Bonjour Eduardo,

 

Voici les commentaires pour la presentation; je les mets en anglais puisque

la presentation est en anglais.  Au niveau de la numerotation, parfois

plusieurs pages ont le même numéro.  J´ajoute alors une lettre pour qu´il n´y

ait pas d´ambiguité (par exemple 10a, 10b ...).
0.  First slide (slide number zero)
   « Today, I will present some work by D. Reese, F. Lignières and M. Rieutord

on the pulsations of rapidly rotating stars.”

2.  Introduction

“ Perhaps you are wondering what is the purpose of calculating modes and

frequencies in rapidly rotating stars.  There are many unresolved questions
concerning rotating stars: what is their structure like, their rotation profile,
what sort of chemical transport takes place, how does gravity darkening work

etc.  One way to attempt to answer these questions is through asteroseismology.”

Are there stars with rapid rotation and which pulsate?  Yes, for  instance
delta Scuti stars and gamma Doradus stars can rotate with a v.sin.i > 200 km.s-1.

An interesting example of a rapidly rotating star is Altair, recently discovered to be

a delta Scuti pulsator (by Buzasi et al. 2005).  Altair has a v.sin.i somewhere

between 200 and 240 km.s-1 (depending on the author). Interferometric observations

based on gravity darkening suggest an inclination around 55 degrees as is shown in

the figure from Domiciano et al. (2005)  meaning that the equatorial velocity reaches

perhaps up to 90% of the break-up velocity.  Because of its delta Scuti pulsations, it

is an interesting star to try to model as has already been attempted by Suárez et al. 2005.

3. Other stars of interest are some of Corot´s primary targets as shown in this table.  With
Corot´s expected accuracy, and these rotation rates, it becomes necessary to be able

to calculate with great precision the effects of rotation on stellar pulsations.

5. Mathematical difficulties from the effects of rotation:

     -> two new forces appear:
        -> the centrifugal force: this modifies the shape of the star and the equilibrium
                                              quantities within (such as the effective gravity)

        -> the Coriolis force: direct effects on pulsation modes

     -> neither force respects spherical symmetry: as a result r (radial coordinate)
          and theta (colatitude) are no longer separable

     -> different spherical harmonics become coupled so that oscillation modes are

          no longer described by a single spherical harmonic (the picture shows a

          crossed out spherical harmonic to show that it is not sufficient to describe

          an oscillation mode).

      -> the problem is a 2D problem and not a 1D problem.

6.  How is the problem addressed?

      -> two basic approaches

      -> perturbative approach:

           -> rotation rate is a small parameter

           -> the equilibrium model and pulsation modes are the sum of a spherical

               solution, a perturbation, and a remainder which is proportional to some

               power of the rotation rate

      -> non-perturbative approach:

           -> the rotation rate is not considered to be small
           -> the equilibrium model and pulsation modes are solutions to 2D problems

               which fully include the effects of rotation (this is less true of the equilibrium

               model where it would be necessary to do stellar evolution with rotation fully included)

7.  Here is a non-exhaustive list of articles in which the problem of stellar pulsations in rotating
     stars using both approaches has been addressed. 

8.  Now, I will describe the method used in this presentation.
     -> objective: to accurately take into account the effects of rotation on stellar pulsations

     -> we need to use non-perturbative methods in order to go to high rotation rates and
         retain a high accuracy

     -> the numerical method is spectral (in which solutions and differential operators are

         described using a set of basis functions)

          -> this enables high accuracy with a small resolution

     -> we use special surface fitting coordinates in order to keep the accuracy of spectral methods

9.  What do we calculate

     -> the equilibrium model is polytropic

         -> N = 1.5 is typical of convective zones

         -> N = 3 is typical of radiative zones

     -> resolution
         -> lmax = number of spherical harmonics

         -> Nr  = number of Chebyshev polynomials in radial direction

10.a-d  These slides explain how to go from the analytical problem

            to the numerical one.

10.a. Step 1:  write equations explicitly in spheroidal coordinates

           (result: system of 6 partial differential equations with 6

            unknowns)

10.b. Step 2: project unknows onto spherical harmonic base

           (unknowns = sum of unknown radial functions times spherical harmonics)

10.c. Step 3: project equations onto spherical harmonic base

           (this is done by calculating integrals over 4pi steradians

            of different spherical harmonics * equations)

          (result is a large system of ordinary differential equations

           the solution of which is the unknown radial functions from

          slide 10.b.)

10.d. Step 4:  discretize in the radial direction using Chebyshev polynomials
         (result: matrix problem: A and B are large square matrix the dimensions

          of which are roughly (3.5*lmax*Nr)*(3.5*lmax*Nr)

11.  Tests and accuracy
       -> the test with Christensen-Dalsgaard and Mullan is in the non-rotating case

       -> the test with Lignières, CorotWeek 5 is up to 0.59 omega_K (where

           omega_K is the Keplerian break-up rotation rate)

       -> Saio is a 2nd order perturbative method:  rough agreement between his 
           coefficients and ours (we calculate ours through a least square fit

            see slide 29)

       -> variational test: based on variational principle: A w^2 + B w + C = 0

           (where A, B, C are integrals calculated from mode eigenfunction and

             w is the eigenfrequency)

        -> numerical accuracy:  we change different parameters such as Nr, lmax

             and other parameters, and look at the maximal variations of the

             eigenfrequency (we of course keep a sufficient resolution in the different
            tests)
 

13 a-d :  plot of pulsation frequencies as a function of the rotation rate.

            The modes in this plot are n (radial order) = 1 to 6, l

            (harmonic degree) = 0 to 3 and m (azimuthal order) = -l to l.

            -> lower x-axis = rotation rate devided by Keplerian break up rate

            -> upper x-axis = flattening (epsilon) = 1 - Rp/Re where Rp = polar

                                     radius and Re = equatorial radius

            -> y-axis = frequencies for N = 3 polytrope with M = 1.9 solar mass

                            and Rp = 2.3 solar radius (I keep M and Rp constant for

                            all rotation rates)

 

13a:  green = domain of validity for 1st order perturbative calculations with

                    a 0.6 microHz error bar (which corresponds to Corot´s 20 day

                    program)

        blue = domain of validity for 2nd order methods (same error bar)

        red = domain of validity for 3rd order methods

        --> comments:- at zero rotation rate there is mode degeneracy

                             - at small rotation rates nice evenly-spaced multiplets

                             - higher rotation rates: modes are less evenly spaced out

                                  in multiplets and multiplets start to overlap.

                             - at high rotation rates: complete mixing up of multiplets

                               and complex spectrum

                             - sometimes, many modes have similar frequencies

                               (in the figure this occurs at omega = 0.35): if those

                               are interpreted as modes from the same multiplet,

                               the star is completely misunderstood.
      Note: the perturbative coefficients are calculated using a least square
                fit of frequencies near omega = 0; more details are given in slide 29
 

13b:  same as 13a but with a 0.08 microHz error bar (which corresponds to

         Corot´s 150 day program)

 

13c:  Position of HD 181555 (if M = 1.9 solar mass and Rp = 2.3 solar radius

         and vsini  = v_eq = 170 km.s-1 (where v_eq = equatorial velocity))

13d:  Position of HD 177552 (if v_eq =41km.s-1) and HD 171834 (v_eq = 64 km.s-1)

        (M = 1.9 and Rp = 2.3)

              - N = 3 polytrope is a poor representation of these stars ( and M and Rp are

                not a very good estimate either)

14a: Error envelope of 2nd order methods (plot of max(f_pert – f) and min(f_pert – f))

14b: Error envelope of 3rd order methods

->   nearly same error as 2nd order methods: I think that what we mostly see in

the 2nd order methods is errors in omega^4 which will also be the same for

3rd order methods ( this is confirmed by the fact that these errors come from
m=0 modes which only contain even powers of omega)

-> also see slide 30 which is the same but with a logarithmic plot -> there 3rd order

methods are better at small rotation rates

15.An isolated multiplet to show the evolution from even spacing to very uneven spacing

     -> for comparison: third order calculations are superimposed (they correspond to

          the dotted lines)

16.a.  A few selected frequencies in order to show the large and small frequency
          separations (this plot contains the modes l = 0 and 2, m = 0 and n = 1 to 6)

16.b. Same as 16a plus error indicating a large frequency separation

16.c.  A small frequency separation is added in.  It is very clear from the plot

          that the small frequency separation is no longer small at high rotation rates.

17.a.  A plot of large frequency separations as a function of the radial order n

           (for l = 0 to 3 and m = -l to l)

        - because of mode degeneracy, only for lines appear, one for each value of l.

17.b. Same as 17.a but for omega  = 0.38 omega_K (omega_K = keplerian break up
         rotation rate)

        - there is no mode degeneracy; therefore there are many more lines than in

           slide 17a.

        - relatively small dispersion of large frequency separations

17.c. Same as 17.a. but for omega = 0.59 omega_K

        - dispersion is still relatively small

        - question does large separation go to an asymptotic limit (or several limits)

           as the radial order n increases?

        - some lines are jagged due to avoided crossings

18.  Example of an avoided crossing.

        - two modes want to cross but cannot because they are coupled.

        - as a result they approach each other, then trade characteristics (as

          is illustrated in the figure)

20.  Cross section of oscillation mode in non-rotating star (plot of the modes kinetic

       energie) (the rotation axis is vertical)

       -> the mode´s identification is given on the slide

       -> movie1.mpg shows how the surface of the star undulates with this mode

            (the amplitude of the movements is greatly exaggerated)

21.  Cross section of the same mode but at over 0.8 omega_K

       -> strong equatorial concentration of mode (amplitude because much
            more important at the equator, relative to the rest of the star)

       -> see movie2.mpg (in the film, the ratio between the rotation period and

                                        pulsation period is respected)

22.  Another example of a non-rotating mode (this one is not axisymmetric)
       -> see movie3.mpg

23.  Same mode but at 0.59 omega_K.

       -> strong equatorial concentration once more (many modes undergo equatorial

           concentration)

       -> altered geometry

       -> see movie4.mpg

24.  Agreement with observations:

       -> correlation between i and mode amplitude (as i increases, so does
            the amplitude)  (i = 0 degrees corresponds to pole on and i = 90 degrees

            corresponds to equator on)
       -> this agrees with modes in which the amplitude is strong at the equator

       -> however, some counter examples exist as is illustrated in the next two
            slides

25.  Another non-rotating mode (this time the equilibrium model is an N=1.5

       polytrope (this would correspond to a completely convective star, and the

       radial order is very high)

       -> see movie5.mpg

26. Same mode but with rotation 

       -> note how the equatorial amplitude is very low

       -> see movie6.mpg

       -> the low equatorial amplitude could be due to the polytropic index being lower

           (a lower polytropic index leads to a model with a smaller mass concentration

            in the center thus allowing modes to penetrate more deeply)

        -> it could also be due to a high the radial order (but this needs to be tested on the

            N = 3 polytrope)

28.  Conclusion

     “As we have been able to see, rotation has many effects on stellar pulsations.  For

 instance, the oscillation spectrum becomes very complicated at high rotation rates

due to uneven multiplets that overlap.  Also, the notion of small frequency separation
fails to work at high rotation rates.  Nonetheless, the large frequency separation still

seems more or less preserved.  Other effects of rotation, include the strong modification

of mode geometry, especially equatorial concentration.”
    “Future work will consist of doing a quantitative study of mode visibilities as these

are directly affected by equatorial concentration.  We also plan to calculate pulsation

modes in solar-like rotating stars which could apply to the stars HD 177552 and HD

171834 (from Corot´s primary program).  This implies coming up with models that resemble these stars, such as bipolytropic models for a start, and more elaborate models

afterwards. We also hope to investigate g-modes, which could then be applied to

HD 49434.  Thank you for your attention.”
