Nuclear matter EOS with light clusters within mean-field approximation

Márcio Ferreira and Constança Providência

Centro de Física Computacional Department of Physics University of Coimbra Portugal

Compact Stars in the QCD Phase Diagram III FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

UNIÃO EUROPEIA Fundo Social Europeu

Objective

How do we

construct an EOS that contains light clusters?

parametrize them?

• We use the relativistic mean-field model:

$$\mathcal{L} = \mathcal{L}_{NLWM} + \mathcal{L}_t + \mathcal{L}_h + \mathcal{L}_d + \mathcal{L}_\alpha$$
Fermions (t, h) : $\mathcal{L}_j = \bar{\psi}_j \left[\gamma_\mu i D_j^\mu - M_j^* \right] \psi_j$
with $i D_j^\mu = i \partial^\mu - g_v^j \omega^\mu - \frac{g_p^j}{2} \boldsymbol{\tau} \cdot \mathbf{b}^\mu$ and $M_j^* = M_j - g_s^j \sigma$, $j = t, h$
Spin 0 boson: $\mathcal{L}_\alpha = \frac{1}{2} (i D_\alpha^\mu \phi_\alpha)^* (i D_{\mu\alpha} \phi_\alpha) - \frac{1}{2} \phi_\alpha^* (M_\alpha^*)^2 \phi_\alpha$,
Spin 1 boson: $\mathcal{L}_d = \frac{1}{4} (i D_d^\mu \phi_d^\nu - i D_d^\nu \phi_d^\mu)^* (i D_{d\mu} \phi_{d\nu} - i D_{d\nu} \phi_{d\mu}) - \frac{1}{2} \phi_d^{\mu*} (M_d^*)^2 \phi_{d\mu}$

Conclusions

- To constrain the meson-cluster i coupling constants $\left(g^i_\sigma,~g^i_\omega\right.$ and $g^i_\rho\right)$ we use
 - ✓ The dissolution density at T = 0
 - \checkmark The medium binding energy at finite T
- The dissolution density is mainly determined by the isoscalar part of the EOS
- The $B_i(\rho)$ does not depend much on T
 - $\checkmark\,$ To obtain a realistic description of light clusters within a RMF approach
 - \blacktriangleright A temperature dependence must be introduced in the cluster coupling constants: $g_v^i(T)$ and $g_s^i(T)$