GMT in the Context of ELTs:

Challenges and Solutions in Building the Next Generation of Telescopes

GMACS GCLEF (cross dispersion) GMTNIRS (cross dispersion)

Goals for today:

How do the Giant Segmented Mirror Telescopes address the challenges associated with:

- Large optics
- Large structures
- Instruments
 - What drives the size of instruments?
 - How do telescope designs affect them?

[Adaptive Optics — Wednesday]

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
- Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments Small
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

Mirrors: collect light and focus light

Palomar 200-inch (5-meter)

One 8.4-meter GMT Segment

Mirrors:

Collect light

- 8.4 m is the limit of monolithic mirrors → next generation must be segmented
 - Harder and harder to: cast them that big, polish them, and TEST them.
- Secondary mirrors are getting BIG! (3m ... Too big to make them Adaptive!)
- Make sharp images (diffraction limit scales as 1/D)
 - Diffraction limited image quality \rightarrow figure errors must be < $\lambda/20$ rms
 - For $\lambda \sim 1 \mu m$: RMS < 0.05 μm or 50nm (diameter of hair ~100,000 nm)
 - For λ~ 0.5µm (5000Å): RMS < 0.025µm or 25nm</p>
 - Figure accuracy & alignment requirements → need "active optics" support

Structures:

- Telescope structures (telescope mount + pier)
 - Support the optics hold them in the right shape without breaking them
 - Protect the optics (earthquakes!)
 - Point the optics move quickly, accurately, smoothly
 - Be stable reject vibrations and wind shake
 - Be stiff don't flex under changes in gravity
- All structural issues get harder with D:
 - Mass ∝ D³ (volume)
 - Wind loads ∝ D² (cross sectional area)

 - Deflections ∝ D² (gravity)
 - Natural frequencies $\propto D^{-1}$ (as in $\omega = [k/m]^{1/2}$)
 - Stresses ∝ D (gravity loads)

Structures:

- Telescope structures (telescope mount + pier)
 - Support the optics hold them in the right shape without breaking them
 - Protect the optics (earthquakes!)
 - Point the optics move quickly, accurately
 - Be stable reject vibrations and wind shak
 - Be stiff don't flex under changes in gravit
- All structural issues get harder with D:
 - Mass ∝ D³ (volume)
 - Wind loads ∝ D² (cross sectional area)

 - Deflections ∝ D² (gravity)
 - Natural frequencies $\propto D^{-1}$ (as in $\omega = [k/m]^{1/2}$)
 - Stresses ∝ D (gravity loads)

 → Telescopes primary mirrors must get FASTER, more
 ASPHERIC to keep the
 structures reasonable and
 costs down.

- → Structures must get stiffer, stronger
- \rightarrow Designs must get more

compact.

Visual impression: Magellan (6.5 m) vs GMT (25.4m)

Visual impression: Keck (10m) vs TMT (30m)

Visual impression: Keck (10m) vs TMT (30m)

Keck (10m) vs E-ELT(39m)

Up to 8 lasers to

V

create artificial stars for adaptive optics.

T Altitude cradles for inclining the telescope. **T**Instrument platforms sit either side of the rotatable telescope. 5 11

How hard can a large structure be?

1887

1917

1937

1940

- Bridges
 - Kinzua Viaduct
 - Quebec Bridge
 - Golden Gate Bridge
 - Tacoma Narrows Bridge

600m 600m

30x2000m

1800m

steel, collapsed

steel, collapsed

steel

steel, collapsed

How hard can a large MOVING structure be?

Radio Telescopes

- Arecibo 1963 300m fixed dish
- Green Bank 1962
- Sugar Grove 1965
- Effelsberg 1970
- Green Bank 2000
- 91m collapsed 1988
 200m steerable (canceled)
 100m fully steerable
 100m fully steerable

Topics:

• What do telescopes do and how?

- Mirrors (collect and focus light)
- Structures (point and follow targets, support optics)
 - Telescope optics 101
 - Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments Small
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

Geometrical optics (ray tracing) 101

PRIMARY MIRROR: must get faster, more curved (smaller F/#)

FINAL F/# is determined by where you want the focal plane (as long as M1 and M2 together make good images

Geometrical optics (ray tracing) 101

• F/# = (focal length) / (pupil diameter) = f / D

- F/# = (focal length) / (pupil diameter) = f / D
- $\alpha \approx \text{image size (or FOV)}$

- F/# = (focal length) / (pupil diameter) = f / D
- $\alpha \approx \text{image size (or FOV)}$
- Focal plane scale (mm/asec): $\sin 1'' = \frac{h}{D_{tel} \times F/\#_{tel}}$

- $\alpha \approx \text{image size (or FOV)}$
- Focal plane scale (mm/asec): $\sin 1'' = \frac{h}{D_{tel} \times F/\#_{tel}}$

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
 - Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments Small
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

Strategies of the GSMTs:

- Focal ratios:
 - Faster primary mirrors: Smaller domes are cheaper! All
 - Faster overall: trying to keep smaller plate scale GMT, yes. Others?
- Optical configurations:
 - no low order aberrations
 - GMT: Aplanatic Gregorian...
 - TMT: Ritchey-Cretchien...
 - E-ELT: 3-mirror anastigmat + 2 folding mirrors

Telescope configurations:

WFOS / MOBI E for TMT Feedin

Telescope configurations:

Feedin

EAA IAG 2018 - RAB Lec 2 - Ev of Tel. & Inst.

Telescope configurations:

Telescope configurations: 3 mirror anastigmat.

Pros:

- Very big
- Best diffraction limit (D =39m)
- Good image quality

Cons:

- Complexity (alignment)
- Thermal background (high contrast imaging, IR sensitivity)

igure 1. Nasmyth configuration

Strategies of the GSMTs:

- Focal ratios:
 - F/# of primary: small (keeps dome smaller)
 - F/# overall: 8 (instruments behind primary) vs 16/17 (instruments at nasmyth)
- Optical configurations:
 - GMT: ASM at M2, 2 warm mirrors thermal backgrounds
 - TMT: No ASM, post-focal AO system (2 warm mirrors + 10 reflections in AO system)
 - E-ELT: ASM at M4, 5 warm mirrors

	GMT	ТМТ	ELT
Configuration	Gregorian	Ritchey-Creitchen	3-mirror anast.+2 fold
Diameter	25.4m (22)	30 m	39 m
F/#	8.2	16	17.5
Plate scale	1.0	2.2	3.3
FOV	20' (10')	10'	10'

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
 - Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments Small
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

Segment fabrication: small segments

- Total number of segments: 492 for TMT (36 for Keck)
- Total number of prescriptions: 11 (3 for Keck)

- Casting, figuring, and testing
 - Stressed mirror polishing
 - relatively proven, but more aspheric segments are harder.

- Casting, figuring, and testing
 - Stressed mirror polishing
 - relatively proven, but more aspheric segments are harder.

- Casting, figuring, and testing
 - Stressed mirror polishing
 - relatively proven, but more aspheric segments are harder.

- Casting, figuring, and testing
 - Stressed mirror polishing
 - relatively proven, but more aspheric segments are harder.

Supporting M1 in telescope: "active" optics

 1977: John Hardy, "Active Optics: A New Technology for the Control of Light"

Active Optics block diagram Credit: ESO

Supporting M1 in telescope: "active" optics

 1977: John Hardy, "Active Optics: A New Technology for the Control of Light"

Active Optics block diagram Credit: ESO

 ESO New Technology Telescope inaugurated in 1990 (Raymond Wilson, Kavli Prize 2010)

3.56 m New Technology Telescope Credit: ESO

Active optics: figure control and alignment

- Principle of active control with edge sensors:
 - Sensor signal depends only on the motion of 2 neighboring segments. Offsets are ~linear
- Sensors need to be cheap (2772 vs 168) and not interlocking!
- Actuators need to be cheap (1476 vs 108)
 - Actuator (piston)
 - Sensor (measures height difference)
 - $s = a_1 P_1 + a_2 P_2 + a_3 P_3 + a_4 P_4 + a_5 P_5 + a_6 P_6$

a = constant coefficients (depend only on geometry)

View of 7 adjacent segments -- Top view.

View of 7 adjacent segments -- Bottom view.

Small Whiffletree Triangles Attached

Note: Does not represent assembly sequence

Large whiffletree triangles attached

Large whiffletree triangle -

Note: Does not represent assembly sequence

Moving frame attached

✓ V-Groove for lifting, 3 ea.

Warping harness added

Note: Does not represent assembly sequence²

EAA IAG 2018 - RAB Lec 2 - Ev of Tel. & Inst.

Tower & locks installed

Fixed frame included

Installed on mirror cell

EAA IAG 2018 - RAB Lec 2 -

Small (~1m) segment pros/cons:

- Challenges:
 - Figure:
 - High curvature
 - 11 (TMT) and 12 (ELT) different prescriptions for the segments
 - Fragile, flexible mirrors: mirror figure created "on the telescope"
 - Maintenance: coating has to happen ~daily (10's of segments per week)
 - Adaptive optics:
 - Pupil is messy for AO (edges scatter light) bad for high contrast imaging.
 - M2 is very big (3m diameter) and it can't be a deformable mirror!
- Benefits:
 - Easy to test, known process to make (slow, difficult, but known)
 - Known alignment process on the telescopea (in theory, "just a big matrix inversion")

Pupil for AO – edges scatter, gaps are warm

Small (~1m) segment pros/cons:

- Challenges:
 - Figure:
 - High curvature
 - 11 (TMT) and 12 (ELT) different prescriptions for the segments
 - Fragile, flexible mirrors: mirror figure created "on the telescope"
 - Maintenance: coating has to happen ~daily (10's of segments per week)
 - Adaptive optics:
 - Pupil is messy for AO (edges scatter light) bad for high contrast imaging.
 - M2 is very big (3m diameter) and it can't be a deformable mirror!
- Benefits:
 - Easy to test, known process to make (slow, difficult, but known)
 - Known alignment process on the telescopea (in theory, "just a big matrix inversion")

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
 - Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments Large
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

GMT: Largest possible segments.

One 8.4-meter GMT Segment

Mirrors are made in the Caris Mirror Lab at UA

Segment Fabrication: make mold, lay glass

Segment Fabrication: make mold, lay glass

Segment Fabrication: spin cast in oven

Mirror Segment 4 (center segment)

Mirror Segment 4: rear surface polishing

Mirrors Polished Using Active Lap

Segment 2 on the Large Polishing Machine

GMT 2

Giant Magellan Telescope Mirror Segment #2 Casting

University of Arizona Steward Observatory Mirror Laboratory

March 2011 - May 2012

Optical testing: required a new test tower

- On-axis segment ~easy.
- Off-axis segments harder but DONE and GOOD!

Mirror status: Segment 1 — done in 2012

- < 20 nm rms surface error (in it's cell with active optics support)</p>
- 3 completely independent metrology tests confirm figure

2

- < 20 nm rms surface error (in it's cell with active optics support)</p>
- 3 completely independent metrology tests confirm figure

Primary Mirror Production

Primary Mirror Segment Support & Control

- Primary mirror segments contained in mirror cells
- 17 tons of glass
- 23 tons of steel
- 10 meters wide
- 3.2 meters high

Primary Mirror Segment Support

 Mirror segments supported on 165 pneumatic force actuators

Primary Mirror Segment Support

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
 - Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

Structures: made smaller by faster mirrors!

- Optical Telescopes
 - Mt Wilson 1918 2.5 m
 - Palomar 1948 5 m

Old style: Equatorial (5m)

Structures: made smaller by faster mirrors!

Modern Alt-Az mounts

• GTC	2010	11 m
Keck x2	1995	10 m
 Gemini x2 	1999	8 m
 VLT x4 	2000	8 m
 Subaru 	1999	8 m
 Magellan x2 	2001	6.5 m

(Credit: Keck Obs.)

Challenges: Structural — WIND

- Wind disturbance rejection
 - Dynamic response analysis of vibrational modes: used to refine design
 - Structure filters out power on small scales (wind disturbance)

Artistic credit: J. Nelson

Challenges: Structural — WIND

- Wind disturbance rejection
 - Dynamic response analysis of vibrational modes: used to refine design
 - Structure filters out power on small scales (wind disturbance)
 - Secondary mirror (light, high frequency): actively controlled (hexapod)

Challenges: Structural — dynamic response

Note: motion of image = 2x [angle of Secondary Mirror]

2nd fore-aft mode (9 Hz)

3rd fore-aft mode (10 Hz)

Output Set: Mode 6, 8.944035 Hz Deformed(1.176): Total Translation Output Set: Mode 10, 11.67639 Hz Deformed(1.265): Total Translation

Modeling by S. Gunnels and Simpson, Gumpertz, & Heger for GMT

Challenges: Structural — dynamic response

Note: motion of image = 2x [angle of Secondary Mirror]

2nd fore-aft mode (9 Hz)

3rd fore-aft mode (10 Hz)

Output Set: Mode 5, 8.680256 Hz Deformed(1.066): Total Translation Output Set: Mode 8, 10.54511 Hz Deformed(1.199): Total Translation

Modeling by S. Gunnels and Simpson, Gumpertz, & Heger for GMT

Challenges: Structural — dynamic response

Note: motion of image = 2x [angle of Secondary Mirror]

2nd fore-aft mode (9 Hz)

3rd fore-aft mode (10 Hz)

Output Set: Mode 6, 9.079456 Hz Deformed(1.181): Total Translation Output Set: Mode 8, 10.79837 Hz Deformed(1.217): Total Translation

Modeling by S. Gunnels and Simpson, Gumpertz, & Heger for GMT

Earthquake Country!

Historical data:

- Magnitude > 8
- Return on ~ 40 year intervals

Strategy:

Design for maximum "survival" level event for an earthquake that occurs on ~1,500 year intervals

Seismic Base Isolation: using single friction pendulums

Seismic Base Isolation: using single friction pendulums

Seismic Base Isolation: using single friction pendulums

- 24 isolators in concrete ring wall
- Permits ± 0.5 meter relative motion
- Standard in construction industry:
 - Pasadena City Hall, Burbank airport parking structure!

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
- Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs
- GSMT Comparison

What telescopes do: collect light, form image

What is the instrument's job?

Your eye makes an image of an object at any distance on your retina.

What is the instrument's job?

A camera makes an image of an object at any distance on a CCD.

Instrument's job: re-image to a smaller scale

Our cameras make an image of an object at a FIXED distance. (re-imaging)

GMT

IR re-imager on Magellan: 4-Star

IR re-imager on Magellan: 4-Star

Telescope + instrument (re-imager)

Simple spectrograph: add grating

A Schematic Diagram of a Slit Spectrograph

Simple spectrograph: add grating .. And a slit

A Schematic Diagram of a Slit Spectrograph

Instruments do science: spectroscopy

Brightness of the sources at different colors (wavelengths)

A spectrum is worth a million pictures.

Instruments do science: multi-object spectroscopy

~100x increase in efficiency: study ~100 objects at once.

Instruments do science: integral field unit (IFU) spectroscopy

Instruments do science: integral field unit (IFU) spectroscopy

~100x increase in efficiency: study an object in much more detail.

GMT

Dispersion elements: Standard Grating

high groove density, low order numbers

300 nm Blaze Wavelength: 300 Grooves/mm

Good: high dispersion Bad: lower throughput

Dispersion elements: Prisms (glass or ZnSe)

Bad: low dispersion Good: high throughput

Dispersion elements: Echelle grating

Low groove density, high order numbers

Good: VERY high dispersion

Good: higher throughput

Dispersion elements: Echelle grating

Low groove density, high order numbers

Topics:

• What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
- Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments
 - Structures

What do instruments do and how?

- Instruments optics 101
- Basic scaling relations for spectrographs.
- Limitations for large spectrographs
- Strategies for GSMTs

GSMT Comparison

Resolving power: $\Delta \lambda / \lambda$ resolving power from the grating (groves, blaze, beam width)

Showing here: proportionality to emphasize the performance of the grating on your telescope

 ϕ = slit width ~ seeing psf ~ 1 arcsecond

WFOS

MOBI

E for

TMT

Feedin

Is there enough dispersion to separate the [slit images] at the desired

Is there enough dispersion to separate the [slit images] at the desired spectral resolution?

On 8m telescopes: images got better, slits got narrower!

On 30m telescopes: images in optical will not get smaller

Wide field spectra!

IMACS on Magellan

on GMT...

IMACS:

1/3 the field of view1/3 the resolution over the same wavelength range.

on GMT...

IMACS:

1/3 the field of view

Use a lower density grating to keep same resolution... But only 1/3 the total wavelength range goes into the camera.

To get the same performance on GMT:

Scale up the collimator to capture the same field of view:

Magellan (D=6.5m, F/#=11)

GMT (D=25m, F/#=8)

Scale up the collimator to capture the same field of view:

Magellan (D=6.5m, F/#=11)

20 arcmin = 414 mm

GMT (D=25m, F/#=8)

20 arcmin = 1200 mm

Scale up the collimator: you can't.

Ienses limit is ~1m

Scale up the collimator:

Ienses limit is ~1m (larger mirrors are possible, but need beam folding, alignment hard)

DEIMOS spectrograph for Keck (10 m)

Scale up the collimator:

- Ienses limit is ~1m (larger mirrors are possible, but need beam folding, alignment hard)
- Larger fields require multi-field spectrographs

Scale up the collimator:

- Ienses limit is ~1m (larger mirrors are possible, but need beam folding, alignment hard)
- Larger fields require multi-field spectrographs

DEIMOS spectrograph for Keck (10 m)

To get the same resolution on GMT:

- Increase the pupil diameter to keep resolution ($R = \frac{\lambda}{\delta\lambda} = 2\frac{\tan\delta}{\phi}\frac{d}{D}$)
 - Largest grating assembly (?) 300x400 x 3

To get the same resolution on GMT:

- Increase the pupil diameter to keep resolution ($R = \frac{\lambda}{\delta\lambda} = 2\frac{\tan\delta}{\phi}\frac{d}{D}$)
 - Largest grating assembly (?) 300x400 x 3 ... can't get bigger.

What if you wanted the whole instrument to be smaller?

Can you win by making the pupil smaller, the collimator shorter?

To get the same resolution on GMT:

To get the same performance on GMT:

Lens material limit is ~400mm for crystals (CaF2) and high transmission glasses.

Canon Optron (~1990)

Hellma (~ July 2011)

Topics:

What do telescopes do and how?

- Mirrors & Structures
- Telescope optics 101
- Strategies of the 3 GSMTs
 - Optical Configurations
 - Segments
 - Structures
- What do instruments do and how?
 - Instruments optics 101
 - Basic scaling relations for spectrographs.
 - Limitations for large spectrographs
 - Strategies for GSMTs

Options for single object (high resolution) spectrograph:

- The problem: getting resolution
 - R~ d/D (and D has gotten to big for d to keep up)
 - R~ slit width ~ image size GLAO could help GMT a lot!!
- Solutions:
 - Go for it: Everyone is going to do this as much as possible.
 - Bigger pupils , ie. Larger gratings: biggest ~ 300mm width (1.2 m length)
 - Requires large cameras ---- biggest is 450
 - Clever optical tricks:
 - Start folding the pupil: white pupil, folded pupil. G-CLEF does this!
 - Higher dispersion strategies: immersion gratings. GMTNIRS does this!
 - Split up the telescope pupil ELT's high resolution spectrograph will do this.
 - Make the problem easier with GLAO GMT does this over full field, E-ELT does this over portions of their field

EAA IAG 2018 - RAB Lec 2 - Ev of Tel. & Inst.

Is there enough dispersion to separate the [slit images] at the desired spectral resolution?

On 8m telescopes: images got better, slits got narrower!

On 30m telescopes: images in optical will not get smaller... unless you have full time GLAO!

Metric for wide field science: $A \epsilon \Omega / \theta^2$

- A = Area..... YES
- ε = efficiency (0.8 0.9 per mirror) YES, but only to a point!

 \rightarrow Highest ϵ will not come with the highest Ω , and vice-versa

Multiple fields of view: VERY hard to make work!

- VMOS for VLT* ("never worked well")
- GMACS for GMT (reduced to 1 field)
- OPTIMOS for E-ELT (not moving forward)
- Fibers: increases field of view, maximum throughput 50%
 - EVE for E-ELT (not moving forward)
 - MANIFEST for GMT

Multiple fields of view: VERY hard to make work!

- VMOS for VLT* ("never worked well")
- GMACS for GMT (reduced to 1 field)
- OPTIMOS for E-ELT (not moving forward)
- Fibers: increases field of view, maximum throughput 50%
 - EVE for E-ELT (not moving forward)
 - MANIFEST for GMT

VPH gratings: help keep cameras smaller

- several spectrographs in 4-8m telescopes
- GMACS
- GCLEF (cross dispersion)
- GMTNIRS (cross dispersion)

VPH gratings: help keep cameras smaller

- several spectrographs in 4-8m telescopes
- GMACS
- GCLEF (cross dispersion)
- GMTNIRS (cross dispersion)

My conclusions:

- GSMTs:
 - All are challenging, but there are no show-stoppers
 - GMT has some distinct advantages in terms of:
 - \$\$/ photon
 - Building instruments for wide fields and spectral resolution!
- Instruments: There are solutions for excellent instruments:
 - The instruments don't just "scale up"
 - Best instruments will need to use all the optical tricks.
 - For wide fields of view: Pick one.. High efficiency or largest field of view.
 - Simple telescopes (optical systems) are better for IR and for AO (thermal background)

Extra Slides

This page intentionally left blank.

EAA IAG 2018 - RAB Lec 2 - Ev of Tel. & Inst.

138

Feedir

MOBIE Design Concept: Optical Layout

Design Concept: performance

Combine the two: Multi-Object, Broadband, Imaging Echellette (MOBIE)

- Extremely flexible: observer chooses
 - # objects
 - Resolution mode: Low any slit length, 1 order

Medium — slit length fixed (5''), 1–5 orders available.

High — slit length fixed (4''), 1–6 orders available.

Wavelength coverage: # of orders selected using narrow-band filters

Working example – Multi Object Echellette [prism+grating] in IMACS on Magellan

MOBIE Design Concept: Optical Layout

GMT

Keck (10m) vs TMT (30m)

Keck

MOBIE for TMT: a hybrid approach.

"Diagnostic" science

Examples: targeted studies

- Abund & kinematics of stars (20 Mpc)
- Galactic and Local Group sub/structure

Design priorities:

- Resolution ($\lambda/\Delta\lambda$): 8,000 16,000
- Multiplexing: 10's

MULTI-ORDER (cross-dispersed) SPECTRA

Echellette spectrographs:

ESI (Keck), MagE (Magellan), XShooter (VLT)

"Discovery" science

Examples: surveys

- IGM structure and composition at 2<z<6
- stellar pops (chemistry & kinematics z>1.5)

Design priorities:

- Resolution ($\lambda/\Delta\lambda$): 1,000 5,000
- Multiplexing: 100's

SINGLE ORDER SPECTRA

Wide Field Multi-Object spectrographs: DEIMOS (Keck), VMOS (VLT), IMACS (Magellan)

on GMT...

IMACS:

1/3 the field of view1/3 the resolution over the same wavelength range.

on GMT...

IMACS:

1/3 the field of view

Use a lower density grating to keep same resolution... But only 1/3 the total wavelength range goes into the camera.

