Introduction to interferometry and VLBI

Laurent Loinard
BHI and DRCLAS, Harvard University
Instituto de Radioastronomía y Astrofísica, UNAM
(ng-)Event Horizon Telescope Collaboration

DAVID ROCKEFELLER CENTER FOR LATIN AMERICAN STUDIES

HARVARD UNIVERSITY

Part 1: Radioastronomy and Interferometry in a Nutshell

Multi-wavelength Astronomy

Spiral Galaxy M51

Active galaxy Centaurus A

Gravitational waves

γ-rays

γ-rays

Astronomy Nobel Prizes

1974: M. Ryle & A. Hewish (J. Bell)
Imaging synthesis; pulsar

2011: S. Perlmutter, B.Schmidt & A. Riess Dark energy (Cosmic expansion)

1978: A. Penzias & R. Wilson

Cosmic Microwave Background

2017: R. Weiss, B. Barrish & K. Thorne Gravitational wave detection

1993: R. Hulse & J. Taylor

Double pulsar

2019: M. Mayor & D. Queloz Extrasolar planets

2002: R. Giacconi, M. Koshiba & R. Davis Jr. Cosmic X-ray and neutrino sources

2020: R. Genzel & A. Ghez Black hole @ Galactic center

2006: J. Mather & G. Smoot

Cosmic Microwave Background

Astronomy Nobel Prizes

Emission processes: thermal (blackbody)

The cosmological microwave background

Taurus clouds with the Herschel satellite (150, 250, 350, 500 μ m)

Emission processes: free-free (thermal)

Emission processes: synchrotron (non-thermal)

Radioastronomy (and, as we will see, particularly VLBI) is the realm of non-thermal processes

Relativistic electrons needed (acceleration mechanism)

Emission processes: synchrotron (non-thermal)

Quiz: why isn't there a counterjet?

The Galactic center in radio waves

All-sky Planck microwave maps

At low frequencies, strong contamination by foreground freefree and synchrotron The sweet spot for cosmological microwave background

30-353 GHz: 8T [uK....]: 545 and 857 GHz: surface brightness [kJv/sr

At high frequencies, strong contamination by foreground dust

Line emission: 21-cm hydrogen line

Vera Rubin

Optical image

21-cm map

Molecular emission lines

Oxygen at z = 9 with ALMA

Atmospheric transparency/opacity

Angular resolution (image sharpness)

Angular resolution definition

The angular resolution is the minimum separation that an optical instrument can resolve:

$$hetapproxrac{\lambda}{D}$$

The angular resolution **problem** in radioastronomy

$$\lambda = 5 \text{ cm } \& D = 160 \text{ m} \longrightarrow \theta = 1'$$

$$\theta pprox \frac{\lambda}{D}$$

Radio-astronomers need to build **BIG** telescopes

$$\lambda = 0.5 \ \mu \text{m} \& D = 1.6 \ \text{mm} \longrightarrow \theta = 1'$$

That's hard and expensive...

Five Hundred Meter Aperture Spherical Telescope (China)

Green Bank Telescope (100m, USA)

... and potentially risky

300 foot telescope in Green Bank (November 15, 1988)

300 foot telescope in Green Bank (November 16, 1988)

Two kinds of radio telescopes

Sir Martin Ryle (Nobel 1974) Imaging synthesis

Single-dish

$$hetapprox rac{\lambda}{D}$$

Interferometers

$$heta pprox rac{\lambda}{B_{max}}$$
 Maximum "baseline"

Very Long Baseline Interferometry (VLBI)

1 milli-arcsecond resolution

25 microarcsecond resolution

The angular resolution solution in radioastronomy

Biggest single-dish

Same resolution as human eye (~ one arcminute)

"conventional" interferometers

Same resolution as large optical telescope (~ 0.1 arcsecond)

VLBI arrays

Highest resolution in astronomy
(~ 1 milli-arcsecond down to 10 micro-arcsecond)

This is the highest angular resolution achievable in all of astronomy

VLBI highlights

Fair warning: interferometry is more work than single-dish...

- Observing with N \gg 1 antennas, is N times more work than observing with one antenna (or maybe even N² times more work...)
- As we will see in details later, interferometers do not provide directly an image. Rather they deliver complex quantities ($\in \mathbb{C}$) that need to be manipulated mathematically to computationally reconstruct an image
- The resulting images contain artifacts caused by the geometry of the array
- Sensitivity is limited
- Calibration is more work than for single-dish telescopes

Pictorial principle of interferometry

Reflector telescope

Interferometers as fragmented mirrors

- Each telescope of the array acts as a **coherent sensor** of the incoming electric field **E**
- $\hfill \square$ The geometric delay , τ_g , is:

$$\tau_g = \frac{\mathbf{B} \cdot \hat{\mathbf{s}}_0}{c}$$

☐ The output of the interferometer is:

$$R_c = P_0 \cos(\omega \tau_g)$$

 $P_0 = E_0^2/2$ is the received power in the EM wave

☐ If the source is not point-like,

$$R_c = \iint I(\hat{\mathbf{s}})\cos(\omega \tau_g) d\Omega$$

 $I(\hat{\mathbf{s}})$ is the sky brightness

By adding a $\pi/2$ phase delay to the output of telescope 2 before multiplying, we can get a complementary interferometer response:

$$R_s = \iint I(\hat{\mathbf{s}}) \sin(\omega \tau_g) d\Omega$$

 \Box The specialized hardware that produces R_c and R_s from the output of the telescopes is called a "correlator"

 \square We now **define** a new **complex** function R, by combining R_c and R_s:

$$R = R_c - iR_s$$

 \square From the formulae of R_c and R_s, we see that:

$$R = \iint I(\hat{\mathbf{s}})e^{-i\omega\tau_g}d\Omega = \iint I(\hat{\mathbf{s}})e^{-2\pi i\mathbf{B}\cdot\hat{\mathbf{s}}/\lambda}d\Omega$$

 \square Because R is a complex number, the specialized hardware that produces R (i.e. R_c and R_s) from the output of the telescopes is called a "complex correlator"

$$e^{-2\pi i \mathbf{B} \cdot \hat{\mathbf{s}}/\lambda} = e^{-2\pi i \mathbf{B} \cdot \hat{\mathbf{s}}_0/\lambda} \cdot e^{-2\pi i (ul + vm)}$$

$$R = e^{-2\pi i \mathbf{B} \cdot \hat{\mathbf{s}}_0 / \lambda} \iint I(l, m) e^{-2\pi i (ul + vm)} \frac{dldm}{\sqrt{1 - l^2 - m^2}}$$

Complex visibility function

Fundamental result

$$R = e^{-2\pi i \mathbf{B} \cdot \hat{\mathbf{s}}_0 / \lambda} \iint I(l, m) e^{-2\pi i (ul + vm)} \frac{dldm}{\sqrt{1 - l^2 - m^2}}$$

Response of the interferometer

$$V(u,v) = \iint I(l,m)e^{-2\pi i(ul+vm)} \frac{dldm}{\sqrt{1-l^2-m^2}}$$
 Complex visibility function

Van Cittert-Zernike Theorem

$$I(l, m) = \sqrt{1 - l^2 - m^2} \iint V(u, v) e^{2\pi i(lu + mv)} du dv$$

Sky brightness

Fourier Transform

But, careful...

$$V(u, v) = \iint I(l, m)e^{-2\pi i(ul + vm)} \frac{dldm}{\sqrt{1 - l^2 - m^2}}$$

This is a **function** of (u, v)

$$I(l, m) = \sqrt{1 - l^2 - m^2} \iint V(u, v) e^{2\pi i(lu + mv)} du dv$$

This is a **function** of (l, m)

corresponds to one baseline: B,

and therefore also to one value of (u_i, v_i)

(actually two points: also $(-u_i, -v_i)$ Including both baselines from telescope 1 to telescope 2 and from telescope 2 to telescope 1)

Summary

- The complex visibility function, V(u, v), and the sky brightness, I(l, m), are Fourier conjugates (van Cittert-Zernike Theorem).
- Measuring the visibility function and taking the inverse Fourier transform enables us to obtain the sky brightness.
- This is the (electronic and computational) process by which radio interferometers re-construct an image "in the focal plane" of the telescope they simulate.
- For each observation with two antennas, one only gets one the values of the complex visibility at two points (u_i, v_i) and $(-u_i, -v_i)$.