Type Ia supernovae surveys and cosmology

Maurício O. Calvão
Institute of Physics
Federal University of Rio de Janeiro
RJ, Brazil

INCTA SWinG:
L. R. Abramo (USP-SP), R. Baptista (UFSC), V. M. Braganca (UFRJ), M. Brum (UFRJ), R. Giostri (UFRJ), E. Ishida (UFRJ), S. E. Joras (UFRJ), B. L. Lago (UFRJ), R. Lopes (USP-SP), C. M. Oliveira (USP-SP), R. R. R. Reis (UFRJ), H. Xavier (USP-SP), I. Waga (UFRJ)

[Riess2004]
To begin with, some provocative quotations to prepare our mood

Superpessimistic:

“Cosmologists are often wrong but never in doubt.”, L. Landau

“… modern cosmology has strayed from the sound empirical road into a wilderness where statements can be made without fear of observational check …”, M. Born

“There are only 2½ facts in cosmology.”, P. Scheuer

X

Superoptimistic:

“Cosmology solved? Quite possibly.”, M. Turner

"Someday (and that day is not yet here) the physical origin and the dynamics of the entire universe will be as well understood as we now understand the stars. The existence of the universe will hold no more mystery for those who choose to understand it than the existence of the sun.”, H. Pagels

“My goal is simple. It is a complete understanding of the universe, why it is as it is and why it exists at all.”, S. Hawking
PLAN OF PRESENTATION

• GENERIC PROPERTIES OF SNe Ia
• OVERVIEW OF SURVEYS
• K CORRECTION
• FINAL REMARKS
GENERIC PROPERTIES OF SNe Ia

thermonuclear

I

SiII

no

yes

HeI

Ia

Ib

Ic

Ib/c pec

IIn

core collapse

II

IIb

III

IIP

light curve shape

strong ejecta–CSM interaction

hypernovae
Graphs of Thermonuclear Supernovae and Core Collapse Supernovae with different types and wavelengths in Angstroms.
Type 1a Line Identifications

spectrum of SN1981b, a normal type 1a near max

Daniel Kasen, LBL
http://panisse.lbl.gov/~dnkasen

Wavelength (Angstroms)
 Filippenko (1997)
![Graph showing spectral lines and absorption bands across different types of supernovae](image)

Graph Legend:
- **Ia:** Maximum, 3 weeks, one year
- **Ic:** SiIII
- **Ib:** Hβ, Hα, Na I
- **II:** [Fe II], [Fe III], [Co III], [O I], [Ca II], [Na I]

Note:
- From Turatto (2003)

I Workshop Challenges of New Physics from Space, Campos do Jordão, SP, Brazil. April 25-30, 2009
The color of supernova light evolves over time. These graphs compare the evolution of a brighter supernova with more nickel (black line) and a dimmer supernova with less nickel (red line). (a) At Day 0, both simulated supernovae have similar spectra. (b) By Day 15, light has shifted from the blue to red wavelengths as the supernovae expand and cool. In the dimmer supernova, this process happens more quickly and is responsible for the observed rapid decline of its light curve with time and hence the width–luminosity relationship.
(a) In this simulation, flames consuming a white dwarf remain **subsonic** throughout the explosion, exhibiting a dim supernova light curve. The nuclear burning produces a distribution of elements color-coded here by atomic weight (for example, blue is carbon and oxygen, green is silicon, and red is nickel). (b) The **simulated spectrum** (black line) reveals atypical features when compared with the spectrum **observed** in SN 1994D (red line). (c) When the **turbulence** is adjusted on the same model, the flame transitions to **supersonic** speeds after an initial subsonic explosion. This supernova produces 2.5 times more nickel, and hence, its brightness is much greater. (d) The spectrum of this **simulated delayed detonation** (black line) compares well to features **observed** in SN 1994D (red line).
Brighter, broader, slower

Dimmer, narrower, faster

Fitting (standardization) methods: Δm_{15}, stretch, MLCS, SALT, SiFTO,...
OVERVIEW OF SURVEYS

1. “CLASSICAL”

HZS (Riess1998)

- Main discovery facilities:
 * telescope: CTIO Blanco 4 m
 * detector: 2048^2 px ≈ 4.2 Mpx prime focus CCD
- Time allocated to survey: 9 total nights during 1995 and 1996
- Photometric follow-up:
 * CTIO Blanco 4m, with redshifted filters which best matched rest-frame B and V ones, providing a limiting magnitude $m_R < 23$
- Spectroscopic follow-up:
 * Keck I and II, 10 m, 6Å FWHM resolution, 3-5×900 s (15 min)
 * MMT, then ≈ 4.5 m (now 6.5 m), 3.5Å FWHM, 5-7×1200 s (20 min)
 * ESO 3.6 m, 18Å FWHM, 1×2700 s (45 min)
- # SNe Ia (from the survey itself): 16
- Redshift range: (0.16, 0.97)

SCP (Perlmutter1999)

- Main discovery facilities:
 * telescope: CTIO Blanco 4 m
 * detectors: 2048^2 px ≈ 4.2 Mpx prime focus CCD and $4 \times 2048^2 \approx 16.7$ Mpx Big Throughput Camera
- Photometric follow-up:
 * CTIO 4 m, WIYN 3.6 m, ESO 3.6 m, INT 2.5 m, and WHT 4.2 m, with redshifted filters which best matched rest-frame B and V ones
- Spectroscopic follow-up:
 * Keck I and II, 10 m
 * ESO 3.6 m

- # SNe Ia (from the survey itself): 42
- Redshift range: (0.18, 0.83)
2. PRESENT

ESSENCE (Miknaitis2007, Wood-Vasey2007)

Duration: 2002-2008
Main discovery facilities:
 Telescope: CTIO Blanco 4 m
 Detector: Mosaic Imager
Photometric follow-up: V, R, I, z, J
Spectroscopic follow-up:
 Keck 10 m, MMT 6.5 m, Magellan, Gemini 8 m, VLT 8 m
SNe Ia observed (published): 60
Redshift range: 0.15<z<0.75
SNLS (Astier2006)

Duration: May 2003 + 5 yr
Main discovery facilities:
 Telescope: CFHT 3.6 m
 Detector: MegaPrime/MegaCam 36 2048x4612 px (0.3 Gpx)
CCDs
Photometric follow-up: r_M, i_M, g_M, z_M
Spectroscopic follow-up:
 ESO VLT (60 h/semester),
 Gemini N and S (60 h/semester),
 Keck I and II (15 nights in total)
SNe Ia observed (1st yr): 71
Redshift range: 0.2 < z < 1.0
SDSS (Frieman2008)

Duration: 1 September to 30 November 2005-2007
Main discovery facilities:
 Telescope: Apache Point Observatory 2.5 m
 Detector: SDSS CCD camera
Area: 300 sq.deg.
Photometric follow-up: ugriz
Spectroscopic follow-up:
 Hobby-Eberle Telescope 9.2 m
 ESO New Technology Telescope 3.6 m
 Apache Point Observatory Telescope 3.5 m
 Subaru 8.2 m
 Hiltner Telescope 2.4 m (MDM Observatory)
 William Herschel Telescope 4.2 m
 Kitt Peak National Observatory 4 m
 Keck 10 m
 Nordic Optical Telescope 2.6 m
 South African Large Telescope 11 m
SNe Ia observed (first two 3-month seasons): 300 SNe Ia spectroscopically confirmed, 100 photometrically identified (and with corresponding spectra), Redshfit range: 0.05 < z < 0.35 (intermediate)
Duration: 2001-2008 (8 yr)
Main discovery facilities: 1/3 from amateur and 2/3 from professional astronomers
Photometric follow-up:
 FLWO Telescope 1.2 m (4Shooter, Minicam, Keplercam)
 PAIRITEL telescope 1.3 m (ex-2MASS instument infrared light curve)
 Bands: UBVRIr’i”; JHK (PAIRITEL robotic)
Spectroscopic follow-up:
 FLWO 1.5 m Tillinghast telescope (FAST spectrograph)
 MMT 6.5 m telescope (Blue Channel spectrograph)
 Magellan 6.5 m telescopes (MagE, LDSS3, and IMAC spectrographs);
SNe Ia observed: 185
Redshift range: z<0.08
3. MISERABLE FUTURE

DES:

- Duration: 5 yr
- Main telescope: CTIO Blanco 4 m
- Main detector: 0.5 Gpx DECam
- Bands: griz, Y
- # SNe Ia expected: 2000
- Redshift range: 0.3 < z < 0.8 (high)

Pan-STARRS:

- Main telescopes: 4 x 1.8 m telescopes
- Main detectors: 4 x 1.4 Gpx camera
- Bands: griz, Y
- # SNe Ia expected: 5000 SNe Ia per year
LSST:

Duration: 10 yr
Main telescope: 8.4 m (Cerro Pachon)
Main detector: 3.2 Gpx camera
Bands: ugrizy (320-1050 nm)
SNe Ia expected: 10^6 per year from main survey; 10^4 from “mini-survey” with $z>1$

JDEM/Euclid:

Duration: 6-7 yr
Main telescope: space-borne 1.5 m
Main detector: visible CCD and NIR instrument
SNe Ia expected: 1000
Redshift range: $0.3 < z < 1.2$
“Need ground data for low redshift SNe”
\[ds^2 = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - Kr^2} + r^2 d\ell^2_{S^2} \right] \]

\[1 + z = \frac{\lambda_0}{\lambda_e} \]

d\[dE_e = L_\lambda(\lambda_e) dt_e d\lambda_e \]

d\[dE_o = f_\lambda(\lambda_o) A_0 dt_o d\lambda_o \]

Conservation of energy

WRONG

\[f_\lambda(\lambda_o) \frac{L_\lambda(\lambda_e)}{(1 + z)^2 A_o} \]
conservation of photon number

\[f_\lambda(\lambda_0) = \frac{L_\lambda(\lambda_e)}{(1 + z)^3 A_0} \]
\[f = \frac{L}{(1 + z)^2 A_o} \quad A_o = 4\pi a_o^2 r^2 \]

\[D_L := \sqrt{\frac{L}{4\pi f}} = a_o (1 + z) r \]

\[f_X = \frac{L \bar{X}}{4\pi D_L^2} \]

\[m_X - M_X = 5 \log_{10} \left(\frac{D_L}{10 \text{ pc}} \right) + K_{XX} \]
Generalized K correction:

\[K_{QR} := m_R - M_Q - \mu \]

\[K_{QR}(z) = -2.5 \log_{10} \left[\frac{\int d\lambda L_\lambda(\lambda) S_\lambda^R(\lambda[1 + z])}{\int d\lambda L_\lambda(\lambda) S_\lambda^Q(\lambda)} \frac{g_Q}{g_R} \right] \]
PRACTICAL CONSEQUENCE (Davis2006):

“The most important feature of a complete filter set for type Ia supernova cosmology is that each bandpass be a redshifted copy of the first.”

TUNABLE FILTER!!!!!!!!!
TABLE 1

Current estimates of systematic errors on w

<table>
<thead>
<tr>
<th>Systematic</th>
<th>SNLS</th>
<th>ESSENCE</th>
<th>SDSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux reference</td>
<td>0.053</td>
<td>0.02</td>
<td>0.037</td>
</tr>
<tr>
<td>Experiment zero points</td>
<td>0.01</td>
<td>0.04</td>
<td>0.014</td>
</tr>
<tr>
<td>Low-z photometry</td>
<td>0.02</td>
<td>0.005</td>
<td>…</td>
</tr>
<tr>
<td>Landolt bandpasses</td>
<td>0.01</td>
<td>…</td>
<td>0.019</td>
</tr>
<tr>
<td>Local flows</td>
<td>0.014</td>
<td>…</td>
<td>0.04</td>
</tr>
<tr>
<td>Experiment bandpasses</td>
<td>0.01</td>
<td>…</td>
<td>0.014</td>
</tr>
<tr>
<td>Malmquist bias model</td>
<td>0.01</td>
<td>0.02</td>
<td>0.017</td>
</tr>
<tr>
<td>Dust/Color-luminosity (β)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.017</td>
</tr>
<tr>
<td>SN Ia Evolution</td>
<td>…</td>
<td>0.02</td>
<td>…</td>
</tr>
<tr>
<td>Restframe U band</td>
<td>…</td>
<td>…</td>
<td>0.08</td>
</tr>
</tbody>
</table>

[Howell2009]
I Workshop Challenges of New Physics from Space, Campos do Jordão, SP, Brazil. April 25-30, 2009

[Howell2009]
Importance of:
• low-redshift data
• follow-up resources (BTFI; robotic)
• small telescopes
• rest-frame UV and NIR studies
• simulation of new surveys (LSST; Euclid; JDEM)

• K-correction
• extinction/reddening
• reference flux/zero point calibration
• systematic comparison of different fitting methods
REFERENCES

• [Hicken2009]: M. Hicken et alii, “Improved dark energy constraints from ~100 new CfA supernova type Ia light curves”, arXiv:0901.4804v2 [CfA; “Constitution” data set].
• [Kowalski2008]: M. Kowalski et alii, “Improved cosmological constraints from new, old and combined supernova datasets”, arXiv:0804.4142v1 [“Union” dataset].