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Introduction

Why study oscillations in rapidly rotating stars
✘ Physics of rotating stars not well understood
✘ High proportion of stars that rotate rapidly
• for example : δ Scuti and γ Doradus stars

A. Domiciano de Souza et al.: Gravitational-darkening of Altair from interferometry 573
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Fig. 3. Triple amplitudes |V1| |V2| |V3|, closure phases φ1 + φ2 + φ3, and corresponding errors versus the wavelength for the seven NPOI scans
(Sect. 2). Solid curves correspond to theoretical values obtained from our best model from the χ2 analysis of all interferometric data (BMAD;
see also Fig. 1). The closure phase is very sensitive to the stellar intensity distribution. Therefore, a comparison between a strong (β = 0.25;
solid curves) and a weak (β = 0.08; dashed curves) gravity-darkened model shows that a highly non-uniform surface brightness distribution is
mandatory to reproduce the observed closure phases. Note that the closure phases have small error bars (<∼0.03 rad). Plots for scans 2 to 7 were
progressively shifted for better visualization. The picture in the right is the effective temperature map for the BMAD (Table 3).

This calibration problem is clearly present in Figs. 2 and 3 as
a scatter of the observed V2 and triple amplitudes relative to
the model. The observations for a given scan are shifted in the
same direction for all wavelengths. On the other hand, the clo-
sure phase is a more stable interferometric observable, being
unaffected by this calibration problem as shown by the excel-
lent agreement between observation and model in Fig. 3.

We have thus performed another χ2 analysis including only
the (7 scans)*(18 wavelengths) closure phases from NPOI,
together with the 47 near-IR V2 from PTI and VINCI. The
χ2/d.o.f. behavior is similar to that seen in Fig. 1, but the
minimum reduced χ2 is now >∼2 times smaller than before,
namely, χ2

min/d.o.f. = 3.2. In agreement with the analysis of
all data presented in the last section, we obtained β = 0.25 and
i = 55◦ ± 14◦. Further physical parameters for this best model
determined from the near-IR V2 and closure phases (BMIRCP)
are given in Table 3.

Even though this analysis showed that χ2
min/d.o.f.(=3.2)

diminishes when the NPOI V2 and triple amplitudes are re-
moved, the value obtained indicates that some non negligible
discrepancies between model and observations still exist. Such

discrepancies come from the fact that the near-IR V2 for the
BMAD and the BMIRCP systematically underestimate the ob-
servations from PTI and VINCI, as we can see in Fig. 4.

Because these near-IR V2 include data from two distinct in-
terferometers using different calibrators, one can hardly invoke
some kind of calibration problem, such as those found on the
NPOI data. These low theoretical near-IR V2 seem to be due to
the rather large equatorial angular diameter deduced from the
χ2 minimization, namely, �eq = 3.83±0.06 mas for the BMAD
and �eq = 3.88±0.08 mas for the BMIRCP (Table 3). To inves-
tigate this point we performed two additional χ2 analyses: one
for the (7 scans)*(18 wavelengths) closure phases alone (NPOI
data) and another for the 47 near-IR V2 alone (VLTI-VINCI
and PTI data). These results are also summarized in Table 3.

Our analysis result in χ2
min/d.o.f. = 1.4 for the best model

for the closure phases alone (BMCP). The χ2/d.o.f. behavior is
once more similar to that seen in Fig. 1, resulting in β = 0.25
and i = 50◦ ± 12◦. The derived equatorial diameter (�eq =

3.88±0.03 mas) is compatible with those from the two previous
analyses (BMAD and BMIRCP).

Altair :

Interferometry :
Domiciano de Souza et al., 2005
Peterson et al., 2005

δ Scuti pulsations :
Buzasi et al., 2005

Models :
Suárez et al., 2005
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Targets for Corot

Star Spectral Type Mass v. sin i
HD type (M�) (km.s−1)
171834 F3 1.3 64b

177552 F1 1.4 41b

181555 A5 δ Scuti 170a

49434 F1 V γ Dor 79b

a Poretti et al. 2003. A&A 406 :203-211.
b CorotWeek8, F. X. Schmider.
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Mathematical difficulties

✘ Two forces appear because of rotation
• centrifugal force : stellar deformation, and ~geff

• Coriolis force
✘ Oscillation modes are no longer described by a single spherical harmonic
• No longer 1D, but 2D
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Comparison between perturbative and non-perturbative methods

Perturbative approach
✘ the rotation rate Ω is considered to be small
✘ equilibrium model and oscillation mode = (a spherical solution) +
(a perturbation) +O(Ωn)

Non-perturbative approach
✘ the rotation rate Ω is not considered small
✘ equilibrium model and oscillation mode = a solution to a 2D problem which
fully includes the effects of rotation
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Some references...

Perturbative methods
✘ 2nd order methods :
• Saio (1981)
• Gough and Thompson (1990)
• Dziembowski and Goode (1992)

✘ 3rd order methods :
• Soufi, Goupil and Dziembowski (1998)
• Karami et al. (2005)

Numerical methods
✘ Clement (1981-1998)
✘ Ipser and Lindblom (1990)
✘ Yoshida and Eriguchi (2001)
✘ Espinosa et al. (2004)
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Our work

Objective : to accurately take into account the effects rotation on stellar
pulsations

✘ Non-perturbative numerical method
✘ Use of spectral methods in both directions
• 120 points with spectral method ⇐⇒ 5000 points with finite differences

✘ Use of surface-fitting coordinate system (ζ, θ, φ) (cf. Bonazzola et al., 1998)
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What we calculate

Equilibrium model
✘ polytropic model (N = 1.5 or 3)
✘ uniform rotation
Oscillations : adiabatic, acoustic modes

Typical numerical resolution :
✘ `max = 80, Nr = 60, for N = 3
✘ `max = 70, Nr = 80, for N = 1.5
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Method

1. Write explicit equations

in spheroidal coordinates

Continuity equation
Euler’s equation
Adiabatic energy equation
Poisson’s equation
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Method

1. Write explicit equations

in spheroidal coordinates

2. Express unknowns using

spherical harmonics

For example : Φ(ζ, θ, ϕ) =
`max∑
`=|m|

Φ`
m(ζ)Y m

` (θ, ϕ)
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Method

1. Write explicit equations

in spheroidal coordinates

3. Project equations onto

spherical harmonic base

2. Express unknowns using

spherical harmonics

For example :
∫∫

4π

{Y m
` }

∗ {Continuity equation} dΩ
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Method

1. Write explicit equations

in spheroidal coordinates

3. Project equations onto

spherical harmonic base

2. Express unknowns using

spherical harmonics

4. Discretise system onto

Chebyshev collocation grid

Generalised eigenvalue problem : Ax = λBx
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Tests and Accuracy of the method

Tests
✘ Comparison with Christensen-Dalsgaard and Mullan (1994) in the non-rotating
case : ∆ω/ω ∼ 10−7

✘ Comparison with Lignières (2003, CW5) : ∆ω/ω ∼ 10−6

✘ Comparison with Saio for small rotation rates
✘ Variational test : ∆ω/ω ∼ 10−7 for N = 3 and ∆ω/ω ∼ 10−5 for N = 1.5

Accuracy
✘ High numerical accuracy of frequencies, up to ∆ω/ω ∼ 10−10



XFirst XLast XPage XFull Screen XClose

12

Outline

1. Introduction

2. Computational method

3. The effects of rotation on pulsation frequencies

4. The effects of rotation on mode structure

5. Conclusion



XFirst XLast XPage XFull Screen XClose

13

A few frequencies...

Modes :

n = 1 to 6
` = 0 to 3
m = −` to `
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A few frequencies...

Modes :

n = 1 to 6
` = 0 to 3
m = −` to `
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Error envelope
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Error envelope
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A multiplet
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Large and small frequency separations
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Large and small frequency separations
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Large and small frequency separations
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Large frequency separation

Ω = 0.00 ΩK
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Large frequency separation

Ω = 0.38 ΩK
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Large frequency separation

Ω = 0.59 ΩK
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Avoided crossings
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Rotation and mode structure

Mode :

n = 5

` = 3

m = 0

Ω = 0

f = 0.373 mHz
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Rotation and mode structure

Mode :

n = 5

` = 3

m = 0

Ω = 0.84 ΩK

f = 0.260 mHz
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Rotation and mode structure

Mode :

n = 3

` = 2

m = 2

Ω = 0

f = 0.254 mHz
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Rotation and mode structure

Mode :

n = 3

` = 2

m = 2

Ω = 0.59 ΩK

f = 0.164 mHz
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Rotation and mode structure

What do observations say ?

J.-C.Suárez et al.: A study of correlation for δ Scuti stars in open clusters 527

Fig. 3. Correlation diagrams for a set of photometric parameters obtained from the correction for rotation (see Table 6). Circles represent the

δ Scuti stars before correcting for the effect of rotation. Crosses represent the error bars (See Sect. 4 for details).
[Suárez et al., 2002]
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Rotation and mode structure

Mode :

n = 20

` = 2

m = 0

Ω = 0

f = 31.4 ΩK
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Rotation and mode structure

Mode :

n = 20

` = 2

m = 0

Ω = 0.46 ΩK

f = 36.2 ΩK
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Conclusion

Summary
✘ rotation greatly complicates the oscillation spectrum
✘ the large frequency separation seems to be preserved
✘ the geometry and visibility of modes are greatly altered

Future work includes :
✘ quantitative study of mode visibilities
✘ pulsations for solar-like stars
✘ study of g-modes
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Estimating perturbative coefficients

The pulsation frequencies are a function of the rotation :

ωn`m = ω0 + ω1Ω + ω2Ω2 + ω3Ω3 +O
(
Ω4

)
ωn` −m = ω0 − ω1Ω + ω2Ω2 − ω3Ω3 +O

(
Ω4

)
We calculate ω for small values of Ω

Least squares fit of
ωn`m+ωn` −m

2 and
ωn`m−ωn` −m

2

Obtain in this way ω0, ω1, ω2 and ω3.
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Logarithmic graph of error envelope


