic -B phase diagram T=0 in chiral limit 

Ai  M=0 (≠ 0) 
 

Ci  M=M0 (≠ 0) 
 

B   M=M(m) (=0) 

Results for Set B 
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Hass effect 



                                                         PNJL model 
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Phase diagrams for different values of B  (set B) 
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Position of CEP as a function of B – Set B:  
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Summary & Conclusions 

• We have analyzed the effect of a strong magnetic field on quark matter as 

described by (E)PNJL-type. These model provide a simultaneous dynamical 

description of  the DECONFINEMENT and CHIRAL cross-over transitions. 
 

•They are able to describe the enhancement of the quiral condensate with B at 

T=0. However, as most of the present available models they fail to reproduce 

recent lattice QCD results for Tc vs B at =0. What is missing ? 
 

•In EPNJL there is no splitting at =0 between chiral restoration and 

deconfinement transitions as functions of B. Similarly for a given B both 

transitions lines coincide up to the critical point. 
 

•The detailed form of the phase diagram, particularly at low T, is rather 

different dependending on the parameterization used for the quark sector. For 

parametrizations leading to M0 < ~ 350 MeV there is a quite rich structure due 

to the subsequent population of the Landau levels as  increases. In particular 

several CEP are found. 
 

•Possible extensions and applications: more realistic non-local models, EOS, 

etc  

 


