The Gas Drag Effect in the Irregular Satellite Capture

E. Vieira Neto & O.C. Winter

Universidade Estadual Paulista – UNESP

FAPESP

CNPq

 \Leftrightarrow

• Heliocentric orbit to planetocentric orbit

- Heliocentric orbit to planetocentric orbit
- Restricted Three-Body Problem

- Heliocentric orbit to planetocentric orbit
- Restricted Three-Body Problem
 - Temporary Capture

- Heliocentric orbit to planetocentric orbit
- Restricted Three-Body Problem
 - Temporary Capture

• Dissipative Process

- Dissipative Process
 - Mass Variation

- Dissipative Process
 - Mass Variation
 - Planetary Migration

- Dissipative Process
 - Mass Variation
 - Planetary Migration
 - Collisions

- Dissipative Process
 - Mass Variation
 - Planetary Migration
 - Collisions
 - Gas Drag

IMAGE: Science/Mayer et al.

Gas Drag Effect - p.4/15

IMAGE: Science/Mayer et al.

• Disk of material or gas

IMAGE: Science/Mayer et al.

- Disk of material or gas
- Nebula

IMAGE: Science/Mayer et al.

- Disk of material or gas
- Nebula
- Colapse

IMAGE: Science/Mayer et al.

- Disk of material or gas
- Nebula
- Colapse
- Subnebula around the planet

IMAGE: The Astrophysical Journal/Lubow et al.

IMAGE: The Astrophysical Journal/Lubow et al.

Passage through the nebula

 \Leftrightarrow

Gas Drag Effect - p.5/15

IMAGE: The Astrophysical Journal/Lubow et al.

 Passage through the nebula

 \Leftrightarrow

Energy loss

IMAGE: The Astrophysical Journal/Lubow et al.

Passage through the nebula

 $\Leftarrow \Rightarrow$

- Energy loss
- Semi-major axis reduction

IMAGE: The Astrophysical Journal/Lubow et al.

Passage through the nebula

 $\Leftarrow \Rightarrow$

- Energy loss
- Semi-major axis reduction
- Capture

IMAGE: The Astrophysical Journal/Lubow et al.

 Passage through the nebula

- Energy loss
- Semi-major axis reduction
- Capture
- Collisions

 \Leftrightarrow

IMAGE: The Astrophysical Journal/Lubow et al.

• Edge

IMAGE: The Astrophysical Journal/Lubow et al.

IMAGE: The Astrophysical Journal/Lubow et al.

• Edge

• Lower density out of the edge

IMAGE: The Astrophysical Journal/Lubow et al.

• Edge

- Lower density out of the edge
- Interior to Hill's sphere

 $\Leftarrow \Rightarrow$

• Adachi et al. 1976

- Adachi et al. 1976
 - Two-Body Problem with gas perturbation

- Adachi et al. 1976
 - Two-Body Problem with gas perturbation
 - Gas drag force

- Adachi et al. 1976
 - Two-Body Problem with gas perturbation
 - Gas drag force
 - $\circ f_D = \frac{1}{2} C_D \pi r_p^{-2} \rho v_r^2$

- Adachi et al. 1976
 - Two-Body Problem with gas perturbation
 - Gas drag force
 - $\circ f_D = \frac{1}{2} C_D \pi r_p^{-2} \rho v_r^2$
 - Spiral Orbits

 \Leftrightarrow

 \Leftrightarrow

• Pollack et al. 1979

 $\Leftarrow \Rightarrow$

- Pollack et al. 1979
 - Jupiter's Satellites

- Pollack et al. 1979
 - Jupiter's Satellites
- McKinnon and Leith 1995

 $\Leftarrow \Rightarrow$

- Pollack et al. 1979
 - Jupiter's Satellites
- McKinnon and Leith 1995
 - Triton

- Pollack et al. 1979
 - Jupiter's Satellites
- McKinnon and Leith 1995
 - Triton
- Ćuk and Burns 2003

- Pollack et al. 1979
 - Jupiter's Satellites
- McKinnon and Leith 1995
 - Triton
- Ćuk and Burns 2003
 - Himalia's family

 $\Leftarrow \Rightarrow$

 \Leftrightarrow

• Planar Case (i = 0, i = 180)

- Planar Case (i = 0, i = 180)
- Grid

- Planar Case (i = 0, i = 180)
- Grid
 - $\circ a \times e$

- Planar Case (i = 0, i = 180)
- Grid

$\circ a \times e$

• Escape time

 \Leftrightarrow

• Three distinct regions

- Three distinct regions
- Layers of eccentricity

- Three distinct regions
- Layers of eccentricity
 - Higher eccentricities
 → lower times

- $\Leftarrow \Rightarrow$
- Three distinct regions
- Layers of eccentricity
 - Higher eccentricities \rightarrow lower times
 - Lower eccentricities
 → long times

 $\Leftarrow \Rightarrow$

• Faster than the prograde

 $\Leftarrow \Rightarrow$

- Faster than the prograde
- layers of eccentricity

 $\Leftarrow \Rightarrow$

- Faster than the prograde
- layers of eccentricity

 $\Leftarrow \Rightarrow$

Greater times → low
 eccentricities

Real Case

 $\Leftarrow \Rightarrow$

Real Case

 \Rightarrow

 \Leftarrow

With Edge

 \Leftarrow

 \Leftarrow

With Edge

Without Edge

 \Leftarrow

With Edge

edge = 180 J_R , i = 150

Without Edge

