Superconducting phases of strange quark matter in the NJL model

Laura Paulucci¹, Vivian de la Incera², Efrain J. Ferrer² and Jorge E. Horvath³

> ¹Universidade Federal do ABC ²The University of Texas at El Paso ³IAG-USP

> > Compact Stars in the QCD Phase Diagram III

3

5

The model:

- three-flavor Nambu-Jona-Lasinio (NJL) theory
- we neglect all quark masses
 - color and electrical neutralities satisfied
 - only nonzero chemical potential will be the baryonic one µ
- Locally uniform and constant magnetic field (MCFL phase)

MCFL thermodynamic potential

 $\Omega_{MCFL} = \Omega_C + \Omega_N$

$$\Omega_C = -\frac{\widetilde{e}H}{4\pi^2} \sum_{n=0}^{\infty} (1 - \frac{\delta_{n0}}{2}) \int_0^\infty dp_3 e^{-(p_3^2 + 2\widetilde{e}Hn)/\Lambda^2} [8|\varepsilon^{(c)}| + 8|\overline{\varepsilon}^{(c)}|],$$

$$\Omega_N = -\frac{1}{4\pi^2} \int_0^\infty dp p^2 e^{-p^2/\Lambda^2} [6|\varepsilon^{(0)}| + 6|\overline{\varepsilon}^{(0)}|] - \frac{1}{4\pi^2} \int_0^\infty dp p^2 e^{-p^2/\Lambda^2} \sum_{j=1}^2 [2|\varepsilon_j^{(0)}| + 2|\overline{\varepsilon}_j^{(0)}|] + \frac{\Delta^2}{G} + \frac{2\Delta_H^2}{G} +$$

And the dispersion relations

$$\begin{aligned} \varepsilon^{(c)} &= \pm \sqrt{(\sqrt{p_3^2 + 2\widetilde{e}\widetilde{H}n} - \mu)^2 + \Delta_H^2}, \\ \overline{\varepsilon}^{(c)} &= \pm \sqrt{(\sqrt{p_3^2 + 2\widetilde{e}\widetilde{H}n} + \mu)^2 + \Delta_H^2}, \end{aligned}$$

$$\begin{aligned} \varepsilon^{(0)} &= \pm \sqrt{(p-\mu)^2 + \Delta^2}, & \overline{\varepsilon}^{(0)} &= \pm \sqrt{(p+\mu)^2 + \Delta^2}, \\ \varepsilon^{(0)}_1 &= \pm \sqrt{(p-\mu)^2 + \Delta_a^2}, & \overline{\varepsilon}^{(0)}_1 &= \pm \sqrt{(p+\mu)^2 + \Delta_a^2}, \\ \varepsilon^{(0)}_2 &= \pm \sqrt{(p-\mu)^2 + \Delta_b^2}, & \overline{\varepsilon}^{(0)}_2 &= \pm \sqrt{(p+\mu)^2 + \Delta_b^2}, \end{aligned}$$

$$\Delta_{a/b}^2 = \frac{1}{4} (\Delta \pm \sqrt{\Delta^2 + 8\Delta_H^2})^2$$

Pairing gaps:

 $\begin{array}{l} \Delta_1 = \Delta_2 = \Delta_3 & \qquad \quad \mathsf{CFL} \\ \Delta_1 = \Delta, & \qquad \qquad (\mathsf{d}, \mathsf{s}) \text{ pairing gap (neutral quarks)} \\ \Delta_2 = \Delta_3 = \Delta_H. & \qquad \qquad (\mathsf{u}, \mathsf{s}) \text{ and } (\mathsf{u}, \mathsf{d}) \text{ pairing gaps (pairs of charged and neutral quarks)} \end{array}$

$$\Omega_H = \Omega_{MCFL} + B + \frac{\widetilde{H}^2}{2},$$

Gap equations:

$$\frac{\partial \Omega_{MCFL}}{\partial \Delta} = 0, \qquad \qquad \frac{\partial \Omega_{MCFL}}{\partial \Delta_H} = 0.$$

J. L. Noronha and I. A. Shovkovy, PRD 76, 105030 (2007)

MCFL equation of state

$$\epsilon_{MCFL} = \Omega_H - \mu \frac{\partial \Omega_H}{\partial \mu},$$
$$p_{MCFL}^{\parallel} = -\Omega_H,$$
$$p_{MCFL}^{\perp} = -\Omega_H + \widetilde{H} \frac{\partial \Omega_H}{\partial \widetilde{H}}$$

Taken μ = 500 MeV, G = 4.32 GeV⁻² (Δ_{CFL} = 10 MeV) and Λ = 1 GeV.

MCFL equation of state

MCFL equation of state

H: zero field (solid line), 10^{17} G (dashed line overlapped to the solid line), and 3 x 10^{18} G (dotted line).

MCFL stability conditions

 Both the parallel and perpendicular pressures need to vanish simultaneously:

$$p_{MCFL}^{\parallel} = -\Omega_{MCFL} - B - \frac{\widetilde{H}^2}{2} = 0,$$

$$p_{MCFL}^{\perp} = \widetilde{H} \frac{\partial \Omega_{MCFL}}{\partial \widetilde{H}} + \widetilde{H} \frac{\partial B}{\partial \widetilde{H}} + \widetilde{H}^2 = 0$$

$$\widetilde{H} = M - \frac{\partial B}{\partial \widetilde{H}}$$

MCFL stability conditions

MCFL stars

MIT bag model

$$\Omega_{CFL} = \sum_{i} \Omega_i - \frac{3}{\pi^2} \Delta^2 \mu^2 + B$$

 $P = -\Omega_{CFL}$

$$\varepsilon = \sum_{i} \mu_{i} n_{i} + \Omega_{CFL} = 3 \mu n_{B} - P.$$

MIT bag model

G. Lugones and J. E. Horvath, PRD 66, 074017 (2002)

MIT bag model

NJL CFL (H =0). MIT for Δ =10 MeV (dashed line) and Δ = 100 MeV (dotted line), and NJL (solid line).

NJ L

NJ L

Conclusions and Perspectives

- A magnetic field in CFL matter would enforce a new condition (a field dependent vacuum "bag constant") for stability.
- The EoS is largely linear and substantially modified only at sufficiently high fields.
- In the anisotropic regime we need a stellar structure formalism in agreement with the system cylindrical symmetry.

Conclusions and Perspectives

The EoS is not made substantially harder within this model with the increase in the value of the gap parameter (change in G).

Calculate hybrid sequences