
Introduction to interferometry and VLBI 
 
Laurent Loinard 
BHI and DRCLAS, Harvard University 
Instituto de Radioastronomía y Astrofísica, UNAM 
(ng-)Event Horizon Telescope Collaboration



2

VLA (NM, USA)

ALMA (Chile)



Summary of Class 1 and 2
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the image at the focus) is 
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Pictorial principle of interferometry

(Cassegrain) reflector telescope



Fundamental results from Class 1 & 2

V(u, v) = ∬ I(l, m)e−2πi(ul+vm)dldm

I(l, m) = ∬ V(u, v)e2πi(lu+mv)dudv

Complex visibility 
function

Sky brightness 
distribution
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+ CLEAN deconvolution 



Part 4: Calibration
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Instrumental and atmospheric effects…
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V2 = E0 cos(ωt)V1 = E0 cos[ω(t + τg)]

V(u, v) = ∬ I(l, m)e−2πi(ul+vm) dldm

1 − l2 − m2

Vobs
i,j = Gi,jVtrue

i,j

Calibration term called the “gain”. 
Black box including all kinds of effects

G = B . G . D . E . X . P . T . F

Ionosphere

Troposphere

Parallactic angle

Linear polz angle

Gain curve

Polz leakages

Electronic gains

Bandpass



Typical interferometric observation
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(Maybe) some initial setup strong source (anywhere in the sky) 

Bandpass calibrator (anywhere in the sky) 

Flux calibrator (anywhere in the sky) 

(Maybe) a polarization calibrator (anywhere in the sky) 

Gain calibrator (close to the target) 

Target 

Gain Calibrator (close to the target) 

Target 
….



Example of atmospheric gain calibration
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Example of atmospheric gain calibration
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Calibration is assumed to be antenna-based
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G = B . G . D . E . X . P . T . FVobs
i,j = Gi,jVtrue

i,j = GiG*j Vtrue
i,j

Visibilities are complex quantities, so also are gains: 

Vobs
i,j = aobs

i,j exp (iδobs
i,j ) Vtrue

i,j = atrue
i,j exp (iδtrue

i,j )
Gi = gi exp (iϕi) G*j = gj exp (−iϕj)

aobs
i,j = gigjatrue

i,j

δobs
i,j = ϕi − ϕj + δtrue

i,j
{ 



Calibration scan
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Calibrator source is a point source Vtrue
i, j = constant  ( ∈ ℝ) = a ∀i, j

δobs
i, j = ϕi − ϕj + 0 ∀i, jaobs

i, j = gigja ∀i, j

Here,  is assumed known (or taken to some arbitrary value) while  and  

are observed (i.e. also known). On the other hand, , ,  and  are unknowns. 

Assume we have 30 antennas. Then, we have 30 unknowns (the ’s) for amplitude 
gains and 30 unknowns (the ’s) for the phase gains. 

But we have  equations for each of the amplitude and phase gains. 

By solving this 435 system of equation with 30 unknowns, we can measure the 
values of the ’s and ’s.

a aobs
i, j δobs

i, j
gi gj ϕi ϕj

gi
ϕi

30 × 29
2

= 435

gi ϕi



Typical interferometric observation
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(Maybe) some initial setup strong source (anywhere in the sky) 

Bandpass calibrator (anywhere in the sky) 

Flux calibrator (anywhere in the sky) 

(Maybe) a polarization calibrator (anywhere in the sky) 

Gain calibrator (close to the target)                        Gain measurements at the time   

Target 

Gain Calibrator (close to the target)                       Gain measurements at the time   

Target 
….

t1

t2



Typical phase gain curves
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Interpolation

14



14

Interpolation
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Typical amplitude gain curves

Some bad points
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Typical amplitude gain curves

Some bad pointsSome bad points

General rules: 

Phase varies faster and more erratically  than 
amplitude
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Effect of phase and amplitude errors

Phase of dog and 
amplitude of cat

Phase of cat and 
amplitude of dog

General rule: 

For imaging, phases are more important than 
amplitudes



Part 5:  A few special topics
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(Maybe) some initial setup strong source (anywhere in the sky) 

Bandpass calibrator (anywhere in the sky) 

Flux calibrator (anywhere in the sky) 

(Maybe) a polarization calibrator (anywhere in the sky) 

Gain calibrator (close to the target) 

Target 

Gain Calibrator (close to the target) 

Target 
….

Calibration errors

Target s0 Calibrator s′￼0
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(Maybe) some initial setup strong source (anywhere in the sky) 

Bandpass calibrator (anywhere in the sky) 

Flux calibrator (anywhere in the sky) 

(Maybe) a polarization calibrator (anywhere in the sky) 

Gain calibrator (close to the target) 

Target 

Gain Calibrator (close to the target) 

Target 
….

Calibration errors

Target s0 Calibrator s′￼0
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Calibration errors
There are always residual calibrator errors after initial calibration. 

The effects may not be obvious. 

Often seen a higher than expected noise in final image.
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Self-calibration to the rescue
If you thought CLEAN was black magic, wait until you see this…



Calibration scan
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Calibrator source is a point source Vtrue
i, j = constant  ( ∈ ℝ) = a ∀i, j

δobs
i, j = ϕi − ϕj + 0 ∀i, jaobs

i, j = gigja ∀i, j

Here,  is assumed known (or taken to some arbitrary value) while  and  

are observed (i.e. also known). On the other hand, , ,  and  are unknowns. 

Assume we have 30 antennas. Then, we have 30 unknowns (the ’s) for amplitude 
gains and 30 unknowns (the ’s) for the phase gains. 

But we have  equations for each of the amplitude and phase gains. 

By solving this 435 system of equation with 30 unknowns, we can measure the 
values of the ’s and ’s.

a aobs
i, j δobs

i, j
gi gj ϕi ϕj

gi
ϕi

30 × 29
2

= 435

gi ϕi



Target scan
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Assume the first image is “the truth” Vtrue
i, j = TF(initial image) ∀i, j

δobs
i, j = ϕi − ϕj + δtrue

i, j ∀i, jaobs
i, j = gigjatrue

i, j ∀i, j

Here,  and  are known while  and  are observed (i.e. also known). 

On the other hand, , ,  and  are unknowns. 

Assume we have 30 antennas. Then, we have 30 unknowns (the ’s) for amplitude 
gains and 30 unknowns (the ’s) for the phase gains. 

But we have  equations for each of the amplitude and phase gains. 

By solving this 435 system of equation with 30 unknowns, we can measure the 
values of the ’s and ’s.

atrue δtrue aobs
i, j δobs

i, j
gi gj ϕi ϕj

gi
ϕi

30 × 29
2

= 435

gi ϕi
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Self-calibration to the rescue
If you thought CLEAN was black magic, wait until you see this… 

Only works if (i) you have enough redundancy (baselines) and (ii) sufficient SNR 

Iterative process: in the second iteration, take image from first iteration as 
model (but always go back to initial visibilities…)

Initial                                              1st iteration                              Final

Dynamic range        <100                        ~500                                           > 2000
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VLBI at mm wavelengths

Calibration becomes harder

Calibration becomes harder

mmVLBI is really hard
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Typical interferometric observation
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(Maybe) some initial setup strong source (anywhere in the sky) 

Bandpass calibrator (anywhere in the sky) 

Flux calibrator (anywhere in the sky) 

(Maybe) a polarization calibrator (anywhere in the sky) 

Gain calibrator (close to the target) 

Target 

Gain Calibrator (close to the target) 

Target 
….

We can’t transfer 
the phase gains
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What do we do?
One option is self-calibration using an a-priori initial model (e.g. a small Gaussian) 

Another option is to use closure quantities and forward modeling 

And that is not black magic…

δobs
i, j = ϕi − ϕj + δtrue

i, j ∀i, j δobs
1,2 = ϕ1 − ϕ2 + δtrue

1,2

δobs
2,3 = ϕ2 − ϕ3 + δtrue

2,3

δobs
3,1 = ϕ3 − ϕ1 + δtrue

3,1



27

What do we do?
One option is self-calibration using an a-priori initial model (e.g. a small Gaussian) 

Another option is to use closure quantities and forward modeling 

And that is not black magic…

δobs
i, j = ϕi − ϕj + δtrue

i, j ∀i, j δobs
1,2 = ϕ1 − ϕ2 + δtrue

1,2

δobs
2,3 = ϕ2 − ϕ3 + δtrue

2,3

δobs
3,1 = ϕ3 − ϕ1 + δtrue

3,1

+

+

δobs
1,2 + δobs

2,3 + δobs
3,1 = δtrue

1,2 + δtrue
2,3 + δtrue

3,1

The sum of the phases on triangles of 
antennas are immune to atmospheric errors
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Forward modeling
Problem is: you can’t inverse Fourier transform a closure quantities

Visibilities

Take FFT

Self-
calibrate

Get final 
image

Visibilities

Calculate 
closures

Think of 
model

Calculate 
closures for 
that model

Compare

Improve 
model

Get final 
image

+ Regularizers
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Forward modeling
Classical optimization problem

Comparison 
between data 
and model 
“Likelihood”

Objective 
function to be 
optimized

Regularizers enforcing some desired properties  

Positiveness of emission 
Continuity from pixel to pixel 
Emission within the field 
etc. 
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EHTim (Chael+2018)
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EHTim (Chael+2018)
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The Fourier transform in a nutshell…
Consider a function  of a complex variable   

We define its Fourier transform as  

The variable  is the Fourier conjugate of  (  and  are conjugates of each other) 
and the product  must be a-dimensional. 

The inverse Fourier transform is 

f(z) z

u z z u
u . z

F(u) = ∫
+∞

−∞
f(z)e−2iπuzdz

f(z) = ∫
+∞

−∞
F(u)e−2iπuzdu
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Selected useful properties of the Fourier Transform

f(delta) = 1
F(t-to) = e^-iwt F(t)
Consequence of the 0ther twoL 
f((delta(t-to)) = cos(wt) 
Transform of Gaussian air gaussian shuck that sigma_1 sigma_2 = 1)
;arge Guassin gives narrow gaussian and vise versa

• Perhaps the most common use of the Fourier Transform (TF) is in signal processing. 
In this case, the function of interest is usually a function of time, , and the 
Fourier transform is a function of frequency . 

• If  is real and even,  is real. If  is real and odd,  is imaginary. 

• The TF of the  (the delta Dirac function) is constant (and equal to 1). 

• Translation property:  

f(t)
F(ω)

f(t) F(ω) f(t) F(ω)

f(t) = δ(t)

TF [f(t − t0)] = e−iωtTF [f(t)]


