Towards a Beth-Uhlenbeck EoS for compact stars and supernovae

David Blaschke (Univ. Wroclaw & JINR Dubna)

T. Klähn, R. Łastowiecki, D. Zablocki (Wrocław)
H. Grigorian (Yerevan), G.A. Contrera (La Plata)
G. Röpke (Rostock), S. Benic (Zagreb)
S. Typel (Munich & GSI), H. Wolter (Munich)
M. Buballa, T. Fischer (Darmstadt)

- Pauli blocking for nucleons: quark substructure effect
- Consequences for Compact Stars and Supernovae:
- Symmetry energy and cluster fractions
- Nucleon dissociation limits of the hadronic world
- Perspectives: Relativistic formulation (Daniel Zablocki)

CSQCD3, Guaruja, December 14, 2012

comp

star

Supernova 1987A O HUBBLESITE.org

L. McLerran and R. Pisarski, NPA 796 (2007) 83

NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Sweeping the critical point in SN collapse & BH formation

A. Ohnishi, H. Ueda, T. Nakano, M. Ruggieri, K. Sumiyoshi, Phys. Lett. B 704, (2011) 284.

EoS for Supernova and Merger Simulations: Wide range of parameters!

- $10^{-8} \le n/n_0 \le 10$
- $0 \le T \le 200 \text{ MeV}$
- $0 \le Y_p \le 0.6; \beta = 1 2Y_p$
- Commonly used EsoS:
 - Lattimer-Swesty, NPA 535 (1991): Skyrme-type model LD modeling of nuclei embedded in nucleon gas
 - Shen, Toki et al., Prog. Theor. Phys. 100 (1998): RMF model (TM1), α particles with excluded volume procedure

Recent development:

• Horowitz-Schwenk, NPA 776 (2006): virial expansion, nucleons and α 's uses experimental data for BE and scattering phase shifts, exact limit for low densities $n/n_0 < 10^{-3}$

Tasks of the present work:

- medium effects on light clusters from quantum statistical approach
- realistic description of high-density matter (DD-RMF)
- thermodynamics, liquid-gas phase transition (instability region)

Theory of nuclear matter with clusters (I)

Total nucleon density:

$$n_{\tau}(T,\tilde{\mu}_{p},\tilde{\mu}_{n}) = \frac{1}{\Omega} \sum_{1} \langle a_{1}^{\dagger}a_{1} \rangle \delta_{\tau,\tau_{1}} = 2 \int \frac{d^{3}k_{1}}{(2\pi)^{3}} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} f_{1,Z}(\omega) S_{1}(1,\omega)$$

Distribution functions: $f_{A,Z}(\omega) = \left(\exp\left\{\beta\left[\omega - Z\tilde{\mu}_p - (A - Z)\tilde{\mu}_n\right]\right\} - (-1)^A\right)^{-1}$ Cluster decomposition of nucleon densities

$$n_p^{\text{tot}}(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu,K} Z f_{A,Z} [E_{A,\nu}^{\text{qu}}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)]$$
$$n_n^{\text{tot}}(T, \tilde{\mu}_p, \tilde{\mu}_n) = \frac{1}{\Omega} \sum_{A,\nu,K} (A - Z) f_{A,Z} [E_{A,\nu}^{\text{qu}}(K; T, \tilde{\mu}_p, \tilde{\mu}_n)]$$

Mass fractions of clusters: $X_{A,Z} = \frac{A}{\Omega n} \sum_{\nu,K} f_{A,Z} [E_{A,\nu}^{qu}(K;T,\tilde{\mu}_p,\tilde{\mu}_n)]$ Thermodynamical potential *F* by integration of $\mu(n)$ [inverted $n(\mu)$] \rightarrow all thdyn. functions (EoS)

$$F(T,n,Y_p^{\rm s})/\Omega = \int_0^n dn' \, \tilde{\mu}(T,n',Y_p^{\rm s})$$

Typel, Röpke, Klähn, D.B., Wolter, Phys. Rev. C 81, 015803 (2010)

Theory of nuclear matter with clusters (II)

Single-nucleon quasiparticle dispersion in effective mass approximation:

$$E_{\tau}^{\mathrm{qu}}(k) = \Delta E_{\tau}^{\mathrm{SE}}(0) + \frac{k^2}{2m_{\tau}^*} + \mathcal{O}(k^4)$$

From density-dependent RMF theory follows

$$E_{n,p}^{qu}(0) = \sqrt{[m - \Sigma_{n,p}(T, n, \pm \delta)]^2 + k^2} + \Sigma_{n,p}^0(T, n, \pm \delta)$$

 $\Sigma_{n,p}$ – scalar self energy; $\Sigma_{n,p}^{0}$ time component of vector self energy

$$\Delta E_{n,p}^{\rm SE}(k) = \Sigma_{n,p}^0(T, n, \pm \delta) - \Sigma_{n,p}(T, n, \pm \delta) ; \quad m_{n,p}^* = m - \Sigma_{n,p}(T, n, \pm \delta)$$

Quasiparticle energies for clusters from A-particle Schrödinger equation in perturbation theory

$$E_{A,\nu}^{\rm qu}(K) = E_{A,Z}^{\rm qu}(K) = E_{A,Z}^{(0)} + \frac{K^2}{2Am} + \Delta E_{A,Z}^{\rm SE}(K) + \Delta E_{A,Z}^{\rm Pauli}(K) + \Delta E_{A,Z}^{\rm Coul}(K) + \dots$$

Important effect for cluster binding energy in medium: Pauli shift:

$$\Delta E_{A,Z}^{\text{Pauli}}(K) \approx \Delta E_{A,Z}^{\text{Pauli}}(0) \exp\left(-\frac{K^2}{g_{A,Z}}\right) ; \quad g_i(T,n,Y_p) = \frac{g_{i,1} + g_{i,2}T + h_{i,1}n}{1 + h_{i,2}n}$$

Typel, Röpke, Klähn, D.B., Wolter, Phys. Rev. C 81, 015803 (2010)

Proton fraction (dissociation degree) in nuclear matter

Proton fraction X_p in symmetric nuclear matter in generalized RMF model (a) and quantum statistical approach (b). Thin lines show the nuclear statistical equilibrium (NSE) model for comparison.

Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010)

Cluster binding energies and fractions in nuclear matter

Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010)

Liquid-gas phase transition in symmetric nuclear matter

Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010)

Nuclear matter symmetry energy with clusters

Nuclear (internal) symmetry energy:

$$E_{\rm sym}(n,T) = \frac{E(n,1,T) + E(n,-1,T)}{2} - E(n,0,T)$$

Natowitz, Röpke, Typel, D.B., ..., Wolter, arxiv:1001.1102 [nucl-th]; PRL (2010).

Comparison with standard SN EoS (Shen et al.)

 α particle fractions in symmetric nuclear matter as functions of density at four temperatures.

Typel, Röpke, Klähn, D.B., Wolter, arxiv:0908.2344; Phys. Rev. C 81, 015803 (2010)

Generalized Beth-Uhlenbeck approach to clustered quark matter

One-particle Green function (a = quark, diquark) approximation:

$$G_a(1, z_a) = [z_a - E_a(1) - \Sigma_a(1, z_a)]^{-1}, \ E_a(1) = E_a + p_1^2/(2m_a)$$

Spectral function

$$A_a(1, E) = i[G_a(1, E + i0) - G_a(1, E - i0)] = \frac{2\Im\Sigma_a(1, E - i0)}{[E - E_a(1) - \Re\Sigma_a(1, E)]^2 + [\Im\Sigma_a(1, E - i0)]^2}$$

mean occupation number $n_a(1)$ and distribution function $f_a(E)$

$$n_a(1) = \eta_a \int \frac{dE}{2\pi} f_a(E) A_a(1, E), \quad f_a(E) = \eta_a [\exp[(E - \mu_a)/T] + \eta_a]^{-1}$$

Thermodynamics: via density to pressure as thermodynamical potential

$$n(T, \mu_1, \dots, \mu_c) = \frac{1}{\Omega} \sum_{a=1}^c \sum_{i=1}^c n_a(1) ,$$

$$p(T, \mu_1, \dots, \mu_c) = \sum_a \int_{-\infty}^{\mu_a} d\mu' n_a(T, \mu_1 \dots, \mu' \dots, \mu_c)$$

 \implies Generalized Beth-Uhlenbeck EoS for (n.r.) Quark Matter. D.B., H. Grigorian, G. Röpke, in preparation (2012)

Quark matter beyond meanfield, nucleons as bound states (clusters)

Hartree-Fock: $\Im\Sigma(1, z)$ vanishes, spectral function δ – shaped at quasiparticle energies:

$$e_a(1) = E_a(1) + v_a(1), \quad v_a(1) = \Re \Sigma_a(1, e_a(1))$$

Consider contributions up to first order in $\Im\Sigma(1, z)$

$$A_{a}(1,E) = A_{a}^{free}(1,E) + A_{a}^{corr}(1,E) , \quad A_{a}^{free}(1,E) = 2\pi\delta(E - e_{a}(1)),$$

$$A_{a}^{corr}(1,E) = 2\int dE'\Im\Sigma_{a}(1,E'-i0)[\delta(E - e_{a}(1)) - \delta(E - E')]\frac{d}{dE'}\frac{\mathcal{P}}{E' - e_{a}(1)}$$

Bound states: selfenergy in terms of the T-matrix

$$\begin{split} \Sigma_a(1, z_{\nu}^a) &= T \sum_{2, b} \sum_{z_{\nu}^b} T_{ab}(12, 12, z_{\nu}^a + z_{\nu}^b) G_b(2, z_{\nu}^b) \\ &= \Sigma^{HF}(1) + \sum_{2, b} \int dE \Im T_{ab}(12, 12, E + i0) \int \frac{dE'}{2\pi} A_b(2, E') \frac{[f_b(E') - f_{ab}(E)]}{E - E' - z_a} \end{split}$$

Two-particle distribution function $f_{ab}(E)$ describes fermionic quark-diquark states, $\eta_{ab} = -\eta_a \eta_b$,

$$f_{ab}(E) = \eta_{ab} [\exp(E - \mu_a - \mu_b)/T + \eta_{ab}]^{-1}$$

Quark-diquark matter as nonideal two-component plasma

T-matrix from solution of the Bethe–Salpeter equation:

$$T_{ab}(12, 1'2', E) = V(12, 1'2') + \sum_{343'4'} V(12, 34)G_{ab}(34, 3'4', E)T_{ab}(3'4', 1'2', E)$$

V(12, 1', 2') - interaction potential model, intermediate propagation given by Green's function

$$\begin{aligned} G_{ab}(12, 1'2', Z_{ab}) &= \sum_{z_a} G_a(1, z_a) G_b(2, Z_{ab} - z_a) \delta_{11'} \delta_{22'} \\ &= \delta_{11'} \delta_{22'} \int \frac{d\omega}{2\pi} \frac{d\omega' 1 - f_a(\omega) - f_b(\omega')}{\omega + \omega' - Z} A_a(1, \omega) A_b(2, \omega') \\ &= \frac{1 - n_a(1) - n_b(2)}{e_a(1) + e_b(2) - Z_{ab}} \delta_{11'} \delta_{22'} + \Delta G_{ab}(12, 1'2', Z_{ab}) \\ n_a(1) &= n_a^{free}(1) + \sum_{2,b} n_{ab}(12) , \ n_{ab}(12) = \eta_{ab} \int \frac{dE}{2\pi} f_{ab}(E) D_{ab}(12, E) \end{aligned}$$

Two-particle spectral density (Generalized Beth-Uhlenbeck)

$$D_{ab}(12,E) = 2\pi\delta(E - E_{\alpha,P}) + \sin^2\delta_{ab}(P,E)\frac{d}{dE}\delta_{ab}(P,E) .$$

Separable potential model of the nucleon

Schrödinger equation equivalent to Bethe–Salpeter equation:

$$(E_{\alpha,P} - e^0_{ab}(p,P))\Psi_{\alpha,P}(p) = \sum_{p'} V_{ab}(p,p')\Psi_{\alpha,P}(p')$$

Bilinear expansion to the T-matrix

$$T_{ab}(12, 1'2', E) = \sum_{\alpha} T_{ab,\alpha}(p, p', P, E), = \sum_{\alpha} \frac{\Psi_{\alpha, P}(p)\Psi_{\alpha, P}^{*}(p')}{E_{\alpha, P} - E} (e_{ab}^{0}(p, P) - E)(e_{ab}^{0}(p', P) - E_{\alpha, P})$$

Separable confining-type model potential

$$V(p, p') = (2\pi)^3 C \delta^{(3)}(\vec{p} - \vec{p'}) - V_0 W(p, \beta) W(p', \beta)$$

Binding energy E_B and two-particle quasi-energies $e_{ab}^0(p, P)$ (continuum edge)

$$E_B = -\frac{p_B^2}{2m} = E_{\alpha,P} - M - \frac{P^2}{2M} - C , \ e_{ab}^0(p,P) = M + \frac{p^2}{2m} + \frac{P^2}{2M} + C$$

Separable potential model of the nucleon - Parametrization

Wave function and loop integral $J(E, P) = \sum V_{ab}(p, p)G_{ab}(p, P, E)$

$$\Psi_0(p) = \mathcal{N}\frac{V_0 W(p,\beta)}{p^2 + p_B^2}, \quad J(p_B, P; V_0, \beta) = \frac{mV_0}{\pi^2} \int_0^\infty \frac{W(p,\beta)^2}{p^2 + p_B^2} p^2 dp = 1$$

Separable Yamaguchi potential for $W(p,\beta)=\beta^2/(p^2+\beta^2)$

Mass $M_N = M + C(V_0, \beta) - |E_B(V_0, \beta)| = 939$ MeV and radius of the nucleon $\langle r^2 \rangle = 0.7$ fm²

$$4\pi (1+x)^2 = mV_0\beta , \quad \frac{(1+x^3)(1+x)^3 - 16x^3}{8x^2(1-x^2)^2} = \beta^2 R^2/4 , \quad x = p_B/\beta$$

V_0 [GeV ⁻²]	β [fm ⁻¹]	C[GeV]	$E_B[\text{GeV}]$	$n_{ m Mott}[n_0]$;SNM	$n_{\mathrm{Mott}}[n_0]$;PNM
150	3.51997	0.0867326	0.147833	3.8496	1.92465
200	3.03763	0.115714	0.176814	4.1836	2.09181
250	2.73902	0.143152	0.204252	4.46062	2.23005
450	2.16666	0.24039	0.30149	5.19448	2.59723
500	2.08783	0.262325	0.323425	5.96763	2.65924
650	1.91431	0.324144	0.385244	5.61316	2.80667

Nucleon in the medium - quark substructure effects

In-medium T-matrix describes quark-diquark subsructure effects

$$T_{ab}(p, p', P, E) = \frac{V_{ab}(p, p')}{1 - J(E, P)}, \quad J(E, P) = \sum_{a, b, p} V_{ab}(p, p) G_{ab}(p, P, E).$$

Two-particle energies (angle-averaged) in the medium

$$e_{ab}(p,P) = e_{ab}^{0}(p,P) + u_{ab}(p,P) , \ u_{ab}(p,P) = \langle v_{a}(1) + v_{b}(2) \rangle_{pP}$$

Generalized (angle-averaged) Pauli blocking operator

$$Q(p, P) = 1 - \langle n_a^{(B)} \rangle_{pP} - \langle n_b^{(B)} \rangle_{pP}$$

$$J_R(E,P) = \P \int_0^\infty \frac{p^2 dp}{2\pi^2} V_0 W^2(p) \frac{Q(p,P)}{e_{ab}(p,P) - E}; \ e_{ab}(p,P) > E$$

Pair distribution function

$$n_{ab}^{(B)}(p,P) = \eta_{ab} f_{ab} \left(E_B + E_0(P) \right) |\Psi_P(p)|^2 , \quad \Psi_P(p) = \frac{V_0 \mathcal{N} W(p) \sqrt{Q(p,P)}}{e_{ab}(p,P) - E_B - E_0(P)}$$

Nucleon Mott dissociation follows when bound state energy equals continnum.

Nucleon dissociation

Nuclear matter towards deconfinement

D.B., H. Grigorian, G. Röpke, in preparation (2012)

NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Quantum Field Theory for chiral Quark Matter

• Partition function for chiral Quark Field theory coupled to Polyakov-loop potential

$$Z[T, V, \mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int^{\beta} d^4x \{\bar{\psi}[i\gamma^{\mu}\partial_{\mu} - m - \gamma^0(\mu + i\lambda_3\phi_3)]\psi - \mathcal{L}_{\rm int} + U[\Phi(\phi_3)]\}\right\}$$

• Current-current coupling (4-fermion interaction) and KMT determinant $\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M (\bar{\psi}\Gamma_M \psi)^2 + \sum_D G_D (\bar{\psi}^C \Gamma_D \psi)^2 + \mathcal{L}_{\text{det}}$

• Bosonisation (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}\phi_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \exp\left\{-\frac{\phi_M^2}{4G_M} - \frac{|\Delta_D|^2}{4G_D} - \frac{K\phi_u\phi_d\phi_s}{16G_S^3} + \frac{1}{2}\operatorname{Tr}\ln S^{-1} + U[\Phi(\phi_3)]\right\}$$

- Collective (stochastic) Fields: Mesons (ϕ_M) and Diquarks (Δ_D)
- Systematic Evaluation: Mean field + Fluctuations
 - Mean-field Approximation: Order parameter for Phase transitions (Gap equations)
 - Fluctuations (2. Order): Hadronic Correlations (Bound- & Scattering states)
 - Fluctuations of higher Order: Hadron-Hadron Interaction

Phase diagram for 3-Flavor Quark Matter

Introduction
 Hadronic Cooling
 Quark Substructure and Phases
 Hybrid Star Cooling
 Summary

Thermodynamic Potential $\Omega(T,\mu) = -T \ln Z[T,\mu]$

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T}S^{-1}(i\omega_n, \vec{p})\right) + \Omega_e - \Omega_0$$

InverseNambu – GorkovPropagator
$$S^{-1}(i\omega_n, \vec{p}) = \begin{bmatrix} \gamma_\mu p^\mu - M(\vec{p}) + \mu \gamma^0 & \widehat{\Delta}(\vec{p}) \\ \widehat{\Delta}^{\dagger}(\vec{p}) & \gamma_\mu p^\mu - M(\vec{p}) - \mu \gamma^0 \end{bmatrix},$$

$$\Delta_{k\gamma} = 2G_D \langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} g(\vec{q}) q_{j\beta}^C \rangle. \quad \widehat{\Delta}(\vec{p}) = i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} \Delta_{k\gamma} g(\vec{p}).$$

Fermion Determinant (Tr $\ln D = \ln \det D$)

$$\operatorname{lndet}\left(\frac{1}{T}S^{-1}(i\omega_n, \vec{p})\right) = 2\sum_{a=1}^{18} \ln\left(\frac{\omega_n^2 + \lambda_a(\vec{p})^2}{T^2}\right)$$

Result for the thermodynamic Potential (Meanfield approximation)

$$\Omega(T,\mu) = \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} - \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left[\lambda_a + 2T \ln\left(1 + e^{-\lambda_a/T}\right)\right] + \Omega_e - \Omega_0.$$

Neutrality constraints: $n_Q = n_8 = n_3 = 0$, $n_i = -\partial \Omega / \partial \mu_i = 0$, Equations of state: $P = -\Omega$, etc.

Chiral and Diquark Gaps w/wo KMT determinant

Dynamical quark masses with and without KMT determinant interaction at T = 0; pion properties and quark mass fixed at $\mu = 0$

Diquark condensates with and without KMT determinant at T = 0, strong diquark coupling case

Rüster et al, PRD 72 (2005) 034004; Blaschke et al, PRD 72 (2005) 065020; D.B., Łastowiecki et al. JPG 37 (2010) 094063; PTPS 186 (2010) 81

Phase diagrams for the CBM and NICA experiments

Phase diagram for isospin-symmetric matter (left); trajectories for heavy-ion collisions (right)D.B., F. Sandin, V. Skokov, S. Typel, Acta Phys. Pol. Supp. 3, 741 (2010).

Phase diagram for isospin-symmetric matter, extension to asymmetric matter and EoS for SN collapse; calculations in progress (right-hand side)!
T. Fischer, D.B., et al., Phys. Atom. Nucl. 75 (2012) 757 → CompStar Coll.
For bag model, see: I. Sagert et al., Phys. Rev. Lett. 102, (2009) → CompStar Coll.

New ways to understand Dense QCD Matter

CompStar **O**nline **S**upernova **E**oS \rightarrow coming soon!

CompOSE - CompStar Online Supernova EoS

Reference manual version 1.00

CompOSE

$Comp {\rm Star}~Online~Supernov {\color{black}{\bullet}}~Equations~of~State$

harmonising the concert of nuclear physics and astrophysics

compose.obspm.fr

CompOSE Core Team

November 27, 2012

General Requirements:

- Densities: $10^{-8} \le n/n_0 \le 10$
- Temperatures: $0 \le T \le 200 \text{ MeV}$
- Proton fractions: $0 \le Y_p \le 0.6$; $\beta = 1 2Y_p$

New Developments:

- Dissolution of clusters due to Pauli blocking
- Realistic high-density modeling: DD-RMF/3FSC PNJL
- Thermodynamics of 1^{st} order PT; pasta phases

I. For Contributors:

- How to prepare EoS tables
- How to submit EoS tables
- Extending CompOSE

II. For Users:

- Hadronic EoS: Statistical, Skyrme, DBHF, ...
- Quark Matter EoS: Bag, PNJL, ...
- Phase transition: Maxwell, Gibbs, Pasta, ...