The accepted APs

An unbiased study of rotation, stochastic variability and flaring

and

Convection and short term activity

observational requirements, feasiblity, expectations

Suzanne Aigrain, IoA, Cambridge

3 co-ordinated APs

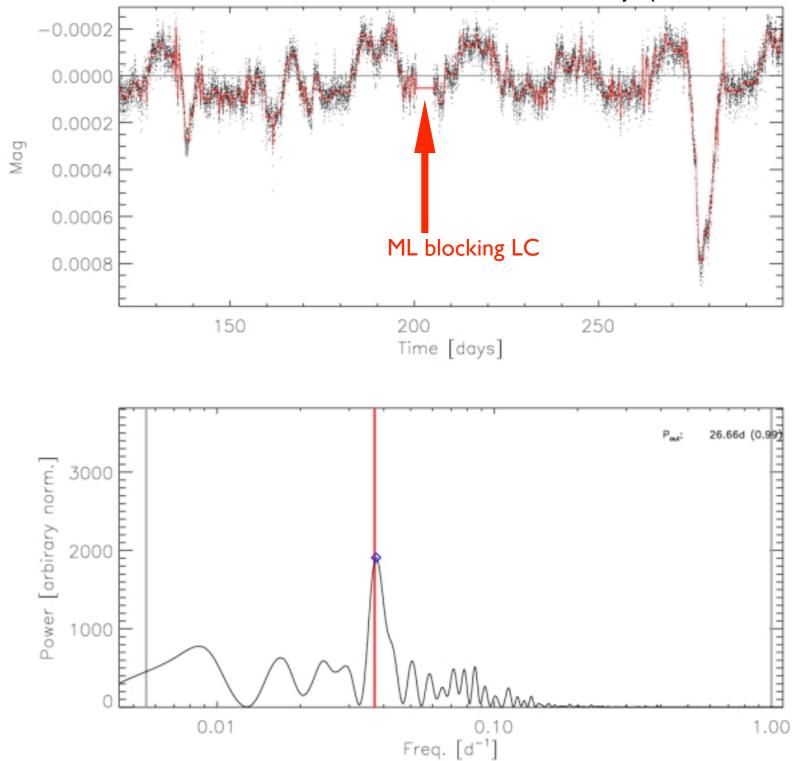
- Stellar variability & micro-variability
 - I An unbiased study of rotation, stochastic variability and flaring
 - II Spot maps & modelling
 - III Convection & short term activity

Common rationale

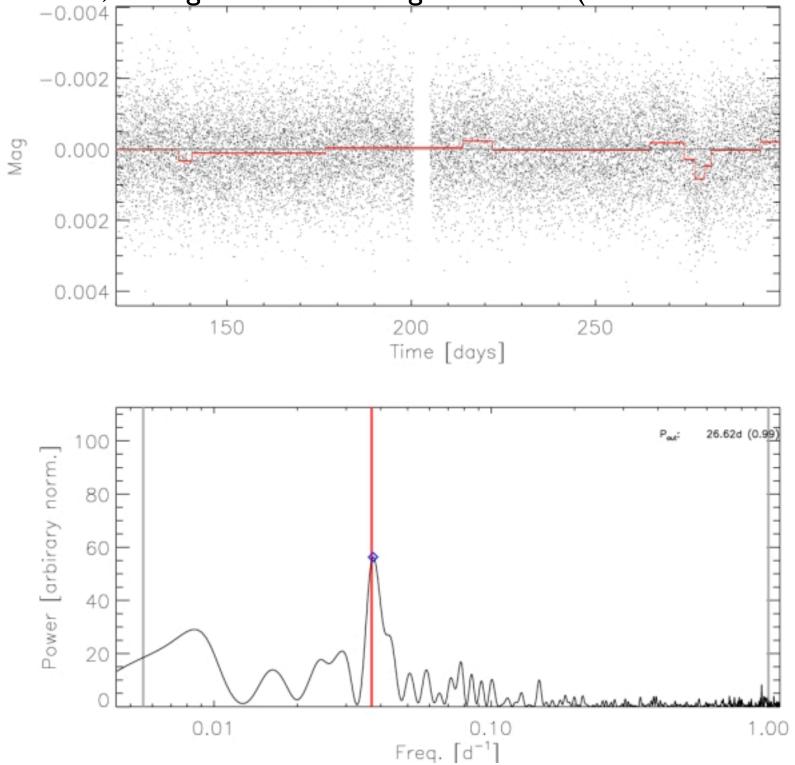
- Systematic exploration of ALL the CoRoT light curves
- Phenomenological characterisation of stellar variability
- First AP concentrates on periodic behaviour (rotation) and discontinuities (e.g. flaring, accretion...)
- Second AP concentrates on short-term stochastic variability (e.g. small-scale activity, convection)

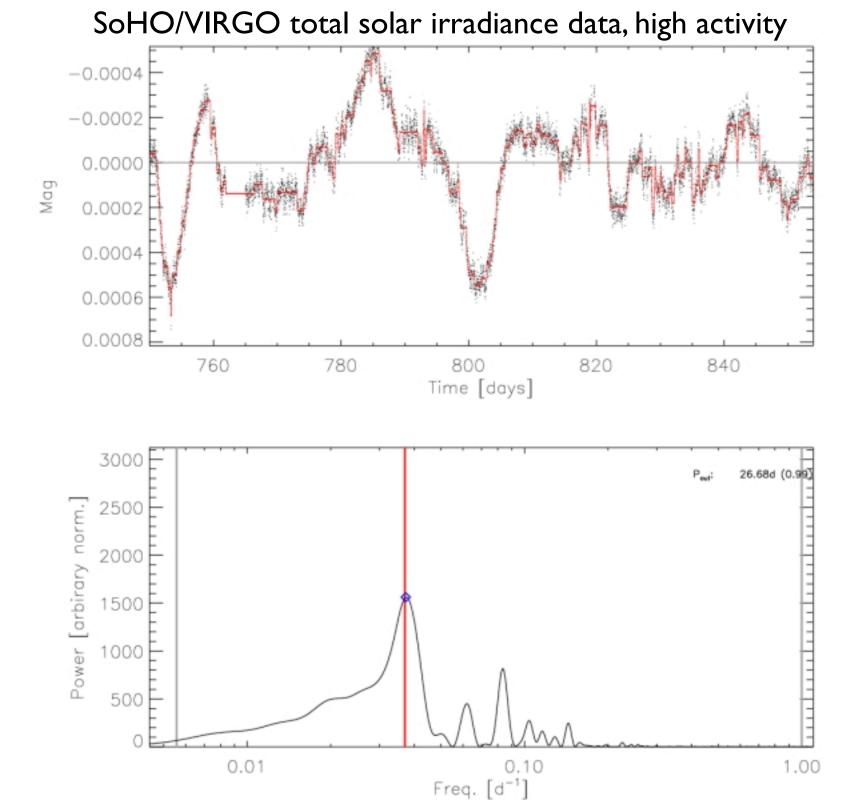
An unbiased study of rotation, stochastic variability and flaring

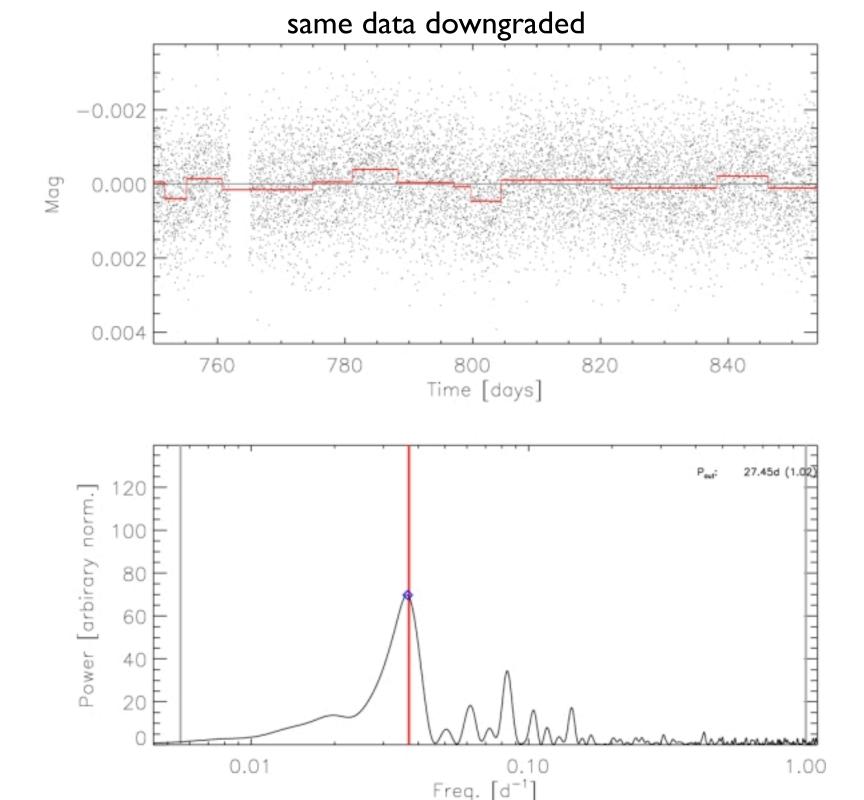
- Participants:
 - Fabio Favata (ESA/ESTEC) ffavata@rssd.esa.int
 - Ettore Flaccomio, Giusi Micela, Salvatore Sciortino, Antonio Maggio (Palermo)
 - Isabella Pagano, Nucio Lanza (Catania)
 - Suzanne Aigrain (IoA Cambridge)
- Immediate goals
 - to measure rotation periods in as many of the CoRoT target stars as possible
 - to provide an objective, non-parametric characterisation of variability in the target stars


Requirements

- ... none! (beyond those of the core programme)
- simply use all light curves collected by CoRoT for whatever reason and in whatever configuration
- scientific return will be maximised through access to databases such as EXODAT and GAUDI


Feasibility


- Robust periodogram approach allows recovery of rotation period even for slow-rotating, weakly active stars, even with the worst CoRoT precision in some cases (down to V=15 in most cases)
- Will need to investigate impact of changes in spot dist.
- New maximum likelihood blocking algorithm allows one to define a "baseline" level (most probable level) in each light curve and identify individual departures


SoHO/VIRGO total solar irradiance data, low activity (15 min sampling)

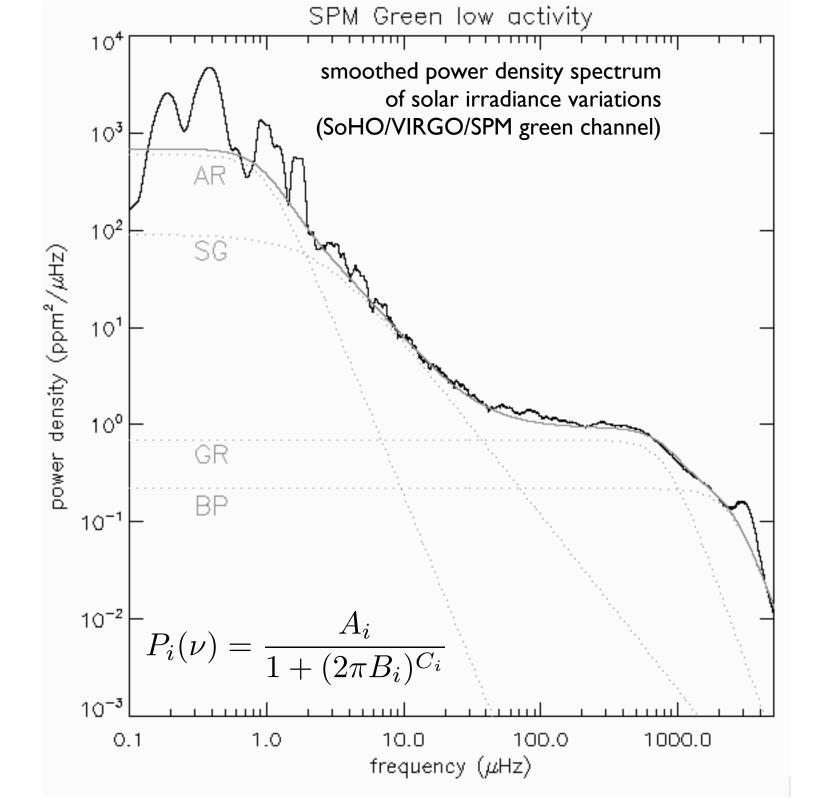
same data, downgraded to 1 mmag noise level (V=15 with COROT)

Expectations

- Many (thousands?) of rotation periods across HR diagram and activity range
 - Window into one of the fundamental parameters governing stellar evolution
 - Quantitative understanding of the processes driving magnetic field generation and angular momentum evolution
 - Gyrochronology? Would give unprecedented sample of field stars with known ages: potential for population studies

Expectations

- Many (thousands?) of rotation periods across HR diagram and activity range
- Event database
 - **statistics** (event rates, durations, amplitudes...)
 - fraction of time spent above or below characteristic level (i.e. fraction of time dominated by spots / faculae)
 - exceptional events (large spots, white light flares)
 - serenditipitous discovery potential


Convection and short-term activity

• Participants:

- Suzanne Aigrain (IoA Cambridge) suz@ast.cam.ac.uk
- A. Collier-Cameron, J. Barnes (St Andrews)
- S. Solanki, N. Krivova (MPIS Lindau)
- F. Favata, B. Foing (ESA/ESTEC)
- A. Lanza, G. Cutispoto, I. Pagano, S. Messina (Catania)
- C. Régulo, T. Roca Cortés, F. Pérez Hérnandez, H. Vázquez Ramió (IAC)
- Y. Unruh (Imperial)
- Goals
 - systematically characterise short term instrinsic variability on timescales of seconds to days (excluding oscillations) of all long run light curves (exo AND seismo fields)

Basic approach

- fit multi component powerlaw models to the power spectra
 - each component represents a class of structure on the star's surface
 - characterised by amplitude, timescale and slope
- identify trends and degree of scatter between parameters of the best fit models and stellar parameters
- investigate time dependence by splitting long run light curves into subsets
- will investigate other characterisation techniques (e.g. wavelet analysis)

Oversampling

 In addition to analysing all 'normal' light curves, we plan to request oversampling for ~50 targets per exoplanet field

Motivation

- only way to study variability on timescales of minutes and less
- test bench for automatic analysis techniques to be applied to all LCs after
- test predictive ability of theoretical models of activity / granulation on a case by case basis
- this will be a particularly well characterised sample on which it will be feasible to perform ground-based follow-up if appropriate

Oversampling

- In addition to analysing all 'normal' light curves, we plan to request oversampling for ~50 targets per exoplanet field
- Sample definition
 - complement seismo targets to span full parameter space
 - design sample to cover SpT F to M and wide range of activity levels
 - include a few giants / subgiants, high / low metallicity stars
 - concentrate on mag range 11.5 12.5 to ensure sufficient sensitivity
 - pre-selection in 1st 2 fields will start now, based on info in COROTsky, GAUDI, EXODAT
 - VLT/FLAMES observations (ECOWG) refine selection
 - high res. spectro for follow-up clearly room for collaboration with Jose/ Renan's APs.

Requirements

- In terms of CoRoT data
 - All the light curves from the CoRoT long runs in both seismo and exoplanet fields
 - oversampling for ~50 targets per exo field (OK if later dropped from oversampling list)
- For the selection of oversampled stars:
 - Teff, log g, metallicity, binarity, activity for stars with V<13 (in GAUDI / EXODAT) → would like to discuss with the relevant people
 - what is the status / scope of the proposed ESO observations?
 - can envisage our own preparatory obs but need to know SOON

Feasibility

comp. name	timescale B (s)	amplitude A (ppm²/µHz)	V-mag	6	10	12	14
			σ (ppm²/ μHz)	0.14	12.3	66	590
AR	1,000,00 0	600	detect- ability	~	>	~	8
SG	40,000	90		~	>	2	×
G	240	0.7		~	×	×	×
BP	70	0.25		1	*	×	×

Feasibility (pessimistic values)

- CoRoT's noise level over a single characteristic timescale will be below the amplitude seen in the Sun for:
 - Active regions over the entire 6 < V < 16 mag range
 - Super-granulation down to V~13
 - Granulation & bright points in the seismo field
- Expect granulation signal up to 10 or 100 times stronger than in the Sun in some stars...detectable well into exo field
- True sensitivity will be much better, because the variability, although not periodic, will gain coherence (hence SNR) over many realisations
- we are in the process of investigating wavelet methods to detect "transiently coherent" signals

Expectations

- Characterisation of short term variability accross the HR diagram
- A sample of specially well-studied stars for future reference
- Tests of and constraints on theoretical models of granulation and small scale activity, and consequent progress in physical understanding of underlying processes
- Understanding the distinction / interplay between magnetism and convection
- feedback into transit finding

Resources

- Ample computing facilities are available to both proposal teams
- In addition, Catania observatory and IAC have access to telescopes for preparatory / follow-up observations
- Expertise with theoretical modelling (e.g. Lindau group for active regions)
- Keen to coordinate with other teams to ensure efficient analysis