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SOLAR STARS: Optical light l, HOT STARS: Ultraviolet shows

comes from stars around the the larger hot blue stars that
size of the Sun. are less frequent in galaxies.

COLD GAS: Radio waves reveal ’ COOL STARS: Infrared shows
regions of gas cool enough for smaller cool red stars that
€O, molecules to-exist. «\| make up most of the galaxy.

HOT GAS: X-rays are emitted
from the hottest regions of
gas where atoms are ionized.
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Gravitational waves y-rays

Multi-messenger Astronomy
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Cosmic rays

neutrinos
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Astronomy Nobel Prizes

1974: M. Ryle & A. Hewish (J. Bell) 2011:S. Perlmutter, B.Schmidt & A. Riess

Imaging synthesis; pulsar Dark energy (Cosmic expansion)

1978: A. Penzias & R. Wilson 2017: R. Weiss, B. Barrish & K. Thorne

Cosmic Microwave Background Gravitational wave detection

1993: R. Hulse & J. Taylor 2019: M. Mayor & D. Queloz

Double pulsar Extrasolar planets

2002: R. Giacconi, M. Koshiba & R. Davis Jr.
2020: R. Genzel & A. Ghez

Cosmic X-ray and neutrino sources :
Black hole @ Galactic center

2006: J. Mather & G. Smoot

Cosmic Microwave Background
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Emission processes: thermal (blackbody)
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The cosmological microwave background Taurus clouds with the Herschel satellite (150, 250, 350, 500 um)




Emission processes: free-tree (thermal)

hi=E;E. I Galaxy cluster in optical free-free (x-ray)
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Emission processes: synchrotron (non-thermal)

Radioastronomy (and, as we will see, particularly VLBI) is the realm of non-thermal processes

synchroiron radiation

radio waves
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charged particle (proton or eleciron)
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Emission processes: synchrotron (non-thermal)
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Quasar 3C175
YLA Gem image (c) NRAD 1996




All-sky Planck microwave maps

At low frequencies, The sweet spot for
strong contamination cosmological

by foreground free- microwave background
free and synchrotron

30 GHz

217 GHz

353 GHz

857 GHz

At high frequencies,
strong contamination
by foreground dust
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Line emission: 21-cm hydrogen line
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Optical image 21-cm map




Molecular emission lines
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Atmospheric transparency/opacity
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Angular resolution definition

i Closed Loop

The angular resolution is | Uncorrected
the minimum separation

that an optical instrument i
can resolve:
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The angular resolution problem in radioastronomy

“Just checking.”

A=5cm&D=160m —0=1"'

Radio-astronomers need
to build BIG telescopes

A=05um&D=16mm —§@O=1'



That’s hard and expensive...

0 =035"

Five Hundred Meter Aperture Spherical Telescope (China) Green Bank Telescope (100m, USA)




... and potentially risky

300 foot telescope in Green Bank (November 15, 1988) 300 foot telescope in Green Bank (November 16, 1988)

Credit to Joe Callingham for the idea for the slide



Two kinds of radio telescopes

Green Bank Telescope (WV)

e

Sir Martin Ryle (Nobel 1974)

Imaging synthesis
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Very Long Baseline Interferometry (VLB
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The angular resolution solution in radioastronomy

Biggest single-dish “conventional” interferometers VLBI arrays
Highest resolution in
Same resolution as human Same resolution as large astronomy
eye optical telescope (~ 1 milli-arcsecond down
(~one arcminute) (~0.1 arcsecond) to 10 micro-arcsecond)

This is the highest angular resolution
achievable in all of astronomy
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VLBI highlights

VLBA - 43 GHz

Walker et al. 2016
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C. Goddi et al. 2019, The Messenger, 177, 25 i
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Fair warning: interferometry is more work than single-dish...

Observing with N > 1 antennas, is N times more work than observing with one
antenna (or maybe even N2 times more work...)

As we will see in details later, interferometers do not provide directly an image. Rather
they deliver complex quantities ( € C) that need to be manipulated mathematically to
computationally reconstruct an image

The resulting images contain artifacts caused by the geometry of the array
Sensitivity is limited

Calibration is more work than for single-dish telescopes



Pictorial principle of interterometry
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Interferometers as fragmented mirrors




How it really works...

distant cosmic
point source in d Each telescope of the array acts as
directions, . a coherent sensor of the incoming
0 o
g electric field E

d The geometric delay, Ty, IS:

o B.S,
N g C
;\\1‘~\telescope 2 .
o VN d The output of the interferometer

'qinné;all-n-ci ------ IS:

Vi = Eycoslo(t + 7,)] V, = Eycos(wt)

Multiplied and
averaged

R. = Pycos(w,)

P, = E;/2 is the received
power in the EM wave



How it really works...

A If the source is not point-like,
R. = J]I(é)cos(wr(,},)dﬂ I(S) is the sky brightness

d By adding a n/2 phase delay to the output of telescope 2 before multiplying, we can get
a complementary interferometer response:

R, = Hl(é)sm(ang)dg

 The specialized hardware that produces R_ and R, from the output of the telescopes is
called a “correlator”



How it really works...
d We now define a new complex function R, by combining R_ and R;:

R=R.—iR

\)

d From the formulae of R, and R, we see that:

rn r

R = || I(8)e™%dQ =

JdJ JdJ

I(§)€ —27riB.§//1dQ

d Because Ris a complex number, the specialized hardware that produces R (i.e. R, and
R, from the output of the telescopes is called a “complex correlator”



How it really works...

. m e—ZﬂzB.S//l — e—27rlB.so//l .
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Fundamental result

- . dldm
—  —2miB.Sy/A —2mi(ul+ Response of the
R = e™7""% J]I(l’ m)e v interferometer
V1—12—m?
V(u,v) = J][(L m)e—Zni(qum) dldm Complex visibility
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Van Cittert-Zernike Theorem

I(l, m) — \/1 _ l2 _ m2 J'[ V(I/t, v)eZﬂi(lu+mv)dudv Sky brightness



But, careful...

dldm This is a function of

V1—=12—m? o

V(I/t, V) — I(l, m)e—Zﬂi(qum)

This is a function of

2 2 2ri(lu+mvy

[(I,m) = \/1 — I —m? || V(u, v)e?™ Ydudv (I, m)

One measurement: 7/ corresponds to one baseline : B,

%, / and therefore also to one value of (u;, v;)
ctescope 1 G baseiinen QG5 tlescope (actually two points: also (—u;, — v;)
I/ SN S Including both baselines from telescope 1
d
Vo = Eyooslo -+ 5 V= Epcoston) to telescope 2 and from telescope 2 to
ptipied ot B telescope 1)




Summary

e The complex visibility function, V(u, v), and the sky brightness, I(/, m), are
Fourier conjugates (van Cittert-Zernike Theorem).

e Measuring the visibility function and taking the inverse Fourier transform enables
us to obtain the sky brightness.

e This is the (electronic and computational) process by which radio interferometers
re-construct an image “in the focal plane” of the telescope they simulate.

e For each observation with two antennas, one only gets one the values of the
complex visibility at two points (&;, v;) and (—u;, — v;).



