An Introduction to the GMT: Telescope & First Generation Instruments

Topics:

- Motivation: the science case for large telescopes
- Partnership & Site
- Telescope*
- Instruments*
- Enclosure & SiteStatus

* Key characteristics & how they enable science

Topics:

Motivation: the science case for large telescopes

- Partnership & Site
- Telescope*
- Instruments*
- Enclosure & SiteStatus

* Key characteristics & how they enable science

SENSITIVITY

 $0.2 \ cm^2$

Sensitivity = 1/(time) to get a given signal to noise ratio.

SENSITIVITY

Galileo's Telescope (2.6 cm)

 5.3 cm^2

Yerkes 40 inch (1m)

8,100 cm²

Hooker 100 inch (2.5 meter)

50,000 cm²

Hale 200 inch (5 meter)

195,000 cm²

Gran Telescopio Canarias (10.4 meter)

785,000 cm²

History of telescope growth:

- Typical step size is about x2
- Factor of 1000 in diameter since Galileo (40 doublings)!
- Balance between technical limitations, scientific return and financial challenges

sensitivity = D/ θ^2

Sensitivity ~ collecting area / image size

- Collecting area ~ D²
- Image size ~ θ^2

** Sensitivity = 1/(time) to get a given signal to noise ratio.

sensitivity = D/ θ^2

In the "seeing" limit: $FWHM = \theta_{seeing} \sim D^2$ <u>Sensitivity</u> ~ D²

In the diffraction limit:

FWHM ~ (1.22 λ /D) ~ 1/D²

Sensitivity ~ D^4

sensitivity = D/ θ^2

In the "seeing" limit: $FWHM = \theta_{seeing} \sim D^2$ <u>Sensitivity</u> ~ D² In the diffraction limit: FWHM ~ (1.22 λ /D) ~ 1/D² Sensitivity ~ D⁴

Hubble Deep Field

Credit: M. Bolte

HST resolution

30m + adaptive optics resolution

Motivation: sensitivity \rightarrow information

High resolution spectroscopy:

EAA 1/.

Measurements of atomic transitions & motion

1.5

Motivation: sensitivity \rightarrow information

- High resolution spectroscopy:
 - Measurements of atomic transitions & motion
- High spatial resolution:
 - Resolving motion inside galaxies
 - Resolving planets

GMT Mission: 50 years of forefront science

GMT Science Book: science goals for the next decade

Top-Level Science Areas:

- Planets & Stars
- Stars & Galaxies
- Galaxies & Cosmology

New Worlds,

2012

Science Case: a brief lesson from history

- The Black Hole at the center of our Galaxy
 Coordinated evolution of black balas and c
 - \rightarrow Coordinated evolution of black holes and galaxies

Science Case: a brief lesson from history

- The existence of Dark Energy:
 - \rightarrow accelerating expansion of the universe

hoto Credit: ESO EAA IAG 2018 – Bernstein Lec 1 – GMT Intro

- Gamma Ray Bursts (most energetic explosions seen) linked to Supernovae:
 - \rightarrow Tests of general relativity (binary star interactions)
 - \rightarrow Back-lighting for studying the chemistry of faint galaxies.
 - \rightarrow "Heavy" chemical element factories (nucleosynthesis)

Linking Gamma Rays with Supernovas (2003)

Science Case: a brief lesson from history

First direct images (and spectra!) of exoplanets

First Direct Spectrum of an Exoplanet (2010)

GMT Mission: 50 years of forefront science

GMT Science Book: science goals for the next decade

- Planets & Stars
- Stars & Galaxies
- Galaxies & Cosmology

For planning: think broadly

- what data is useful for what kinds of sources?
- what instruments provide that?
- what operational strategies are most effective?
- How can we enable a diverse instrument suite?

For instruments: think specifically

- what wavelength range?
- What pixel scale?
- What field size?

Top-Level Science Areas

GMT Mission: 50 years of forefront science

GMT Science Book: science goals for the next decade

- Planets & Stars
- Stars & Galaxies

• Gal Groundbased relative to space?

Top-Level

For planni

- They can be bigger! (better
- w

W

W

H

- sensitivity: area + resolution)
 - More modern instruments

For instruments: think specifically

- what wavelength range?
- What pixel scale?
- What field size?

Topics:

- Motivation: the science case for large telescopes
 - Partnership & Site
- Telescope*
- Instruments*
- Enclosure & SiteStatus

* Key characteristics & how they enable science

The GMT Partnership

- An international collaboration of academic and research institutions (not governments).
- GMTO Corporation formed in 2006. New partners welcome!

GMT

Site: Las Campanas Observatory (circa 2005)

- Excellent atmospheric stability (0.3-25 µm)
- Low water vapor
- Site owned by Carnegie Institution with a long term lease to GMTO

Site Characteristics – Seeing

- MASS/DIMM measurements (1990-95 and 2005-2010)
- Active observatory: no apparent evolution in performance over 25+ years
- Median seeing: 0.63 arcseconds in V-band

Legal Standing in Chile

We operate in Chile under an agreement with the University of Chile

The agreement is recognized by the Foreign Ministry

Chilean Astronomers get 10% of the observing time

REPÚBLICA DE CHILE MINISTERIO DE RELACIONES EXTERIORES Dirección de Asuntos Jurídicos Departamento de Derecho Nacioral e Internacional Privaco

MINISTERIO DE HACIENDA

OFICINA DE PARTES

RECIBIDO

CONTRALORIA GENERAL

TOWA DE RAZON

RECEPCION

DEPART, JURIDICC

DEP. T. R. Y REGIST

DEPART.

SUR DEP

UB. DEF.

SUB DEP C.PY.

BIENES NA

DEPART

AUDITORIA

DEPART.

SUB DEP.

REF PORT

PUTAC.

ANOTIFOR S ...

REFRENDACION

CONCEDE PRERROGATIVAS Y FACILIDADES A GMTO CORPORATION.

Nº 74 Santiago, 26 de marzo de 2014.

VISTOS:

Lo dispuesto en los artículos 24 y 32 N° 6 de la Constitución Política de la República, la ley N° 15.172, artículo único, inciso tercero, cuyo texto vigente se encuentra fijado por ley N° 17.318, artículo 48 y el Decreto con Fuerza de Ley N° 161, de 1978, del Ministerio de Relaciones Exteriores.

CONSIDERANDO:

Que GMTO Corporation con residencia en el Estado de Delaware, Estados Unidos de América con fechas 15 y 25 de enero de 2013, celebró con la Universidad de Chile un Convenio de Colaboración Científica en Investigaciones Astronómicas, destinado a colaborar con el desarrollo dentifico y técnico de la astronomía y astrofísica a través de la instalación y operación del "Telescopio GMT", en Chile.

Que GMTO Corporation, en virtud de dicho Convenio ha solicitado acogerse a los beneficios de la ley Nº 15.172

DECRETO

Artículo único: La GMTO Corporation, con residencia en el Estado de Delaware, Estados Unidos de América, y los científicos, astrónomos, ingenieros, técnicos y empleados que ingresen al país en funcionaes relacionadas con el proyecto denominado "Telescopio GMT", según el Convenio de Colaboración Científica en Investigaciones Astronómicas suscrito entre la GMTO Corporation y gozarán de iguales prerrogativas y facilidades que las establecidas en el Convenio vigente de fecha de 5 de noviembre de 1963, celebrado entre el Gobierno de Chile y la Organización Europeaa para la Investigación Astronómica del Hemisferio Austral (ESO).

ANÓTESE, TÓMESE RAZÓN, REGÍSTRESE Y PUBLÍQUESE.

MICHELLE BACHELET JERIA PRESIDENTA DE LA REPÚBLICA HERALDO MUÑOZ VALENZUELA MINISTRO DE RELACIONES EXTERIORES

Presidential Decree

GMT

Location, Location, Location:

Synergy with southern hemisphere observatories and surveys:

complementarity capabilities!

Topics:

Motivation - History Science case for the large telescopes Partnership & Site • **Telescope*** Instruments* • **Enclosure & Site** • **Status** •

* Key characteristics & how they enable science

GMT design

GMT

P1

P3

P7

- Aplanatic Gregorian optical configuration
- Fast primary (f/0.7) & final f/ratio (f/8.2)
 - \rightarrow Compact structure: cheaper, more stable
 - → Wide FOV: 10 arcmin (20 arcmin w/ corrector)
 - → Small plate scale: 1.0 mm/arcsec facilitates wide field instrumentation
 - → Real primary focus for alignment & calibration

P5

P1

P3

P7

- Adaptive secondary mirrors for full time AO
 - \rightarrow M1 & M2 segments are conjugate 1:1
 - \rightarrow 2 reflections: high efficiency, low background st

P5

 \rightarrow GLAO enabled by M2 location

P1

P3

P7

- Adaptive secondary mirrors for full time AO
 - \rightarrow M1 & M2 segments are conjugate 1:1
 - \rightarrow 2 reflections: high efficiency, low background st

P5

 \rightarrow GLAO enabled by M2 location

P1

P3

P7

- Adaptive secondary mirrors for full time AO
 - \rightarrow M1 & M2 segments are conjugate 1:1
 - \rightarrow 2 reflections: high efficiency, low background si

P5

- \rightarrow GLAO enabled by M2 location
- \rightarrow Standard M2 system (FSM) for backup

ASMs provide full time AO: NGAO

Natural guide star AO (NGAO):

Atmospheric seeing limit: $\theta_J \approx 0.5$ arcsec

Hubble Space Telescope $\theta_{J} \approx 0.2$ arcsec

Webb Space Telescope $\theta_{J} \approx 0.07$ arcsec

GMT with **NGAO** $\theta_{J} \approx 0.02$ arcsec

10 - 30" (limited by isoplanatic patch)

ASMs provide full time AO: LTAO

Laser guide stars AO (LTAO):

> 80% sky coverage

ASMs provide full time AO: LTAO

ASMs provide full time AO: LTAO

ASMs provide full time AO: GLAO

Ground layer AO: 30-50% improvement over natural seeing

10 arcminute fields of view

 $\theta_{\rm R} \approx 0.25$ arcsec (75th percentile)

ASMs provide full time AO: GLAO ----

Ground layer AO: 30-50% improvement over natural seeing

Factor of >1.5 more light into slits.

EAA IAG 2018 - Bernstein Lec 1 - GMT Intro

Full time AO: NGAO, LTAO, & GLAO

Telescope + planned instrument field of view:								
	Keck	GMT (2 mirrors)	GMT with GLAO	TMT (3 mirrors)	ELT (5 mirrors)			
Aε	1	6	6	9	14			
Ω	81	50	50	24	11			
θ ^{2 **}	(0.65") ²	(0.65") ²	(0.25") ²	(0.65") ²	(0.25") ²			
Aε Ω/θ^2 (relative)	1	4	25	3	10			

Metric for wide field science: $A \epsilon \Omega / \theta^2$

A = Area

- $\varepsilon = \text{efficiency} (0.8 0.9 \text{ per mirror})$
- Ω = Field of view
- θ = image size (flux concentration)

```
**Typical 75<sup>th</sup> percentile, R-band seeing.
```

Ground Layer AO

Full time AO: NGAO, LTAO, & GLAO

Telescope + planned instrument field of view:

	Keck	GMT (2 mirrors)	GMT with GLAO	TMT (3 mirrors)	ELT (5 mirrors)
Aε	1	6	6	9	14
Ω	81	50	50	24	11
θ ^{2 **}	(0.65") ²	(0.65") ²	(0.25") ²	(0.65") ²	(0.25") ²
ΑεΩ/θ² (relative)	1	4	25	3	10

Metric for wide field science: $A \epsilon \Omega / \theta^2$

A = Area

- $\varepsilon = \text{efficiency} (0.8 0.9 \text{ per mirror})$
- Ω = Field of view
- θ = image size (flux concentration)

```
**Typical 75<sup>th</sup> percentile, R-band seeing.
```

Ground Layer AO

Structure: secondary mirror support

- Upper truss support:
 - Outer segments unobscured (clean pupil)
 - Facilitates high contrast AO

Structure: secondary mirror support

- Upper truss support:
 - Outer segments unobscured (clean pupil)
 - Facilitates high contrast AO

Structure: ... notice anything strange?

Instrument mounting locations:

Gregorian Instrument Rotator (GIR)

 Carries science instruments and acquisition, guide, & wavefront sensing system

Instrument mounting locations

EAA IAG 2018 - Bernstein Lec 1 - GMT Intro

GMT tour:

Topics:

Motivation - History Science case for the large telescopes Partnership & Site • **Telescope*** • Instruments* **Enclosure & Site** • **Status** •

* Key characteristics & how they enable science

Science Instrument Parameter Space

First instrument: Commissioning Camera, Imager

Natural Seeing / GLAO Optical Spectrographs

G-CLEF PI: Andrew Szentgyorgyi, CfA/SAO

Stabilized, fiber-fed, dual channel echelle

- $R = \lambda / \Delta \lambda = 19,000 35,000 108,000$
- Velocity accuracy: < 50 cm/s per observation
- **Abundances:** Planetary atmospheres, stars, transients, QSOs, absorption line systems
- **Dynamics:** planets, clusters, dwarf galaxies
- **Precision Radial Velocities:** exoplanets (<10 cm/s)

GMACS PI: Darren DePoy, Texas A&M

Multi-object, slit-fed, red/blue channels

- $R = \lambda / \Delta \lambda = 1,000 6,000$
- 7.5' diameter FoV spectroscopy / imager
- Abundances: stellar pops, galaxies, ISM, IGM, exoplanet atmospheres
- **Dynamics:** galaxies & clusters, Lyα systems, stellar systems

G-CLEF: Chemical Enrichment & Dwarf Galaxies

G-CLEF: Chemical Enrichment & Dwarf Galaxies

G-CLEF: Chemical Enrichment & Dwarf Galaxies

GMACS: galaxy, stars, planets

GMACS: galaxy, stars, planets

EAA IAG 2018 - Bernstein Lec 1 - GMT Intro

AO-Fed, near- and mid-IR Spectrographs

GMTIFS PI: Rob Sharp, Australia National Univ.

Slit & IFU spectrograph & imager (0.3" - 20x20")

- $\lambda = yJHK$
- $R = \lambda / \Delta \lambda = 5,000 \text{ or } 10,000$
- Pixel scales: 6, 12, 25, or 50 mas
- Galaxy chemical enrichment history
- First galaxy structure and assembly
- IGM at high redshift
- Black hole masses

GMTNIRS PI: Dan Jaffe, UTexas, Austin

High resolution, high throughput IR echelle

- $\lambda = JHKLM$ (simultaneously!)
- $R = \lambda / \Delta \lambda = 50,000 (JHK) 100,000 (LM)$
- Efficiency: x10,000 gain over current best
- Composition of stars & nebulae
- Galaxy chemical evolution history
- Exoplanet structure and atmospheres
- Star and planet formation

Galaxy assembly, evolution, & chemistry

Targets: M* galaxies at z~2, peak galaxy formation Method: Velocity channel maps (IFU spectroscopy)

VLT+SINFONI, with AO (Genzel et al.)

$5L_{*}$

VLT+SINFONI, w/o AO (Förster-Schreiber et al.)

Only massive galaxies are within detection limits of 8m telescopes

Galaxy assembly, evolution, & chemistry

Milky Way size galaxy, 10 hr integration

Simulation: Gemini 8m IFU Spectrograph

HUDF - i

NIFS - Sum

Clump cluster

Galaxy assembly, evolution, & chemistry

Milky Way size galaxy, 10 hr integration

Simulation: GMT simulation

HUDF - i

GMT - Sum

Clump cluster

AO-Fed, near- and mid-IR Spectrographs

GMTIFS PI: Rob Sharp, Australia National Univ.

Slit & IFU spectrograph & imager (0.3" - 20x20")

- $\lambda = yJHK$
- $R = \lambda / \Delta \lambda = 5,000 \text{ or } 10,000$
- Pixel scales: 6, 12, 25, or 50 mas
- Galaxy chemical enrichment history
- First galaxy structure and assembly
- IGM at high redshift
- Black hole masses

Silicon immersion gratings + Bigger telescope + 1 exposure vs 200

= 5,000-20,000 times more efficient

Facility robotic fiber feed to multiple instruments:

MANIFEST Jon Lawrence (AAO) / Matthew Colless (ANU)

Characteristics:

- 2-3 min configuration time
- Single fibers, IFUs, Image slicers
- Extendable to thousands of fibers
- Extends/Adds multi-object capability over 20' FoV
- Enables very high AΩ survey science (stellar abundances, galaxy surveys)
- Allows simultaneous observing with multiple instrument ("parallels")

G-CLEF GMACS Future IR MOS

Deferred 1st generation: NIRMOS

5m NIRMOS (developed to CoDR, 2011) **PI: Dan Fabricant, CfA/Harvard** Multi-Object, wide field near-IR spectrograph $\lambda = yJHK$ $\mathsf{R} = \lambda / \Delta \lambda \sim 3,000$ Field of view: 6.5'x6.5' Slit-fed or MANIFEST (J-band)

Addition 1st generation: SuperFIRE

First light targets (z>7), galaxy evolution z~2, Galactic Center, near field cosmology, planets...

Addition 1st generation: SuperFIRE

First light targets (z>7), galaxy evolution z~2, Galactic Center, near field cosmology, planets...

Distant: Formation and Evolution of Galaxies

- When did the first galaxies form?
- When and how did re-ionization begin?
- How do galaxies assemble and evolve throughout cosmic time?
- How do black holes and galaxies co-evolve?

Distant: Formation and Evolution of Galaxies

- When did the first galaxies form?
- When and how did re-ionization begin?
- How do galaxies assemble and evolve throughout cosmic time?
- How do black holes and galaxies co-evolve?

Most distant galaxy identified with HST

Methods:

- Surveys provide candidate targets WFIRST satellite!
- Follow-up spectra: distances, chemistry, dynamics (mass, dynamics, content)

Most distant galaxy identified with HST

Distant: Formation and Evolution of Galaxies

Keck/NIRSpec

4 hours

Distant: Formation and Evolution of Galaxies

Distant: Formation and Evolution of Galaxies

Credit: S. Finkelstein (UT), R. Simcoe (MIT

Deferred 1st generation: TIGER

TIGER Phil Hinz (Univ Arizona)

Dual channel imager and spectrograph $\lambda = 1.5-5 \ \mu m$; 7-14 μm R ~ 300; Spatial ~ 7 mas / pixel Field of view: 30 arcseconds Contrast to 10⁻⁶ in L band @ 3 λ /D

Addition 1st generation: *before* the ASMs

G-MagAO-X (Co-Is: Laird Close, Jared Males, UA)

- Technology being developed at Magellan (NSF funded)
- Visible and near-IR Exoplanet Imaging
 - Internal deformable mirrors
 - State of the art coronagraphy

Exoplanet imaging in first year!

Direct imaging:

Proxima Centauri b: 0.38 arcsec angular separation

- 8m telescope: 1.2 λ/D ... Hard!
- GMT: 3.8 λ/D ... Easy!
- Contrast needed: 5,000,000:1

Current capabilities:

Beta Pic: 10 M_{jup}

VLT/AO at 3.5µm Angular Differential Imaging and apodizing coronagraphy

Direct imaging:

Proxima Centauri b: 0.38 arcsec angular separation

- 8m telescope: 1.2 λ/D ... Hard!
- GMT: 3.8 λ/D ... Easy!
- Contrast needed: 5,000,000:1

GMT simulation:

1 hr total integration ADI, apodizing coronagraph

Planets detectable at 0.5-10 M_{Jup}

Topics:

Motivation - History Science case for the large telescopes Partnership & Site • **Telescope*** • Instruments* • **Enclosure & Site** • **Status** •

* Key characteristics & how they enable science

Enclosure Development

A moving 65m tall building:

- Follows telescope pointing
- Reduce wind load
- Allow rapid thermal equilibration
- Provide adequate work space (instrument labs. mirror coating facilities.)
- Support assembly and maintenance activities

Enclosure

Ideally the Enclosure would disappear during operations

 Finalizing design to minimize impact on image quality based on computational fluid dynamics modeling

Enclosure Airflow

Boeing CFD Group modeling of airflow around and thru the enclosure

- Optimizing:
 - Enclosure Placement on the Summit
 - Lower Structure
 - Wind Screen Design

Enclosure crane: critical to build and maintain the telescope

Topics:

- Motivation – History – Science case for the large telescopes Partnership & Site Telescope* Instruments*
- Enclosure & Site
- Status

•

•

•

* Key characteristics & how they enable science

Telescope design: vendors on contract to complete final design

Primary Mirror Production

GMT 2

Giant Magellan Telescope Mirror Segment #2 Casting

University of Arizona Steward Observatory Mirror Laboratory

March 2011 - May 2012

Construction progress: support sites

Summit Offices & Metrology Station

Main Access Road

Support site 1: Warehouse, M1 Factory & M2 Metrology

Support site 2: Residences, Dining & Recreation Facilities

Construction progress: summit

Construction progress: summit

du Pont / Magellan

Location of GMT

Metrology Towers

Construction Power

MASS-DIMM

Construction Offices

Site: Las Campanas Observatory (circa 2025)

2 m du Pont

2x 6.5 m Magellan

Enclosure

Summit Support Building

Warehouse M1 Factory M2 Metrology

Lodge Dining Recreation

> GMT Site Masterplan Rendering

Summit Utility Building

Rendering of GMT at Las Campanas Site

Summit Support Building

MA

Enclosure

Summit Utility Building

V-

Rendering of GMT at Las Campanas Site

Summit Support Building

國

×

Enclosure

KN/AW/

Summit Utility Building

TUATES

Timeline to early science and operations:

Final Procurements

- Telescope: Full performance
- Instrument: Widest field of view (20 arcmin)

Intermediate Procurements

- Telescope: 7 M1+M2 segments, Adaptive M2s
- Start AO
- Instrument: AO-fed IR spectrographs

Early Procurements

- Essential infrastructure
- Enclosure, Telescope Mount
- Summit Support Building

- Telescope: 4 M1+M2 segments
- Instruments: Imaging, non-AO spec

The Vision

The Giant Magellan Telescope: Science & Status

THIS SLIDE INTENTIONALLY LEFT BLANK.

EAA IAG 2018 - Bernstein Lec 1 - GMT Intro

100

- Introduction Project and Science Case
- Design Overview
- First Generation Instruments
 - Early Science:
 - Near Planets & Stars
 - Mid Stars & Galaxies
 - Far Galaxies & Cosmology
- Status

Science nearby: Exoplanets

- How do planetary systems form?
- How common are systems like ours?
- Are there other Earths?
- Can we detect life?

Methods:

- Measuring Masses
- Direct Imaging
- Detecting atmospheres

Measuring masses of Earth-sized planets

Proxima Centauri b:

- parent star: red dwarf
- 1.3 M_E planet
- "habitable" zone (liquid water)
- 0.05 AU, 11.5 day orbit

Measuring masses of Earth-sized planets

Proxima Centauri b:

- parent star: red dwarf
- 1.3 M_E planet
- "habitable" zone (liquid water)
- 0.05 AU, 11.5 day orbit

Measuring masses of Earth-sized planets

Proxima Centauri b:

- parent star: red dwarf
- 1.3 M_E planet
- "habitable" zone (liquid water)
- 0.05 AU, 11.5 day orbit

- Introduction Project and Science Case
- Design Overview
- First Generation Instruments
 - Early Science:
 - Near Planets & Stars
 - Mid Stars & Galaxies
 - Far Galaxies & Cosmology
- Status

Quasars & the intervening absorption line systems:

Light travel time from this distance is ~3 Billion years:

(Artist's impression, Credit: ESO)

Quasars w/in reach at z=2:

Quasars w/in reach at z=2:

Credit: G. D. Becker, Ryan Cooke

Quasars w/in reach at z=2:

Credit: G. D. Becker, Ryan Cooke

111

Galaxy formation and the IGM:

GRB's as cosmic probes:

Galaxy formation and the IGM:

- Introduction Project and Science Case
- Design Overview
- First Generation Instruments
 - Early Science:
 - Near Planets & Stars
 - Mid Stars & Galaxies
 - Far Galaxies & Cosmology
- Status