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What is the challenge we are working with?
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Here it is:



...Precisely, we'd like to �nd out more about some of its anomalies,
like:

• The low multipole alignments

• North/South and the Cold Spot asymmetries

• The low power in the quadrupole C2

• Any statistically signi�cant deviation from isotropy and/or
gaussianity

Why is this a challenge?

In its simplest realization, i.e, single �eld in�ation, the temperature
of the universe is a gaussian random event... So any deviation of it
could tell us more about the primordial universe.
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The temperature and its two-point function are de�ned by

∆T = Σ`,m a`,mY`,m, C (n1,n2) = 〈∆T (n1)∆T (n2)〉

The universe is statistically isotropic if and only if

C (n1,n2) = Σ`(2`+ 1)C`P`(n1 · n2)/4π , C` =
1

2`+ 1
Σ`|a`,m|2
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If it is not isotropic, what can it be?

Virtually anything! So it is important to analyze the problem in as
much an independent manner as possible. For example:

• Pullen & Kamionkowski (2008) introduced a simpler version of
it

C (n1,n2) : S2 → R

• Hajian & Souradeep (2003) have considered the correlation
function in its full form

C (n1,n2) : S2 × S
2 → R

These approaches are either too complicated or too simple in order
to search for sub-structures in the morphology of CMB...
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Angular-planar correlation function

Motivated by recent analysis (Copi et.al 2005), which suggest that
the ecliptic and/or the galactic planes may be important in CMB
analysis, we consider

C (n1,n2) = C (n1 · n2) + C (n1 × n2)

which can be expanded as

C (n1,n2) = Σ`,l ,m C lm` P`(cosϑ)Yl ,m(θ, φ)

In this way we can de�ne a rotationally invariant angular-planar
power spectrum statistics

B
l

` =
1

2l + 1
Σl |C lm` |2 .
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Some statistics...

The �rst model we would like to test with the angular-planar
estimator is the gaussian and isotropic model itself. Using...

C lm` =
∑
l1m1

∑
l2m2

〈al1m1
al2m2

〉 × geometrical terms

we can construct histograms for B l

`...

We have constructed these histograms for 40.000 simulations of
random, gaussian and isotropic alm's, for l ∈ [2, 12] and ` ∈ [2, 12]
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Here is a sample:
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Now, we would like now to compare it to the Wmap 5yr data...
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Rigorously, we need to consider the CMB measurement errors as
random variables:

∆Tmap(n) = ∆TCMB(n) + statistical and istrumental errors

In order to estimate the errors, we took the mean and deviation of
the following various data set

• Third year data: ILC and HILC with di�erent sky-cuts (KQ75
and KQ85)

• Five year data: ILC and HILC with di�erent sky-cuts (KQ75
and KQ85)

So, we will suppose that statistical and instrumental errors are
gaussian random variables, with means and variances de�ned by
these data set.
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The probabilities of observing such values are

P<(B6
2 ) = 14.2%, P<(B8

6 ) = 29%, P>(B4
3 ) = 31%, P>(B12

7 ) = 0.037%



Partial Conclusions

We have build an estimator able of quantifying angular and planar
correlations of the CMB, which is:

• unbiased, minimum-variance and rotationally invariant

• model independent

This work is still in progress. In particular, we haven't checked the
e�ect of di�erent masks in our �nal probabilities.

...the exact role of gaussianity and statistical isotropy in the CMB
anomalies is still unknown, and a well de�ned distinction between
these two properties is still a major challenge.



Acknowledgements

I would like to thank

• Professors R. Opher, R. Rosenfeld and all the organizers

• Fundação de Amparo à pesquisa do Estado de São Paulo.

and the audience.

Thank you!


