

Astrophysical jets

Open question

What's the driving mechanism of astrophysical jets?

Research goals

• <u>Goal #1</u>:

to observationally investigate the interplay between gas dynamics and magnetic fields in high-mass protostars

• Goal #2:

to observationally investigate the role of magnetic fields in launching and shaping jets from AGN

Main Observational Limitations (& Solutions)

⇒ High angular resolution

- 1. Jet launching region is small
 - . Innermost regions of AGN are opaque ⇒ High radio frequency
- 3. Magnetic fields are hard to measure ⇒ Sensitive and accurate polarimetry

Ingredient 1. Beating the resolution limit

Angular resolution ~

LMT 50-m telescope (Mexico)

Very Long Baseline Interferometry (VLBI)

Main global VLBI Networks in the radio

Frequencies: 1-86 GHz, Wavelengths: 1dm-3mm

Ingredient 2: High frequencies <u>Tracers:</u>

- Thermal molecular lines (CO, SiO, ...)
- Hydrogen recombination lines (HRLs)
- Mm dust and synchrotron continuum emission

A spectacular multiple system of collimated CO outflows

Ginsburg, Goddi, et al. 2017

ALMA longest baselines reveal ultra-compact collimated outflows

ALMA Shows Massive Young Stars Forming in "Chaotic Mess"

POETS: Protostellar Outflows at the EarliesT Stages

A a statistically significant sample of massive YSOs studied with maser VLBI from the BeSSeL VLBA Survey

- \rightarrow VLBA observations of 22 GHz H₂O & 6.7 GHz CH₃OH masers [1000 hrs observed]
- ➤ VLA observations of radio continuum (in bands S, C, Ku, K, Q) [140 hrs observed]
- ➤ ALMA observations of thermal lines: (to be) proposed

POETS: Protostellar Outflows at the EarliesT Stages

- > VLA full-polarization observations of non-thermal radio continuum sources
- > A- and B-conf.
- ➤ Bands
 - (1) S-band at 13 cm (2-4 GHz),
 - (2) C-band at 6 cm (4-8 GHz),
 - (3) X-band at 3 cm (8-12 GHz),
 - (4) Ku-band at 2 cm (12-18 GHz),
 - (5) K-band at 1.3~cm (18-26 GHz)

 \rightarrow A pilot on W3(H₂O) already observed [20 hours, PI: Goddi]

Science goals:

- 1. Map the jet structure.
- 2. Build spectral index maps
- 3. Measure the magnetic field strength
- 4. Infer the magnetic field morphology
- 5. Investigate particle acceleration (DSA/Fermi acceleration)

Carrasco-Gonzalez+2010 Padovani+2015

W3(OH) : Best example of a synchrotron jet from a high-mass protostar [Elis]

Event Horizon Telescope (EHT)

A Global Network of Radio Telescopes

Goal #2

C. Goddi et al. 2019, The Messenger, 177, 25

VAPOLA II Spectropolarimetric properties and their evolut

Source	J2000 name	RA	DEC	zα	D_{L}	Class ^b	# Epochs ^c	Bands^d
		(h:m:s)	(deg:m:s)		(Mpc)		W 8	
3C279	J1256-0547	12:56:11.167	-5:47:21.525	0.536	2957	В	46	B3,B6,B7
QSOB1921-293	J1924-2914	19:24:51.056	-29:14:30.121	0.353	1798	F	28	B3,B6,B7
SgrA*	-	17:45:40.036	-29:0:28.170	-2.7×10^{-5}	0.008	SgrA*	27	B3,B6,B7
M87	J1230+1223	12:30:49.411	12:23:28.283	0.004	17.66	G	19	B3,B6,B7
NRAO530	J1733-1304	17:33:2.706	-13:4:49.548	0.899	5559	F	16	B3,B6
3C273	J1229+0203	12:29:6.700	2:3:8.600	0.158	726.1	F	15	B3,B6,B7
4C01.28	J1058+0133	10:58:29.605	1:33:58.824	0.894	5518	В	15	B3,B6,B7
J1744-3116	J1744-3116	17:44:23.578	-31:16:36.292	- X	=	U	7	B3,B6
PKS1741-03	J1743-0350	17:43:58.856	-3:50:4.616	1.054	6767	F	6	B6
PKS1335-127	J1337-1257	13:37:39.783	-12:57:24.693	0.539	2975	F	6	B6,B7
OJ287	J0854 + 2006	8:54:48.875	20:6:30.641	0.306	1522	В	6	B3,B6
J1957-3845	J1957-3845	19:57:59.819	-38:45:6.356	0.626	3567	F	6	B6
J0510+1800	J0510+1800	5:10:2.369	18:0:41.582	0.416	2183	В	4	B3,B6
PKS1243-072	J1246-0730	12:46:4.232	-7:30:46.575	1.286	8655	F	3	B6,B7
PKS1510-089	J1512-0905	15:12:50.533	-9:5:59.830	0.360	1842	F	3	B6,B7
M84	J1225+1253	12:25:3.743	12:53:13.138	0.003	13.98	G	2	B3,B6
J1224+0330	J1224+0330	12:24:52.422	3:30:50.292	0.956	6000	F	2	B3,B6
3C345	J1642+3948	16:42:58.810	39:48:36.993	0.593	3342	F	2	B6
NRAO005	J0006-0623	0:6:13.893	-6:23:35.335	0.347	1762	В	2	B6
3C84	J0319+4130	3:19:48.160	41:30:42.103	0.018	73.6	\mathbf{G}	2	B6
OC - 150	J0132-1654	1:32:43.489	-16:54:48.567	1.020	6498	F	2 2	B6
NGC1052	J0241-0815	2:41:4.799	-8:15:20.752	0.005	21.47	G	2	B6
4C09.57	J1751+0939	17:51:32.819	9:39:0.729	0.322	1617	В	2	B3
OI280	J0750+1231	7:50:52.046	12:31:4.828	0.889	5484	F	2	B6
J0837 + 2454	J0837 + 2454	8:37:40.246	24:54:23.122	1.125	7337	F	2	B6
3C275.1	J1243+1622	12:43:57.649	16:22:53.393	0.555	3084	F	2	B6
4C + 04.42	J1222+0413	12:22:22.550	4:13:15.776	0.966	6078	F	2	B3,B6
J1215+1654	J1215+1654	12:15:3.979	16:54:37.957	1.131	7384	F	2	B6
AP Librae	J1517-2422	15:17:41.813	-24:22:19.476	0.049	208.9	В	1	B6
4C + 29.45	J1159+2914	11:59:31.834	29:14:43.826	0.725	4265	F	1	B6
3C454.3	J2253+1608	22:53:57.748	16:8:53.561	0.859	5256	F	1	B3
Mrk501	J1653+3945	16:53:52.218	39:45:36.615	0.033	139	F	1	B6
Cen A	J1325-4301	13:25:27.615	-43:1:8.805	0.002	7.511	G	1	B6
NGC4261	NGC4261	12:19:23.216	5:49:29.701	0.007	30.01	G	1	B6
NGC4278	NGC4278	12:20:6.825	29:16:50.713	0.002	8.912	\mathbf{G}	1	B6
S4 1144+40	J1146 + 3958	11:46:58.298	39:58:34.282	1.088	7037	F	1	B7
PKS1124-186	J1127-1857	11:27:4.392	-18:57:17.442	1.052	6751	F	1	B6
J1816-3052	J1816-3052	18:16:12.278	-30:52:7.930	===		U	1	B3

Carlos, Goddi+ in prep.

Molecular Torii in AGN

- BH mass = 55 106 M_☉
- D = 3.8 Mpc

Janssen, ..., Goddi+ 2021 Mus, Goddi, Carlos+ in prep.

Cyanide absorption towards Sgr A* and a nearby Quasar

AGN and Black Hole Physics through Spectral Line observations with ALMA and EHT

oMolinos.

Antofalla

LLAMA joins the EHT

