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WHAT DO WE OBSERVE?

2

TA =
Aeff

2k ∫4π
Iν(θ, ϕ)Pn(θ − θ′￼, ϕ − ϕ′￼) dΩ

A radio telescope maps the 
temperature distribution of the sky.

NRAO

* Observing methods
* Correction of instrumental effects
* Calibration
* Receivers and backends
* Polarization
* Outlook
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OBSERVATIONAL METHODS
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Most receivers in radio telescopes have just one (or a few) pixel!

And, even for point-like sources, it is always necessary to subtract the background.

—> In many cases, the telescope has to be driven over the source position.
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OBSERVATIONAL METHODS
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Tsys (off-source)

Tsys + Tsrc (on source)

Tsys + Tcal (noise calibration)

Tsrc = Ton - Toff
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OBSERVATIONAL METHODS
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Tracking:       Track the source position (only compensate the Earth’s rotation)

Time-efficient, but you need to get the background
Can be used for line observations („frequency switching mode“) or pulsar observations.

https://www.researchgate.net/figure/An-illustration-of-the-technique-of-folding-from-Searching-and-Identifying-Pulsars_fig3_352907721

J. Mangum, NRAO

Beware of baseline
and calibration problems:
Winkel et al., 2012

Barr et al., 2021
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OBSERVATIONAL METHODS
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Raster observation: Observe - Move - Observe - Move …                   (On-Off) 
 
On-the-Fly: Scan continuously over the target (and surroundings)          (Cross-Scan)

Point-like objects

More time consuming, but gives information about source structure, background, confusion, etc.

SDSS/PanSTARRS-1/Giuseppe Donatiello 
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ADVANTAGES OF CROSS-SCANS
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You see immediately:
* whether you are off-source
* whether the source is extended or  

whether confusion is present
* whether you are de-focussed
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MAPPING STRATEGIES
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Fletcher et al. 2011, MPIfRSDSS/PanSTARRS-1/Giuseppe Donatiello 

Mapping by driving the
telescope over the source.

Consider spacing, 

<= , better  
1
2

θ
1
3

θ

Multibeam-observations
or special strategies
needed to get rid of

scanning effects.
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BASKET WEAVING

Müller et al., 2017

Use OTF-observations in two orthogonal scanning directions.

Assuming that the astronomical signal is the same in 
both maps, the scanning effects can be corrected.

see also: Winkel, Flöer & Kraus, 2012
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DUAL-BEAM METHODS
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Dual / Multi-Beam receivers can be used to shorten the observing time, 
but also to correct for weather effects (assuming all beams see the same part of the sky).

Example: 10 GHz cross-scan during bad weather: left: single beam, right: beam subtraction

Beware: Stacking (averaging) of scans:  noise decreases by  
           Beam-switch (subtracting):     noise increases by 

n
n
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DE-CONVOLUTION?
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Haslam et al., 1981

HI: stray radiation correction, see: 
Kalberla, P.M.W., et al. (1980):  
A. & A. 82, 274 & 106, 190 

TA =
Aeff

2k ∫4π
Iν(θ, ϕ)Pn(θ − θ′￼, ϕ − ϕ′￼) dΩ
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CONFUSION
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NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

The sky around your source is not empty.

When doing deep integrations, you will 
finally become „confusion-limited“, 
due to many unresolved weak objects.

Condon 1989

http://www.nasa.gov/
http://www.esa.int/
http://www.stsci.edu/
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CALIBRATION STEPS
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Counts to Antenna Temperature

Correct Atmospheric Absorption

Correct Gain-Elevation Effect

Convert into Jansky 

TA[K] = Tcal[K] ⋅ raw counts

T′￼A = TA ⋅ eτ/sin(elv)

T′￼′￼A =
T′￼A

G(elv)

S[Jy] =
T′￼′￼A[K]

Γ[K/Jy]
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CALIBRATION STEPS
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Counts to Antenna Temperature

Correct Atmospheric Absorption

Correct Gain-Elevation Effect

Convert into Jansky 

TA[K] = Tcal[K] ⋅ raw counts

T′￼A = TA ⋅ eτ/sin(elv)

T′￼′￼A =
T′￼A

G(elv)

S[Jy] =
T′￼′￼A[K]

Γ[K/Jy]
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CALIBRATION
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Tsys (off-source)

Tsys + Tsrc (on source)

Tsys + Tcal (noise calibration)

Tsrc = Ton - Toff
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„CONTINUOUS" CALIBRATION
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Time 0ms 16 ms 32 ms 48 ms 64 ms

Phase 1 2 3 4 1

Cal Off Off On On Off

Signal Sky Sky Sky + Cal Sky + Cal Sky

At the 100-m telescope, the noise cal is 
switched in a regular cycle.

To get antenna temperature, the software derives:

Tcal is the assumed value of the noise diode,  
 but could be different for each receiver / frequency...

Sig = p1 + p2 + p3 + p4 = 4 * Sky + 2 * Cal
Ref = p3 + p4 − p1 − p2 = 2 ⋅ cal

And with that, we have TA = Tcal
Sig − Ref

2 * Ref
= Tcal

Sky
Cal
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CALIBRATION STEPS
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Counts to Antenna Temperature

Correct Atmospheric Absorption

Correct Gain-Elevation Effect

Convert into Jansky 

TA[K] = Tcal[K] ⋅ raw counts

T′￼A = TA ⋅ eτ/sin(elv)

T′￼′￼A =
T′￼A

G(elv)

S[Jy] =
T′￼′￼A[K]

Γ[K/Jy]
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ATMOSPHERIC EFFECTS
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The atmosphere does not only cause an increase of noise,
but also attenuates the signal from space (radiation transport). 

Both, the radiation temperature, and 
the opacity depend on atmospheric conditions 

(amount of water vapor), the observing frequency 
and the elevation angle.

See e.g. ITU-R P676 or Pardo, Cernicharo & Serabyn
(IEEE Trans. Antennas and Propagation, 2001)

TA,obs = TA ⋅ exp(−τ/sin(elv))
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MEASURE THE SKY’S OPACITY
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Best done with a skydip or - even better - a water vapor radiometer.
Tsky(ν) = T0 + TAtm(ν) ⋅ (1 − eτ(ν)/sin(elv)) ≃ T0 + TAtmτ/sin(elv) = T0 + TAtmτ Airmass

24° Elevation14.5° 10.5°

KIT
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WATER VAPOR RADIOMETER
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A commercial device which measures 
the water line in K-band

A WVR measures the opacity continuously and independent of the astronomical observation.
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CALIBRATION STEPS
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Counts to Antenna Temperature

Correct Atmospheric Absorption

Correct Gain-Elevation Effect

Convert into Jansky 

TA[K] = Tcal[K] ⋅ raw counts

T′￼A = TA ⋅ eτ/sin(elv)

T′￼′￼A =
T′￼A

G(elv)

S[Jy] =
T′￼′￼A[K]

Γ[K/Jy]
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THE GAIN-ELEVATION EFFECT
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ηsurface = exp (−( 4πσ(elv)
λ )

2

) Ruze 1966

Surface RMS is a function of elevation.

Gravitational deformations of the 
main dish lead to a higher surface RMS, 
and therefore to a lower sensitivity.

Usually, this effect can be described by 
a polynomial (often of deg 2) in elevation.

Correction: T′￼′￼A = T′￼A/G(elv)
The effect gets stronger with increasing wavelength!
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CALIBRATION STEPS
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Counts to Antenna Temperature

Correct Atmospheric Absorption

Correct Gain-Elevation Effect

Convert into Jansky 

TA[K] = Tcal[K] ⋅ raw counts

T′￼A = TA ⋅ eτ/sin(elv)

T′￼′￼A =
T′￼A

G(elv)

S[Jy] =
T′￼′￼A[K]

Γ[K/Jy]
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K-TO-JY CONVERSION

24

Aeff = ηA ⋅ Ageom = ηA ⋅
π
4

D2We had: T′￼′￼A

S
=

Aeff

2k
= ηA

Ageom

2k
= ηA

πD2

8k
=: Γ

  is the sensitivity of the antenna (in K/Jy),
and it is difficult to determine „theoretically“.
Γ ηA : aperture efficieny

—> Use calibrator sources (standard candles).

ATCA Memo

Above 20 GHz, also the planets might be used.



XIX IAG/USP Advanced School on Astrophysics - September 2025

STANDARD CANDLES

25

Compare the measured flux (after all corrections) with the expected one.
—> Determine the sensitivity.

For this, several standard candles are „available“, e.g.
3C48, 3C286, 3C353, PKS 1934-638, etc.

But beware of variability!!

Baars et al., 1977
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STANDARD CANDLES

26

Butler, ALMA memo 594

Uranus

AGN: S ∼ ν−0.7

Good at low frequencies

PN: S ∼ ν2; S ∼ ν−0.1

Good at higher frequencies,
but slightly extended

PN: S ∼ ν2

Good at higher frequencies,
but slightly extended
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CALIBRATION STEPS
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Counts to Antenna Temperature

Correct Atmospheric Absorption

Correct Gain-Elevation Effect

Convert into Jansky 

TA[K] = Tcal[K] ⋅ raw counts

T′￼A = TA ⋅ eτ/sin(elv)

T′￼′￼A =
T′￼A

G(elv)

S[Jy] =
T′￼′￼A[K]

Γ[K/Jy]

Beware of other time-dependent effects  
- e.g., defocussing due to temperature changes!
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HETERODYNE RECEIVERS

28

• LNA:        amplifies a very weak radio frequency (RF) signal, is stable & low noise
• Mixer:       produces a stable lower, intermediate frequency (IF) signal by mixing the
                  RF signal with a stable local oscillator (LO) signal, is tunable
• Filter        selects a narrow signal band out of the IF
• Backend   total power detector, spectrometer, polarimeter, etc.
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HETERODYNE RECEIVERS
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BACKENDS

30

* total power detector:                        measures the power of the full band
* correlator :                                        correlates two input channels, e.g. for polarization
* spectrometer:                                   resolves the band in frequency
* „transient“ backend                           resolves the signal in time
* VLBI-Backend                                   digitizes and samples signal for VLBI          

A (digital) backend is a vital component in a radio telescope system, 
responsible for digitization, high-speed data transmission, 
signal processing, and storage.
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CURRENT DEVELOPMENTS 

31

• Digitization of the RF signal in the focus cabin (proper shielding to avoid RFI!)
• No mixing!
• Signal transport via optical fiber
• Data analysis in computer cluster

G. Wieching
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POLARIZATION

32

The full polarization state of a EM wave can be described by
two components (e.g. Er & El or Eh & Ev) and their relative phase.

With that, one can define the Stokes - Parameters:

I = < E2
r > + < E2

l > = < E2
H > + < E2

V >
V = < E2

r > − < E2
l > = 2 < EhEv sin δhv >

Q = 2 < ErEl sin δrl > = < E2
H > − < E2

V >
U = 2 < ErEl cos δrl > = 2 < EhEv cos δhv >

Beware of different 
definitions for Stokes V!

degree of linear polarization: p =
P
I

=
Q2 + U2

I

linear polarization angle: χ =
1
2

arctan
U
Q

degree of circular polarization: p =
V
I
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POLARIZATION IN RADIO ASTRONOMY 
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Jupiter :                               LP / CP - variable

Pulsars:                               LP / CP - some up to 100%!

Galaxies/AGN:                    mostly LP, variable (—> mag. field direction)

Maser lines/ Zeeman effect:  LP / CP

Scattering by dust:               LP 

o Ceti (Mira)

EB, Jan 2024
43.1 GHz (SiO)

Beck et al., 2020

M31

Wiesemeyer et al.
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POLARIZATION CALIBRATION

34

Instrumental effects (parallactic rotation, „cross-over“ between channels)
have to be corrected, e.g. Turlo et al, 1985 (A&A). 

R. Wegner
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POLARIZATION MONITORING

35
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FARADAY ROTATION

36

Rotation of the linearly polarized vector
during propagation through a magnetized medium 
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WHY USING SINGLE DISHES?
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* Single-dishes are easier to use / calibrate.
* It is cheaper to get equipment installed.
* They offer the opportunity to test new receivers / backends.
* Faster for mapping large parts of the sky (due to the beam size).
* With multi-frequency capabilities, they offer the chance to 

observe the SED of sources quickly.
* Well-suited for pulsar observations (which are point-like).

Komossa et al., 2023

Wikipedia CC
Effelsberg
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WHY USING SINGLE DISHES?

Brunthaler, A. et al. 2021

They are sensitive for extended emission!
GLOSTAR survey 
(Karl Menten et al.)

C-band (4-8 GHz)

145 square degrees 
 
Karl G. Jansky Very Large Array 
& Effelsberg 100-m telescope.

Combine interferometers 
and single-dishes!
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PRESENTATION OF OBSERVATIONS
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Secondary focus S45mm receiver
4-8 GHz
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OUTLOOK: MM-SKY
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Transmission / Absorption 
strongly depends on the 
water in the atmosphere 

pwv - precipitable water vapor
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MM / SUB-MM TELESCOPES

41

IRAM, K. Zacher

IRAM 30m telescope, Spain

APEX, Chile
MPIfR

LMT / GMT, Mexico

© Large Millimeter Telescope

SOFIA

NASA - Carla Thomas

5100 m a.s.l.

2900 m a.s.l. 10000 m a.s.l.

4600 m a.s.l.


