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The Discovery of Extraterrestrial Atmospheres: 
The Transit of Venus 
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Transit of Venus 

7 Dec 1631 Predicted by Kepler. 

4 Dec 1639 Observed by Horrocks and Crabtree. 

6 June 1761 Global observational campaign incl. Lomonosov, Mason & Dixon. 

3 June 1769 Global observational campaign incl. Capt. Cook, sent to Tahiti to observe. 

9 Dec 1874 Global observational campaign, ”black drop” problem identified.  

6 Dec 1882 John Phillip Sousa composed “Transit of Venus” march. 

8 Jun 2004 

5-6 Jun 2012 

10-11 Dec 2117 Next transit of Venus. 
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Measurement of First Rung of Cosmic Distance Ladder 

•  Accurate measurement of times of 
second and third contact from 
widely separated global location 
permits direct measurement of the 
astronomical unit. 

•  Requires accurate geopositioning 
and timing (not so easy in 1761).  
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Mappenmonde of De Lisle, 1761  

•  Joseph-Nicolas Delisle sets up 62-station network for observing the transit.  
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Discovery of Venusian Atmosphere 

•  Distance measurement fails, but Mikhail Lomonosov find evidence of 
Venusian atmosphere. 
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Imaging the Atmosphere of Venus 
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The ”Black drop” effect 

•  The “black drop” effect limits measure of time of contacts to ± 1 minute 
•  Not an effect from Venus atmosphere  seen in transits of Mercury 
•  Combination of solar limb darkening and finite point response function of optics 
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Reproducing the “Black Drop” Effect 
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How Habitable Are Mars and Venus? 

•  The habitable zone is “fuzzy”. 
•  Atmospheric effects contribute to 

planetary surface temperature 
•  Solar luminosity has increased 

on Gy timescales. 
•  Mars & Venus are “almost” in the 

habitable zone. 
•  Note habitable zone depends 

strongly on stellar type. 
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Is Mars Habitable? The Atmosphere of Mars 
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Extremophiles: Some Like it Hot (or Cold) 

Psychrophile: Xanthoria elegans (lichen) 
capable of photosynthesis at -24°C. 

Pyrococcus Furious: Optimal environment 
T=100°C near hydrothermal vents.   
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Is Mars Habitable? Evidence for Water on Mars in the Past 

•  Stratigraphy 

•  Topography 

•  Mars had abundant liquid water in the past. 
•  Some of that water is bound in subsurface ice. 
•  Subsurface saline water reservoirs (probably) 

exist. 
•  Mars habitability for extremophiles still an open 

question.  
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Is Mars Habitable? 

Arnold says “Not!”. 
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Is Venus Habitable? The Atmosphere of Venus 

•  Surface pressure ~90 × earth. 
•  Surface temperature ~500°C  to hot for know extremophiles. 
•  Upper layer of troposphere “super rotates”.  

•  PRot,atm = 4 Earth days, PRot, Venus = 243 Earth days. 
•  3.8 Gya, Sun was 25% less luminous, Venus in Habitable Zone 
•  Venus was probably Earth-like with surface water. 
•  Runaway Greenhouse effect has evaporate all liquid water (n.b. Climate change deniers). 
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Habitability of Enceladus (Moon of Saturn) 

•  Cassini discovered plume of water emitted between cracks in Enelacus’ icy crust. 
•  Evidence of large liquid water reservoir beneath crust which is tidally heated. 
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Habitability of Enceladus 

Methanothermococcus okinawensis 

•  Extremophiles survive (and thrive?) in lab recreation of Enceladus 
ocean environment. 

•  Could be used to “colonize” Enceladus. 
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Understanding the Origins of Biomolecules - Start with Lab Astrophysics 

2017: Interstellar organohalogens and a new pathway to 
astrochemical complexity

[Fayolle+ Nature Astronomy 2017]

CH3Cl is common in protostars and comets, 
and on its own not a good bio-marker.

Based on laboratory experiments, 
CH3OH can form from oxygen 
insertion in CH4 ice, presenting a 
new pathway for complex organic 
molecule formation in interstellar 
ices at surprisingly low (<20 K) 
temperatures.

CH4:O2 ice mixture produces CH3OH when 
exposed to UV light at 10 K through 

insertions of excited O atoms into CH4

[Bergner+ 2017]

•  Methanol (CH3OH) is a 
potentially important 
precursor to biologically 
interesting molecules. 

•  Not a biomarker. 
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Understanding the Origins of Biomolecules  And Connects to Observations 

•  Precusors to complex biomolecules may form in protoplanetary disks. 
•  Methanol survives comet–planet impacts. 
•  Processing to biomolecules may then proceed on planet surface. 
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Exoplanet Atmospheres 
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Exoplanet Atmospheric Science - First Detection of an Exoplanet Atmosphere 
 

•  Transmission spectra of 
HD 209458b during transit. 

•  HST/STIS observation centered on 
Na D. 

•  Compare transit depth measure in 
Sodium D (5893Å) with depth is off-
band. 

•  In-band is deeper than off-band, 
evidence of atmospheric Sodium. 

•  Compared with off-band, Na D 
absorption increases during transit.  

Charbonneau, et al., 2001 
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Knutson, et al. (2007), Nature, 447, 183.  

•  189733b: K2V, mK = 5.5 
•  HD 189733b: 

•  m = 1.16 M  

•  P = 2.22d 
•  Hot Jupiter, tidally locked 

•  Data from Spitzer IRAC camera 

The hottest longitude is not the sub-stellar 
point  evidence of global circulation. 

Exoplanet Atmospheric Science  Evidence for Atmospheric Circulation 
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Exoplanet Atmospheric Science  First Detection of Molecules in Exoplanet Atmosphere 

•  HD 189733b 
•  Detection is in dayside 

spectrum, not a transit 
observation. 

•  Data  HST/NICMOS 
spectrograph 

•  Temperature decreases with 
altitude. 

•  An upper limit to methane is 
established. 

•  Resolution R~40 

Swain, et al. (2009), ApJ, 690, 114.  
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Exoplanet Atmospheric Science  Exoplanets Observed in X-Rays 

Poppenhager, Schmitt & Wolk, (2013),  
ApJ, 773, 62. 

•  Four transits observed with 
Chandra, one with XMM.  

•  Source is unresoved in 
XMM (?) 

•  Transit depth is 6-8% 
•  Optical (z-band) transit 

depth 2.41%. 
•  HD 189733b is “smaller” in 

the optical than in X-rays 
•  Evidence of an exosphere? 
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Are Skies Blue on Other Worlds? 

Dragomir et al. (2015), 
“Rayleigh Scattering in the 
Atmosphere of the Warm 
Exo-Neptune GJ 3470b”, 
arXiv:1511.05601  

Rayleigh Scattering Water and CO2 Absorption 
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Oxygen as a Biomarker 
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O2 Fraction as a Tracer of Evolution 

• 
• 

•  Biota accumulates during the 
Proterozoic (mostly bacteria). 

•  Biota “explodes” in the Cambrian, 
which marks the transition to the 
Phanerozoic  

•  Abundant animal life becomes 
abundant. 

•  Cambrian explosion enabled by 
Proterozoic oxygenization. 
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When Did Oxygen Become a Dominate Atmospheric Constituent? 

Sectio
n 
Sectio
n 

Economist Jul 30 2016 
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Now Universal is Carbon Based Life in Aqueoys Media? 



IAG/USP XVIII  GMT Science and Instrumentation  ASz 28 Feb 2018 

Now Universal is Carbon Based Life in Aqueoys Media? 
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Now Universal is Carbon Based Life in Aqueoys Media? 
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First Detection of Biomarkers 

The Pale Blue Dot (1990) 
•  Taken from Voyager spacecraft 

at Carl Sagan’s request. 
•  Distance was 6 billion miles. 
•  Multicolor photometry showed 

that the Earth was blue. 
•  Blue color was due to 

polarization and scattering. 
•  Polarization and scattering are 

due to clouds, exposed oceans, 
forests, etc. 

•  Generally evidence of a 
“hospitable”, biotically active 
world. 
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Or Just a NASA Selfie? 
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Searching for O2 with G-CLEF 

Mercedes/Snellen stuff 

Green: [O] 5007Å 
Red: [O] 6300Å 
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Searching for O2 with G-CLEF 

Mercedes/Snellen stuff 

Earth’s atmosphere seen from the dark side 
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Molecular O: O2 is a major constituent of the Earth’s atmosphere (21%) 

It is detectable 1% present in the 7600Å A-band or perhaps 0.1%  in UV 
or thermal IR via O3
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Searching for O2 with G-CLEF 

A Band B Band 
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•  O2 A-band spectrum of Earth-like planet. 
•  High resolution (R~ 100,000  5000,000) required to resolve molecular bandhead structure. 

O2 A-Band is a Easily Obervable Spectral Signature 

Rodler & Lopez-Morales, 2014. 
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Top: O2 A-band spectrum of Earth-like planet 
Bottom:  Telluric spectrum at Z=1.3 (30°off zenith) 

However, There is Strong Telluric Foreground Absorption 
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Line of sight velocity of exoplanet host star Doppler shifts intrinsic atmospheric 
absorption feature away from foreground, Telluric absorption 

Distinguishing Telluric and Instrinsic O2 Absorption 
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•  Doppler shifting makes separation of Telluric and intrinsic absorption distinguishable. 
•  Telluric features calibrate instrinsic spectra; cross correlation improves detectability.  
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Relative 
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Velocity Shift 
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Some line of sight velocities will correlate intrinsic and Telluric 
absorption features, producing blends. 

Telluric background subtraction affected by correlations 
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•  Near Infrared spectra from 
CRIRES on VLT 

•  Planet is a hot Jupiter 
•  Absorption band of CO is clearly 

detected 
•  CO is blueshifted 2 km/sec 

How Hard Can This Be? 
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Spectrograph Design for Natural Seeing 
 

(Dan told you about spectrographs in the diffraction limit) 
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These slides leave out most intermediate calculations and details. These 
are written up in: 
 
 
 
 
 
They are posted at: 
https://drive.google.com/drive/folders/
1BOE0WPn6mf_4kfKYqktEOkWsII4G6tVI 
If you are having writing that address down, write me at: 

saint@cfa.harvard.edu 
and I will mail you the link. 
Or get them from me on a thumb drive. 
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Natural Seeing vs AO Spectrographs 

The slit size for a diffraction-limited instrument can be 60 time smaller than a 
spectrograph that operates in natural seeing. 
•  This means the instrument can be considerably smaller. 
•  Slit image is 60 ×smaller in equivalent spectrographs. 
•  Resolution ( ) is 60 ×higher in equivalent spectrographs. 
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What a Spectrograph Does 

A spectrograph produces monochromatic images of the input or slit on the focal plane  of the 
spectrograph detector. 
•  The illumination pattern at the slit is often called the “near field”. 
•  The illumination pattern in the collimator beam is often called the “far field”. 

Monochromatic image of fiber end 
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Determinants of a Spectrograph Design 
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Designing a Spectrograph for Natural Seeing 

The science objective is the independent parameter. 
The resolution is dependent variable. 
The solution has boundary conditions – allowable mass, budget, &c. 

A sampling of resolutions and science objectives: 
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Designing a Spectrograph for Natural Seeing 

Angular Dispersion in a Very Simple Spectrograph 

Parallel Light Beam
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Designing a Spectrograph for Natural Seeing 

  Linear Dispersion in a Simple Spectrograph 
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Designing a Spectrograph for Natural Seeing 

Anamorphism in action 
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Designing a Spectrograph for Natural Seeing 

Anamorphic Factor p

r = Cos(β) 

•  Anamorphism distorts the 
shape of the slit image. 
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Designing a Spectrograph for Natural Seeing 

Prisms as Dispers 
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Designing a Spectrograph for Natural Seeing  Why Not Just Use Prisms as Dispersers 

Prism Spectrographs - Dispersion Considerations 
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Designing a Spectrograph for Natural Seeing 

The geometry of a prism spectrograph 
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Designing a Spectrograph for Natural Seeing 
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Designing a Spectrograph for Natural Seeing  Calculating  

Need a lookup table for B 
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Designing a Spectrograph for Natural Seeing 

The ultimate resolution of a prism spectrograph 

 

So, for a 100 mm camera aperture with a N-SF10 prism with a 30°apex angle  
(see Table 3., previous slide), in the diffraction limit the maximum achievabel 
resolution is:  100,000 × 1.15 ×10-1 ~ 11,000. Note very high  insufficient for most 
astrophysical spectroscopy. Another disperser technology is  needed. 
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Designing a Spectrograph for Natural Seeing 

Heroic instrumentation efforts of the past. 

12 prism passages reduce efficiency drastically! 
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Designing a Spectrograph for Natural Seeing 

The Diffraction Grating 

The grating equation: 
 
±  
 
Signs depend on geometry. 
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Designing a Spectrograph for Natural Seeing 

Reflection grating geometry 

The grating equation: 
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Designing a Spectrograph for Natural Seeing 

Transmission grating geometry 
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Designing a Spectrograph for Natural Seeing 

Getting the sign of diffractive orders 
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Designing a Spectrograph for Natural Seeing 

•  Light is  diffracted into numerous 
orders, so it is sent into many 
directions. 

•  For high efficiency, it is desireable 
to send most of the light into a 
single order. 
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Designing a Spectrograph for Natural Seeing 

Diffraction Grating 101 
Geometry in plane of diffraction 
•  α is angle of incidence 
•  β is diffraction angle 
•  B is blaze angle 
•  N is grating normal 
•  z is facet normal 
•  σ is grating pitch 
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Designing a Spectrograph for Natural Seeing - ”Blazing” the grating 

•  Facet of grating are cut into numerous 
microscopic mirrors. 

•  Law of reflection: 
 

•  If diffraction is arranged so α & β satsify 
law of reflection for a given order (m), 
most of the light goes into that diffractive 
order. 

•  The grating is “blazed” at B for that order 
and wavelength. 
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Designing a Spectrograph for Natural Seeing  The Echelle Gratig 

•  “Echelle” = “ladder” or “stairs” 
•  Very high order (large m’s) produce very 

high dispersion. 
•  High dispersion spread the light out 

radically. 
•  High dispersion translates into high 

resolution. 
•  Echelles with R~250,00 are possible. 
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Designing a Spectrograph for Natural Seeing 

The layout of a simple slit – fed spectrograph 
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Designing a Spectrograph for Natural Seeing 

•  Spectrographs may fed with slits 
(rectangular shape) or fiber-feed 
(round or polygonal). 

•  Slitless is possible too.  
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Designing a Spectrograph for Natural Seeing – Feed Choice 

An incomplete trade study between fibers and slits 

Fibers 
•  Geometry is fixed 
•  Format is fixed or limited 
•  Sky subtraction less perfect 
•  Blue transmission limited 
•  IR is difficult 
•  Very high mechanical and thermal 

stability achievable. 
•  Multiobject capability “built-in” 
•  Resolution ”boost” 

Slits 
•  Slit width can be adjustable 
•  Slit length is adjustable 
•  Sky subtraction better with a long slit 
•  Blue transmission can extend to 

atmospheric limit (~3000-3200Å) 
•  IR is enabled 
•  Flexure and thermal control is a problem 

for Cass or Nasmyth mounting. 
•  Multiobject capability possible, but harder 
•  No resolution “boost” 

Spectrographs may have slits (rectangular shape) or fiber-feed 
(round or polygonal)  
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Designing a Spectrograph for Natural Seeing - Resolution 

A quick calculation of resolution (see notes for details): 

 
 

 
 

 

For the case of an echelle spectrograph operated at Littrow (α=β): 

(see notes 
for details) 

 
 

 is the angular width of the slit in arcsec 
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Designing a Spectrograph for Natural Seeing 

 
 

 is the angular width of the slit in arcsec 

The most important result of this lecture 

•  Littrow always yield the highest efficiency, and usually the highest resolution/ 

•  The factor   techologically limited:  

•  The angular slit size is set by nature: 

•   

•  You choose  when you build your telescope. 

•  To increase resolution, all you can do is make  bigger. 

•  When you make  bigger, you make the spectrograph bigger. 
•  When you make the instrument bigger, you make it more expensive. 

•  For  larger that 300 mm, extraordinary costs, designs or means are required. 

• Very few optical glasses (used to make lenses) are produced larger than 300 mm
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Designing a Spectrograph for Natural Seeing 

Big Telescopes mean 
Big (Expensive) Instruments 
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Designing a Spectrograph for Natural Seeing 

G-CLEF: R= 108,000 on 25.4m dia. aperture telescope 
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Designing a Spectrograph for Natural Seeing 

Many astrophysical program require R~100,000 
•  Precision radial velocity 
•  Lα forest, &c. 
•  Exoplanet atmospheres 

Exoplanet atmospheres really optimal at R~300,000 - 500,000. 
 
What to do? 
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Getting to R=300,00 
Externally Dispersed Interferometers for O2 Searches 
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EDI 
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EDI 

EDI  spectra are the convolution of the low 
resolution spectrum and interferometer fringe 
pattern. 
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EDI 

IAG/USP XVIIIIAG/USP XVIII  GMT Science and InstrumentationGMT S i d I t t ti ASzAS 28 Feb 201828 F b 2018

EDI Spectrum of Artcurus 
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“Spectrum” Recovered form EDI Spectropgraph is Complicate 
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EDI 

•  8 Delays means 8 observations. 
•  The cost of the instrument is low. 
•  The cost in observing time is high. 
•  Observing time on the GMT will be very, very expensive. 

However, the path to R=300,000 not clear, the science rewards are 
huge, so every avenue should be pursued. 
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FIOS 

Getting to R = 300,000 
A Very High Resolution Fabry-Perot for O2 Detection 
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FIOS 

Getting to R = 300,000 
A Very High Resolution Fabry-Perot for O2 Detection 

 
A Fabry perot Interferometer for Oxygen Searches (FIOS) 
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FIOS - Schematic of a Fabry-Perot 
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FIOS - Operating Principle of a Fabry-Perot 

When  interference 
in beams D & E is constructive 
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FIOS – A Fabry-Perot Produces a Transmitted Spectrum 

The interference is enhanced 
by multiple beams 
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FIOS – Reflected and Transmitted Spectrum A Fabry-Perot Spectrum  

•  What isn’t reflected is 
transmitted. 

•  The ratio of the width 
of the transmitted or 
reflected beam is the 
”finesse” of a Fabry–
Perot. 
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FIOS – Reflected and Transmitted Spectrum of Fabry-Perots in Series  

Multiple Fabry-Perots (etalons) broaden the spectral coverage. 
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FIOS - Obtaining Full Spectral Coverage with a Fabry-Perot 

•  Multiple etalons provide full spectral coverage 
•  The number of beams required depends on the finesse of the etalons 
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FIOS – O2-Search Fabry-Perot Interferometer 

The beam is cycle through 
numerous etalons with a 
polygonal mirror. 

Etalons 

Polygonal Mirror 
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FIOS - Fabry-Perot Can Have Abitrarily High Precision 

Finesse is adjust to provide 
R = 300,000 - 500,000 
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FIOS  Why Does FIOS Work? 

How did we beat: 
 
 
 
i.e.: How did we violate the 2nd law of thermodynamics? 
 
FIOS operates over a very restricted range of wavelengths (~100Å). 
A FIOS that operated over 7000Å would be 700 ×larger, i.e., very, 
very big. 
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Searching for O2 with G-CLEF 
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FIOS When we look at life on other worlds,  it may be tardigrades that 
look back at us. 
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FIOS 

The Tardigrade is the official G-
CLEF mascot 


