Luminosity function of GRBs

RANGEL LEMOS, Luis Juracy

Pos-doc of the
ITA - Instituto Tecnológico de Aeronáutica
This work was developed during my PhD in the La Sapienza University/ICRANet

Guarujá, December 15, 2012
1. History, Fireball model and Compton telescope

2. Fireshell model

3. Luminosity function of GRBs

4. LF statistics applied in GRB data
Introduction and motivation

- We applied the LF statistic in three GRB classes predicted by the Fireshell model (*long, genuine short* and *disguised short*).
- To transform useful the data obtained by the old detector BATSE, where they do not have redshift.
- We estimate the number of unobservable sources (effects of the Malmquist bias).
- We explore a possible GRB intrinsic property (*L_{iso} vs E_{pk}*) that would make the GRBs a standard candle.
GRB Historic highlights - 1

- '60 - Instead of measure nuclear test of USSR, the Vela detector observed γ-rays sources (GRBs) external to the Solar system.

- 1992 - The discoveries of BATSE detector showed that the GRBs are distributed homogeneously, consequently they must be extra-galactic sources. It was also proposed two GRB classes: short and long.

- 1993 - The GRB spectra were fitted phenomenologically with good accuracy (1993ApJ...413..281Band).

- 1997 - The GRB 970228 was (by Beppo-SAX and Keck) the first source with measured redshift (1997Natur.387..783Costa).
GRB Historic highlights - 2

- 2004 - It was launched the Swift satellite, equipped with three detectors [in optic (UVOP), X-ray (XRT) and γ-ray (BAT)] that improved enormously our knowledge about the GRBs; with high time duration and spectral resolution.

- 2008 - It was launched the Fermi satellite, equipped with two detectors [in soft and hard γ-rays, respectively, GBM and LAT], where, in addition to the high time and spectral resolution, the LAT instrument shows us the extreme high γ-ray emission of the GRBs.

- 2008 - GBM and LAT recorded the most energetic source (GRB 080916C), \(E_{iso} = 8.8 \times 10^{54} \text{ ergs} = 4.9 M_\odot \).

- 2009 - Swift measured the most distant source (GRB 090423), with redshift 8.26.
Fireball model

This model (2005RvMP...76.1143Piran and 2006RPPh...69.2259Mészáros) is the most quoted by the GRB community to explain the physical process of the GRB. They argue that the prompt emission is explained by internal shock of relativistic $e^+ - e^-$ shells with different Lorentz γ-factors; and the afterglow emission is explained by an external shock of a relativistic baryonic-$e^+ - e^-$ shell against the circumburst medium (CBM).
The Fireball model defends that the GRB spectrum is produced by synchrotron processes, where the radiation is produced in the interaction between the positrons and electrons of the relativistic shells and the self magnetic field of the shell. The scheme in the right side illustrate this.
Compton telescope
The BATSE instrument measured almost one GRB/day, and from its observations, it was discovered that the GRBs are distributed homogeneously on the sky.
The Fireshell model claims that all the energy emitted (in all frequencies) after the transparency (P-GRB) is produced by the interaction between the optically thin fireshell and the CBM (2004ApJ...605L...1Bianco). This emission is called extended afterglow.
Fireshell model - Genuine short GRB

They are the sources in which most of the fireshell energy (equal E_{iso}) is emitted in the transparency (P-GRB emission). These sources are characterized by the difficulties to observe their very weak extended afterglow.
In this case, most part of the isotropic energy E_{iso} is emitted in the *extended afterglow*, instead of the P-GRB. The flairs are produced due to the interaction (of the optically thin fireshell) with blobs with high particle density.
Disguised short GRB

They occur when the CBM density is very low, $\sim 10^{-3} - 10^{-4}$ particles/cm3 (2007A&A...474L..13B).

Note: The text includes mathematical expressions and diagrams that are not fully transcribed here. The diagram shows various light curves in the 40-700 keV band, with different density levels of CBM, and their corresponding luminosities and observed fluxes.
Luminosity function of GRBs

Here we perform a review of the works of Maarten Schmidt about the application of the luminosity function statistics in data of BATSE detector. He used the Euclidean value of $\langle V/V_{max} \rangle$ and made a careful analysis of the sensitivity of BATSE detector.
The luminosity function (LF) of a sample of astronomical sources is one of the strongest statistical tools an astrophysics. If we obtain it we can extract several physical information about the sample, but the main difficulty is to yield the intrinsic LF that represents well the sample.

\[
\text{Luminosity Function } \Phi(L, R) \Rightarrow \frac{\text{number of sources}}{[\text{luminosity}] [\text{volume}]},
\]

\[
\text{Source Count } N = \int \Phi(L, R) dLdV \Rightarrow \int \Phi(L, z) dLdz.
\]
Euclidean value of V/V_{max}

The V/V_{max} is the ratio between volumes, where V is the volume of the sphere whose radius is the distance between the source and us (D_{source}); and V_{max} is the one whose the radius is the maximal observable distance (D_{max}).

$$\frac{V}{V_{\text{max}}} = \left(\frac{D_{\text{source}}}{D_{\text{max}}}\right)^3 = \left(\frac{F}{F_{\text{lim}}}\right)^{-3/2},$$

where F and F_{lim} are the fluxes associated to the distances, respectively, D_{source} and D_{max}. The $\langle V/V_{\text{max}} \rangle$ is a possible distance indicator, and it was initially used to measure the degree of homogeneity of the radio source distribution in the line-of-sight.
BD1 sample, 1422 GRBs

Schmidt (1999A&AS..138..409Schmidt) took 7536 events of 6.2 years of BATSE observation; he eliminated 3051 atmospheric events and 3063 events from the sun and inner Milky Way, leaving 1422 possibles GRBs.
The equatorial coordinates of 6236 events are shown in figure above, we can see the events from three galactic sources: solar flares (along the ecliptic), Nova Persei 1992 (blob in right) and Cygnus region (blob in left).
Luminosity criteria to obtain luminosity function

The LF models can be calibrated according to three luminosity criteria: variability, spectral lag and spectral hardness.
Luminosity function and source count

The figures in left side show the Gaussian luminosity functions proposed by Schmidt (2001ApJ...552...36S); and below it is illustrated the peak flux distribution obtained from the observations (dots) and LF prediction (lines) for three GRB rate density models.
LF statistics applied in GRB classes

Here we apply the LF statistic in three GRB classes predicted by Fireshell model (genuine short, disguised short and long). The main goal of this application is to test this prediction using the LF statistic. In doing so, we will proceed: a) to compare the distributions (peak flux, redshift and peak luminosity) for four subsamples of BATSE sources (total, long, genuine short and disguised short), b) to estimate the number of unobservable sources (effects of the Malmquist bias), and c) to explore a possible GRB intrinsic property that would make the GRBs a standard candle.
We identify the *disguised short* by choosing the sources which fulfill the following two conditions

\[
\frac{T_{pk}}{T_{tot}} < 0.1, \quad \text{and} \quad T_{pk} < 5 \quad \text{seconds}, \quad (2)
\]

where \(T_{pk}\) is the peak time of the light curve measured from the trigger time; and \(T_{tot}\) is the total duration of the light curve.

<table>
<thead>
<tr>
<th>ch</th>
<th>(E_{pk}^i)</th>
<th>(N_{grb})</th>
<th>(\langle V/V_{max}\rangle)</th>
<th>(N_{grb})</th>
<th>(\langle V/V_{max}\rangle)</th>
<th>(N_{grb})</th>
<th>(\langle V/V_{max}\rangle)</th>
<th>(N_{grb})</th>
<th>(\langle V/V_{max}\rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>24</td>
<td>0.43±0.12</td>
<td>7</td>
<td>0.327±0.093</td>
<td>13</td>
<td>0.466±0.078</td>
<td>3</td>
<td>0.68±0.28</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>204</td>
<td>0.463±0.034</td>
<td>51</td>
<td>0.436±0.036</td>
<td>150</td>
<td>0.455±0.024</td>
<td>9</td>
<td>0.455±0.093</td>
</tr>
<tr>
<td>3</td>
<td>185</td>
<td>608</td>
<td>0.317±0.019</td>
<td>147</td>
<td>0.314±0.021</td>
<td>421</td>
<td>0.323±0.014</td>
<td>35</td>
<td>0.300±0.044</td>
</tr>
<tr>
<td>4</td>
<td>420</td>
<td>483</td>
<td>0.331±0.023</td>
<td>131</td>
<td>0.322±0.024</td>
<td>329</td>
<td>0.330±0.017</td>
<td>23</td>
<td>0.389±0.059</td>
</tr>
<tr>
<td>tot</td>
<td>-</td>
<td>1319</td>
<td>0.347±0.029</td>
<td>336</td>
<td>0.336±0.028</td>
<td>913</td>
<td>0.349±0.019</td>
<td>70</td>
<td>0.365±0.081</td>
</tr>
<tr>
<td>(E_{pk}^i)</td>
<td>250</td>
<td>256</td>
<td>249</td>
<td>241</td>
<td>241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sp</td>
<td>(N_{grb})</td>
<td>(E_{pk}^i)</td>
<td>(\langle V/V_{max}\rangle)</td>
<td>(N_{grb})</td>
<td>(E_{pk}^i)</td>
<td>(\langle V/V_{max}\rangle)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>228</td>
<td>65</td>
<td>0.450±0.019</td>
<td>58</td>
<td>65</td>
<td>0.423±0.033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>120</td>
<td>0.395±0.021</td>
<td>52</td>
<td>122</td>
<td>0.387±0.037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>207</td>
<td>175</td>
<td>0.296±0.018</td>
<td>43</td>
<td>176</td>
<td>0.267±0.038</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>216</td>
<td>250</td>
<td>0.283±0.018</td>
<td>52</td>
<td>255</td>
<td>0.279±0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>483</td>
<td>420</td>
<td>0.326±0.013</td>
<td>131</td>
<td>420</td>
<td>0.322±0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tot</td>
<td>1319</td>
<td>250</td>
<td>0.345±0.017</td>
<td>336</td>
<td>256</td>
<td>0.336±0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sp</th>
<th>(N_{grb})</th>
<th>(E_{pk}^i)</th>
<th>(\langle V/V_{max}\rangle)</th>
<th>(N_{grb})</th>
<th>(E_{pk}^i)</th>
<th>(\langle V/V_{max}\rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163</td>
<td>67</td>
<td>0.456±0.023</td>
<td>12</td>
<td>60</td>
<td>0.511±0.095</td>
</tr>
<tr>
<td>2</td>
<td>116</td>
<td>119</td>
<td>0.402±0.027</td>
<td>15</td>
<td>122</td>
<td>0.293±0.062</td>
</tr>
<tr>
<td>3</td>
<td>154</td>
<td>172</td>
<td>0.295±0.021</td>
<td>9</td>
<td>183</td>
<td>0.321±0.092</td>
</tr>
<tr>
<td>4</td>
<td>151</td>
<td>249</td>
<td>0.291±0.023</td>
<td>11</td>
<td>265</td>
<td>0.294±0.089</td>
</tr>
<tr>
<td>5</td>
<td>329</td>
<td>420</td>
<td>0.330±0.017</td>
<td>23</td>
<td>420</td>
<td>0.309±0.059</td>
</tr>
<tr>
<td>tot</td>
<td>913</td>
<td>249</td>
<td>0.349±0.021</td>
<td>70</td>
<td>241</td>
<td>0.339±0.076</td>
</tr>
</tbody>
</table>
Wanderman & Piran (2011MNRAS..406..3..1944) obtains an expression with similar shape of Schmidt (2009), as

\[GR^{ob}_{WP}(z) = \begin{cases} (1 + z)^n_1 & \text{if } z \leq z_1 \\ (1 + z_1)^{n_1-n_2}(1 + z)^{n_2} & \text{if } z > z_1 \end{cases} \]

where the parameter \(n_1, n_2 \) and \(z_1 \) are adjusted according to the observations, thus Wanderman & Piran yields \(z_1 = 3.1^{+0.6}_{-0.8} \), \(n_1 = 2.1^{+0.5}_{-0.6} \) and \(n_2 = -1.4^{+2.4}_{-1.0} \).
The K-correction is defined by

\[
F_{pk}^{en} = \frac{L_{pk}^R k(z)}{4\pi [D_L(z)]^2}, \quad k(z) = \frac{\int_{E_1(1+z)}^{E_2(1+z)} E N_B(E, E_{\text{ob}}^{pk})dE}{\int_{E_1}^{E_2} E N_B(E, E_{\text{ob}}^{pk})dE},
\]

where \(N_B(E, E_{pk}) \) is the Band function.
Luminosity function

Luminosity function is given by

\[\Phi(L, z, sp) = \Phi_0(L, sp) GR(z), \]

\[\Phi_0(L, sp) \propto \exp \left\{ - \left[\log \left(\frac{L}{L_c(sp)} \right) \right]^2 \right\} \]

where \(\Phi_0 \) is the LF of GRBs at \(z = 0 \).
Source count

We obtain the source count integrating the luminosity function

\[
N(F > F_{\text{lim}}, sp) = \int_0^\infty \phi_0(L, sp) dL \int_0^z \xi(z') dz',
\]

(4)

\[
N(L, sp) = \phi_0(L, sp) \int_0^z \xi(z') dz',
\]

(5)

\[
N(z, sp) = \xi(z) \int_{L(z, F_{\text{lim}}, sp)}^\infty \phi_0(L', sp) dL',
\]

(6)

where

\[
\xi(z) = GR^{\text{com}}(z) \frac{dV_{\text{com}}}{dz} = 4\pi \frac{GR^{\text{ob}}(z)}{1 + z} [D_{\text{com}}(z)]^2 \frac{dD_{\text{com}}(z)}{dz}.
\]

where \(D_{\text{com}}(z)\) is the comoving distance and \(GR^{\text{com}}(z) = GR^{\text{ob}}(z)/(1 + z)\) and \(GR^{\text{ob}}(z)\) are the intrinsic GRB rate density in, respectively, comoving and observer frames.
Table of sources with known redshift

<table>
<thead>
<tr>
<th>GRB name</th>
<th>redshift</th>
<th>$\Delta \tau$</th>
<th>E_{pk}</th>
<th>$\log_{10}(L_{\text{iso}})$</th>
<th>F_{iso}^n</th>
<th>detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>111081A</td>
<td>1.858</td>
<td>580</td>
<td>370</td>
<td>140.00</td>
<td>50.64</td>
<td>0.57</td>
</tr>
<tr>
<td>110731A</td>
<td>2.83</td>
<td>7.3</td>
<td>0.13</td>
<td>304.00</td>
<td>52.41</td>
<td>20.9</td>
</tr>
<tr>
<td>110715A</td>
<td>0.82</td>
<td>20</td>
<td>2</td>
<td>148.00</td>
<td>51.66</td>
<td>35.63</td>
</tr>
<tr>
<td>110543A</td>
<td>1.613</td>
<td>12</td>
<td>2.3</td>
<td>211.00</td>
<td>52.19</td>
<td>31.27</td>
</tr>
<tr>
<td>110422A</td>
<td>1.77</td>
<td>40</td>
<td>18</td>
<td>246.00</td>
<td>52.26</td>
<td>31.74</td>
</tr>
<tr>
<td>110213B</td>
<td>1.083</td>
<td>75</td>
<td>20</td>
<td>123.00</td>
<td>50.78</td>
<td>2.41</td>
</tr>
<tr>
<td>110213A</td>
<td>1.46</td>
<td>35</td>
<td>21</td>
<td>98.40</td>
<td>51.97</td>
<td>17.7</td>
</tr>
<tr>
<td>110213A</td>
<td>2.22</td>
<td>330</td>
<td>210</td>
<td>222.00</td>
<td>51.10</td>
<td>1.42</td>
</tr>
<tr>
<td>110128A</td>
<td>2.330</td>
<td>12</td>
<td>6</td>
<td></td>
<td>51.12</td>
<td>1.6</td>
</tr>
<tr>
<td>110106B</td>
<td>0.618</td>
<td>522</td>
<td>42.7</td>
<td></td>
<td>50.23</td>
<td>2.77</td>
</tr>
<tr>
<td>101219B</td>
<td>0.5519</td>
<td>51</td>
<td>0.7</td>
<td>70.00</td>
<td>50.04</td>
<td>2</td>
</tr>
<tr>
<td>101129B</td>
<td>0.718</td>
<td>0.6</td>
<td>0.033</td>
<td>426.00</td>
<td>51.65</td>
<td>54.17</td>
</tr>
<tr>
<td>100946A</td>
<td>1.727</td>
<td>150</td>
<td>9.7</td>
<td>180.00</td>
<td>51.69</td>
<td>8.19</td>
</tr>
<tr>
<td>100901A</td>
<td>1.408</td>
<td>495</td>
<td>3.2</td>
<td></td>
<td>50.29</td>
<td>0.6</td>
</tr>
<tr>
<td>100816A</td>
<td>0.8034</td>
<td>8.43</td>
<td>0.9</td>
<td>148.00</td>
<td>50.96</td>
<td>7.45</td>
</tr>
<tr>
<td>100814A</td>
<td>1.44</td>
<td>156</td>
<td>1</td>
<td>147.00</td>
<td>51.03</td>
<td>2.43</td>
</tr>
<tr>
<td>100728B</td>
<td>2.106</td>
<td>6.6</td>
<td>2.2</td>
<td>104.00</td>
<td>51.85</td>
<td>6.2</td>
</tr>
<tr>
<td>100724A</td>
<td>1.288</td>
<td>4</td>
<td>0.1</td>
<td></td>
<td>50.59</td>
<td>1.42</td>
</tr>
<tr>
<td>100621A</td>
<td>0.542</td>
<td>74</td>
<td>26.9</td>
<td>83.00</td>
<td>50.50</td>
<td>6.07</td>
</tr>
<tr>
<td>100518A</td>
<td>4</td>
<td>42</td>
<td>4</td>
<td></td>
<td>50.86</td>
<td>0.37</td>
</tr>
<tr>
<td>100513A</td>
<td>4.772</td>
<td>100</td>
<td>41.09</td>
<td></td>
<td>51.05</td>
<td>0.45</td>
</tr>
<tr>
<td>100425A</td>
<td>1.755</td>
<td>110</td>
<td>45.27</td>
<td></td>
<td>50.71</td>
<td>1.05</td>
</tr>
<tr>
<td>100418A</td>
<td>0.6235</td>
<td>50</td>
<td>10.47</td>
<td></td>
<td>49.67</td>
<td>0.75</td>
</tr>
<tr>
<td>100414A</td>
<td>1.368</td>
<td>26.4</td>
<td>20.5</td>
<td>595.00</td>
<td>51.71</td>
<td>16.78</td>
</tr>
<tr>
<td>100316D</td>
<td>0.059</td>
<td>64</td>
<td>80</td>
<td></td>
<td>46.52</td>
<td>0.07</td>
</tr>
<tr>
<td>100316B</td>
<td>1.18</td>
<td>20.4</td>
<td>0.3</td>
<td></td>
<td>50.35</td>
<td>0.97</td>
</tr>
<tr>
<td>100302A</td>
<td>4.813</td>
<td>30</td>
<td>23.87</td>
<td></td>
<td>50.98</td>
<td>0.37</td>
</tr>
<tr>
<td>100219A</td>
<td>4.6067</td>
<td>60</td>
<td>41.89</td>
<td></td>
<td>50.86</td>
<td>0.3</td>
</tr>
<tr>
<td>100117A</td>
<td>0.92</td>
<td>0.4</td>
<td>0.35</td>
<td>287.00</td>
<td>50.95</td>
<td>6.1</td>
</tr>
<tr>
<td>091208B</td>
<td>1.063</td>
<td>19.5</td>
<td>8.35</td>
<td>144.20</td>
<td>51.25</td>
<td>7.71</td>
</tr>
<tr>
<td>091112C</td>
<td>0.49</td>
<td>8.45</td>
<td>0.14</td>
<td>130.00</td>
<td>50.92</td>
<td>20.8</td>
</tr>
<tr>
<td>091110A</td>
<td>3.076</td>
<td>55</td>
<td>23.2</td>
<td></td>
<td>51.10</td>
<td>0.97</td>
</tr>
<tr>
<td>091029</td>
<td>2.752</td>
<td>61.97</td>
<td>20.89</td>
<td>61.22</td>
<td>51.18</td>
<td>0.55</td>
</tr>
<tr>
<td>091024</td>
<td>1.092</td>
<td>150.18</td>
<td>15.96</td>
<td></td>
<td>50.49</td>
<td>1.56</td>
</tr>
<tr>
<td>091020</td>
<td>1.71</td>
<td>56.74</td>
<td>9.62</td>
<td>47.90</td>
<td>51.07</td>
<td>1.12</td>
</tr>
<tr>
<td>091018</td>
<td>0.971</td>
<td>8.02</td>
<td>1.07</td>
<td>19.43</td>
<td>50.63</td>
<td>1.47</td>
</tr>
</tbody>
</table>
Results - CONFRONTING SUBSAMPLES

Comparison

Source Count, N(z)

Redshift, z

Total comparison

Source count, N(Lpk)

Peak Luminosity, Lpk(erg/s)
Results - PREDICTED vs OBSERVED

Comparison - prediction using GRwp and GRsc

Total comparison using GRwp and GRsc

Selections
GRB rate density and K-correction
Luminosity function and source count
Conclusions
L_{iso} vs E_{pk} correlation

RANGEL LEMOS, Luis Juracy
Comparing the predicted (by LF statistic) and the observed (sources with known redshifts) distributions, we obtained that it is not possible to compare, because the sources with known redshift form a peculiar sample, where they are only sources in which we are able to identify the redshift. To perform a honest comparison, it is necessary to built a special GRB rate density for this peculiar sample of sources with known redshift.
Malmquist bias

Total subsample

- Obs, sp1
- Obs, sp2
- Obs, sp3
- Obs, sp4
- Obs, sp5
- Obs, sum
- Int, sp1
- Int, sp2
- Int, sp3
- Int, sp4
- Int, sp5
- Int, sum

Genuine short subsample

- Obs, sp1
- Obs, sp2
- Obs, sp3
- Obs, sp4
- Obs, sp5
- Obs, sum
- Int, sp1
- Int, sp2
- Int, sp3
- Int, sp4
- Int, sp5
- Int, sum

Long subsample

- Obs, sp1
- Obs, sp2
- Obs, sp3
- Obs, sp4
- Obs, sp5
- Obs, sum
- Int, sp1
- Int, sp2
- Int, sp3
- Int, sp4
- Int, sp5
- Int, sum

Disguised short subsample

- Obs, sp1
- Obs, sp2
- Obs, sp3
- Obs, sp4
- Obs, sp5
- Obs, sum
- Int, sp1
- Int, sp2
- Int, sp3
- Int, sp4
- Int, sp5
- Int, sum

Peak Luminosity, L_{pk} (erg/s)

- 10^{47}
- 10^{48}
- 10^{49}
- 10^{50}
- 10^{51}
- 10^{52}
- 10^{53}
- 10^{54}

Source Count, N(L_{pk})

- 10^{0}
- 10^{1}
- 10^{2}
- 10^{3}
- 10^{4}
- 10^{5}
- 10^{6}
- 10^{7}

RANGEL LEMOS, Luis Juracy

LF of GRBs
Selections
GRB rate density and K-correction
Luminosity function and source count
Results
L_{iso} vs E_{pk} correlation

L_{iso} vs E_{pk} correlation

Long subsample

Short subsample

Disguised subsample

Observed peak spectral energy, $E_{pk,obs}$ (keV)

Peak spectral energy in rest frame, $E_{pk,r}$ (keV)

LF of GRBs

RANGEL LEMOS, Luis Juracy
L_{iso} vs E_{pk} correlation

Both figures show the Hertzsprung-Russell diagram.
Conclusions

- In the application of the LF statistics we confirmed the prediction by the *Fireshell model* about the existence of three GRB classes (*long duration, genuine short* and *disguised short*).

- We built a table with data of 220 GRBs with known redshift, data obtained from six different detectors. We noted that it is not possible compare with the distribution of the sources obtained from this table with the ones obtained from LF statistic, because the sources with known redshift form a particular sample.
Conclusions

- We estimated the effects of the Malmquist bias for the subsamples predicted by the Fireshell model.
- We looked for a correlation like $L_{iso} - E_{pk}$ (like Amati or Ghirlanda relation) through the LF statistic for the four subsamples, but we believe that it is unlikely that there is a correlation like power law using the BATSE data.
THANKS