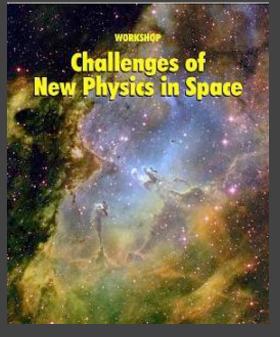
Viable Singularity-Free f(R) Gravity Without a Cosmological Constant.



Campos do Jordão - April 25-30 2009

Work in collaboration with Vinícius Miranda, Sérgio E. Jorás and Miguel Quartin

ARCOS ARCOS ARCOS ARCOS

Instituto de Física Universidade Federal do Rio de Janeiro

Ioav Waga

What is causing the cosmic acceleration?

Main Possibilities

A new exotic component with negative pressure (DE) or modified gravity?

New Component

$$G_{\mu\nu} = \kappa T^{(m)}_{\mu\nu} + T_{\mu\nu}(\varphi)$$

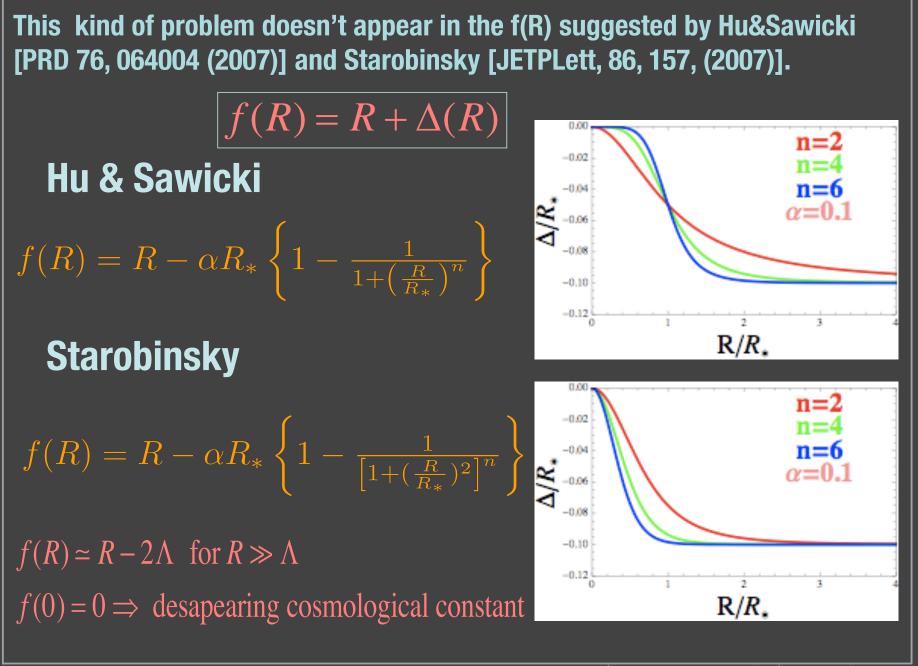
Modified Gravity

 $G_{\mu\nu} + L_{\mu\nu}(g_{\mu\nu}) = \kappa T_{\mu\nu}^{(m)}$

f(R) Gravity

$\mathcal{S}_{JF} = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} f(R) + \mathcal{L}_m \left(g_{\mu\nu}, \Psi_m \right) \right]$

- $f(R) \rightarrow$ simplest modification to the E-H Lagrangian ; in general $f(R, R^{\alpha\beta}R_{\alpha\beta}, R^{\alpha\beta\gamma\delta}R_{\alpha\beta\gamma\delta}, ...)$
- f(R) is a special case of a scalar-tensor theory (Brans-Dicke with w=0).
- An accelerated expansion appears naturally in these models.
- Starobinsky (PLB 91,99,1980) showed that an accelerated expansion can be curvature driven if $f(r) = R + \alpha R^2$.
- Higher order terms, like the above, are generically predicted in high energy corrections to gravity.
- More recently the same idea was explored by Capozzielo&Cardone (IJMP D12, 1963, 2003) and Carrol et al. (PRD 043528, 2004) for late time acceleration. They considered $f(r) = R \alpha R^{-n}$.
- This f(R) Lagrangian doesn't present a regular MDE (a $\propto t^{1/2}$ and not a $\propto t^{2/3}$) [Amendola et al., PRD 75, 083504, 2007]. \Rightarrow Inverse power-law f(R) are incompatible with structure formation.



However both f(R) have singularity problems: 1. Frolov [PRL, 101, 061103 (2008)]

2. Kobayachi & Maeda [PRD 78, 064019 (2008)].

$$\mathcal{S}_{JF} = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} f(R) + \mathcal{L}_m \left(g_{\mu\nu}, \Psi_m \right) \right]$$

By varying the action with respect to the metric, we obtain a fourth order equation for

$$f_R R_{\mu\nu} - \nabla_\mu \nabla_\nu f_R + \left(\Box f_R - \frac{1}{2}f\right)g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Taking the trace we get

$$\Box f_R = \frac{8\pi G}{3}T + \frac{1}{3}\left(2f - f_R R\right)$$

We now introduce a new auxiliary field Q and write the gravitational part of the action as

$$\mathcal{S}_{grav} = \int d^4x \frac{\sqrt{-g}}{16\pi G} \left[(R-Q) f_Q(Q) + f(Q) \right]$$

The equation of motion for Q is

$$f_{QQ}(Q)\left(Q-R
ight)=0$$

Therefore $Q=R$ as long as $f_{QQ}(Q)
eq 0$

We now introduce a new field

$$\chi := f_R = 1 + \Delta_R$$

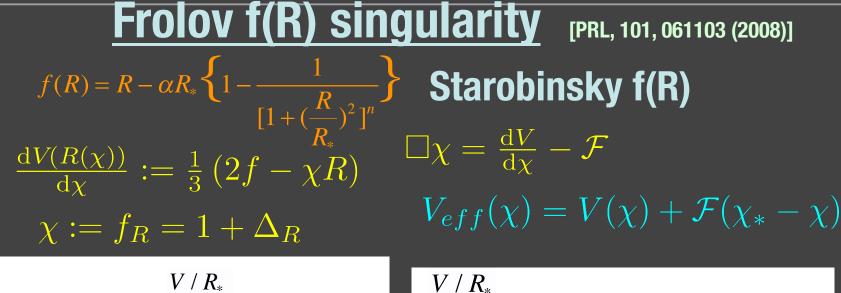
And rewite the Lagrangian as a Brans-Dicke gravity theory with w=0

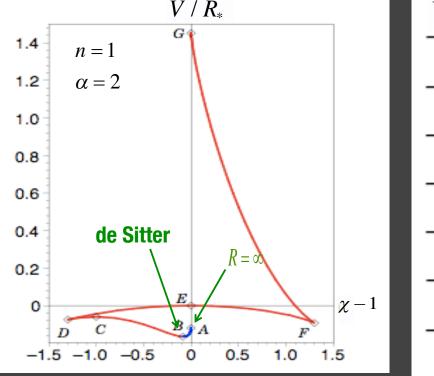
$$\mathcal{S}_{JF} = \int d^4x \sqrt{-g} \left[\frac{\chi R(\chi)}{16\pi G} - \chi^2 V_E(\chi) \right] + \mathcal{S}_m(g_{\mu\nu}, \Psi_m)$$

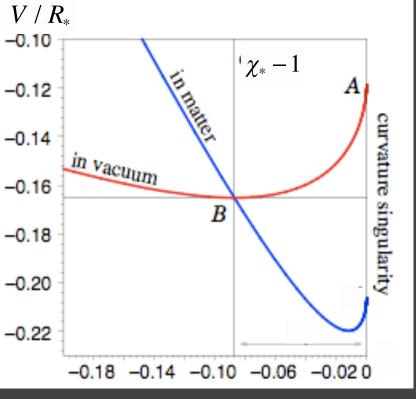
where

 $V_E \left(R(\chi) \right) = \frac{1}{16\pi G} \frac{R\Delta_R - \Delta}{(1 + \Delta_R)^2} = \frac{1}{16\pi G} \frac{R(\chi)\chi - f(R(\chi))}{\chi^2}$ The equation of motion for χ is $\Box \chi = \frac{dV}{d\chi} - \mathcal{F}$ Where $\mathcal{F} = -\frac{8\pi G}{3}T = \frac{8\pi G}{3}(\rho - 3p)$ and $\frac{dV(R(\chi))}{d\chi} := \frac{1}{3}\left(2f - \chi R\right)$

We can discuss now the mentioned f(R) singularity problems.







¹ Workshop Challenges of New Physics in Space

Kobayachi & Maeda singularity problem [PRD 78, 064019 (2008)]

Spherically Symmetric Stars in f(R) GravityBasic EquationsKobayachi & MaedaPRD 78, 064019 (2008)

$$ds^{2} = -N(r)dt^{2} + \frac{1}{B(r)}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

Energy-momentum tensor

 $T_{\mu}^{\nu} = \operatorname{diag}\left(-\rho, p, p, p\right) \quad \nabla_{\nu} T_{\mu}^{\nu} = 0 \implies p' + \frac{N'}{2N}(\rho + p) = 0$

The field equations (00) and (11) give $\left[\frac{\chi}{r^2}\left(-1+B+rB'\right) = -8\pi G\rho - \chi^2 V - B\left[\chi'' + \left(\frac{2}{r} + \frac{B'}{2B}\right)\chi'\right]$ $\left[\frac{\chi}{r^2}\left(-1+B+rB\frac{N'}{N}\right) = 8\pi Gp - \chi^2 V - B\left(\frac{2}{r} + \frac{N'}{2N}\right)\chi'$

The equation of motion for χ is

$$B\left[\chi'' + \left(\frac{2}{r} + \frac{N'}{2N} + \frac{B'}{2B}\right)\chi'\right] = \frac{8\pi G}{3}(-\rho + 3p) + \frac{2\chi^3}{3}\frac{dV}{d\chi}$$

Boundary Conditions

$$N(r) = 1 + N_2 r^2 + \dots$$

$$\chi(r) = \chi_c \left(1 + \frac{C_2}{2}r^2 + \dots \right)$$

$$\rho(r) = \rho_c + \frac{\rho_2}{2}r^2 + \dots$$

$$p(r) = p_c + \frac{p_2}{2}r^2 + \dots$$

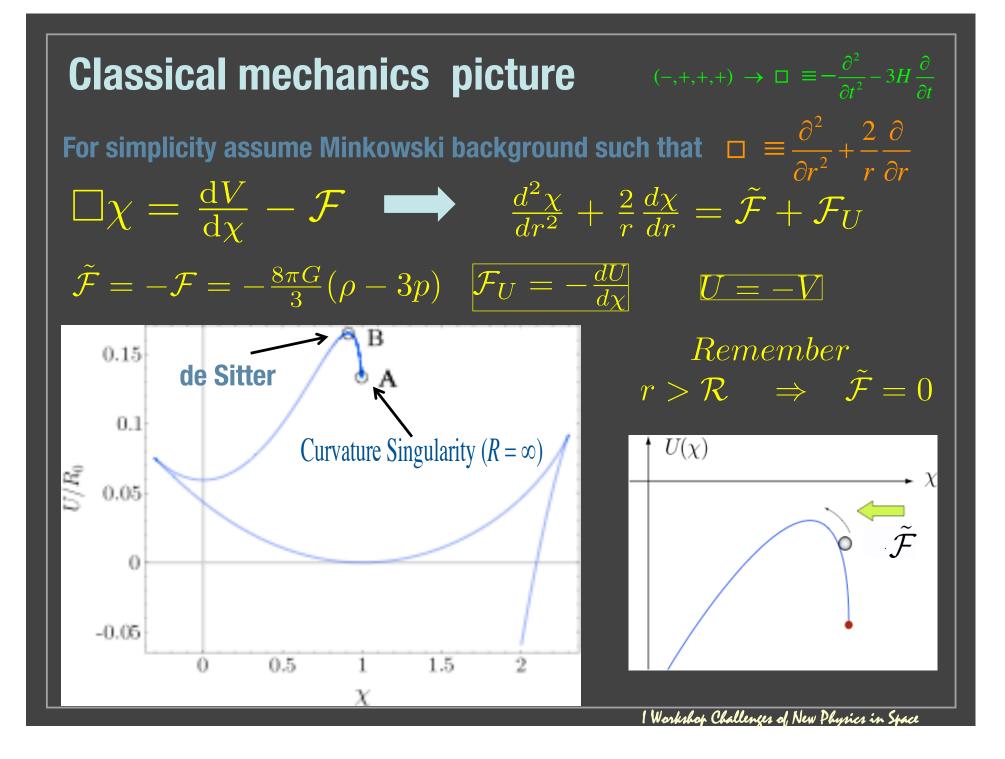
Here χ_c , ρ_c and p_c are the central values of the scalar field, energy density and pressure.

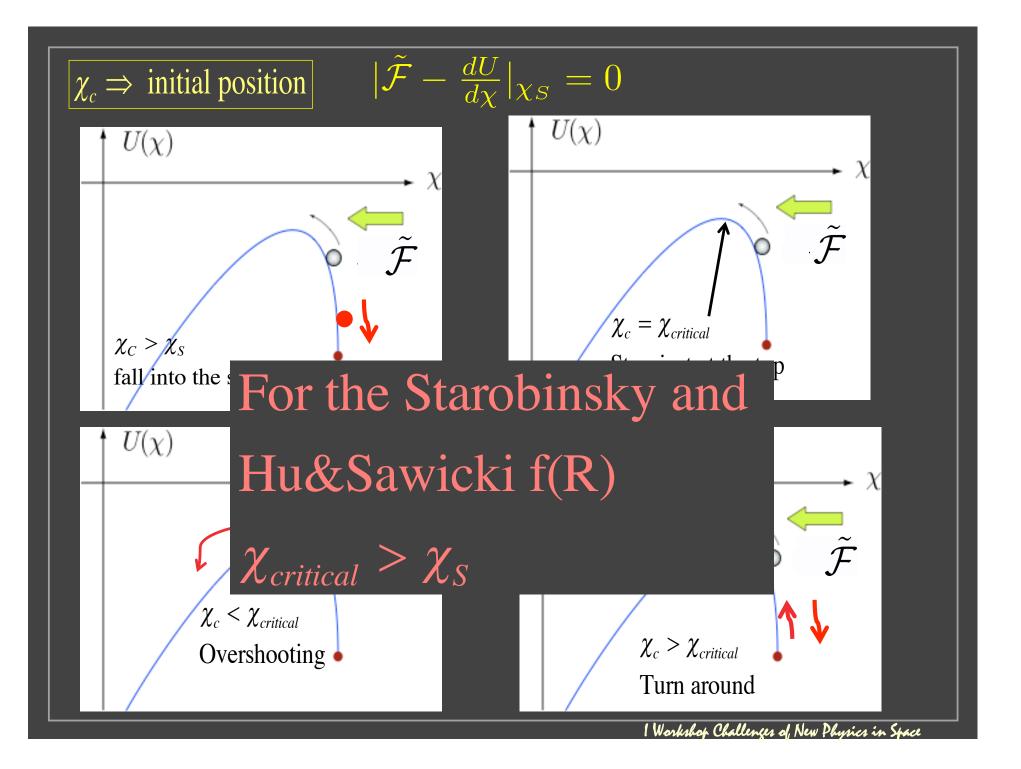
At the surface of the star $r = \Re$ we have $p(\Re)=0$

To integrate the equations Kobayachi & Maeda considered constant density stars ($\rho = \rho_c$).

$$p' + \frac{N'}{2N}(\rho + p) = 0 \implies N(r) = \left\lfloor \frac{\rho_c + p_c}{\rho_c + p(r)} \right\rfloor$$

They showed that, for the Starobinsky f(R), it was not possible to evolve the metric from inside the star up to large r and match de Sitter asymptoticaly.





Can we fix the Frolov and Kobayachi&Maeda singularity problems?

YES WE CAN!

$$f(R) = R - R_S \beta \left\{ 1 - \left[1 + \left(\frac{R}{R_*} \right)^n \right]^{-\frac{1}{\beta}} \right\}$$

$$\beta = -1 \Rightarrow f(R) = R + \alpha R_* \left(\frac{R}{R_*} \right)^n \qquad (R_s = \alpha R_*)$$

$$\beta = 1 \Rightarrow f(R) = R - \alpha R_* \left\{ 1 - \left[1 + \left(\frac{R}{R_*} \right)^n \right]^{-1} \right]^{-\frac{1}{\beta}} \qquad (\text{Hu&Sawicki})$$

$$n = 2 \Rightarrow f(R) = R - \alpha R_* \left\{ 1 - \left[1 + \left(\frac{R}{R_*} \right)^2 \right]^{-\frac{1}{\beta}} \qquad (\text{Starobinsky})$$
Here we will consider the special case n=1 and $\beta \to \infty$.

In this limit we get

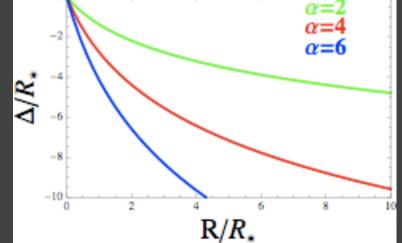
$$f(R) = R - \alpha R_* \ln\left(1 + \frac{R}{R_*}\right)$$

 α and R_* are positive parameters

$$f(R) = R - \alpha R_* \ln \left(1 + \frac{R}{R_*}\right)$$

The above function satisfies the stability conditions:

 $(R) = R + \Delta(R)$

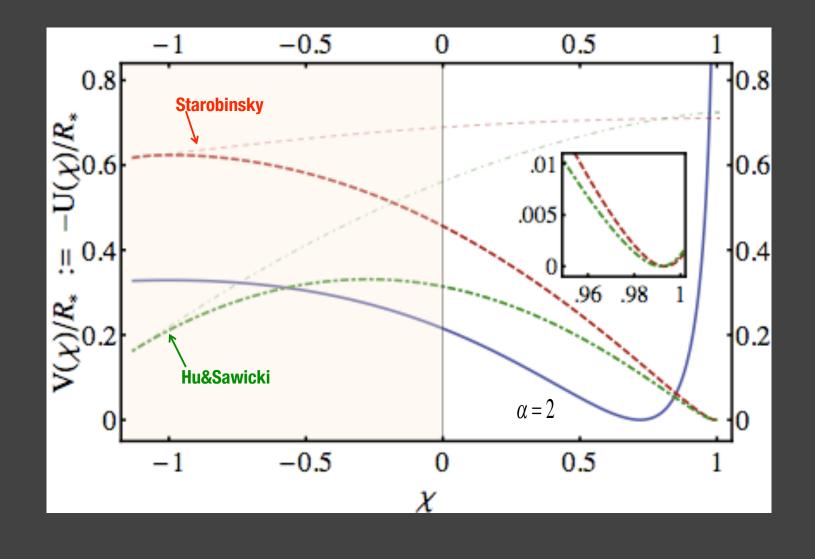


$$a)f_{RR} \equiv \frac{d^2 f}{dR^2} > 0$$
$$b)f_R \equiv \frac{df}{dR} > 0 \quad \text{for } \alpha < \frac{\overline{R}}{R_*} + 1$$

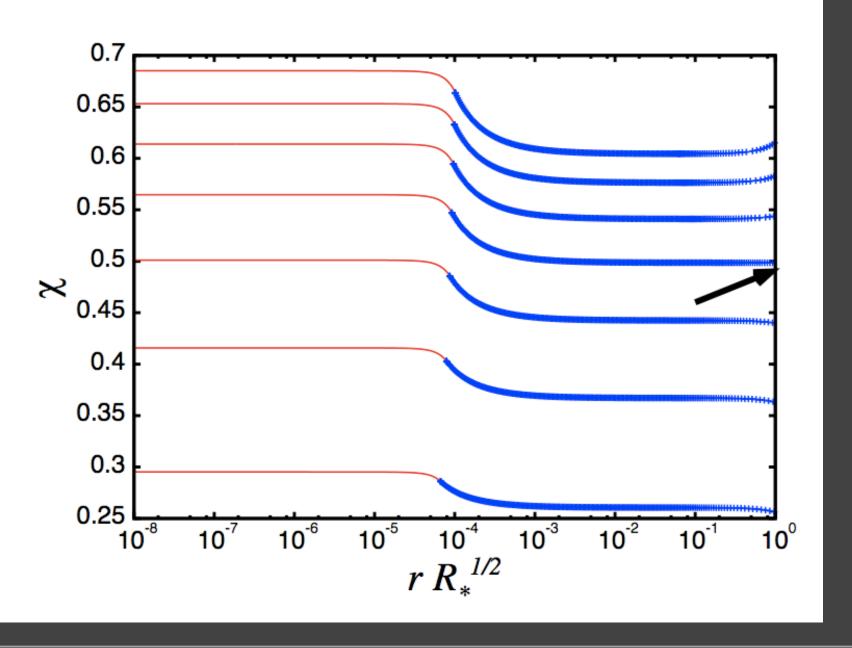
 $\overline{R} \rightarrow$ value of the Ricci Scalar at the final de Sitter atractor

c) $\lim_{R \to \infty} \frac{\Delta}{R} = 0$ & $\lim_{R \to \infty} \Delta_R = 0$ (GR is recovered at high redshifts)

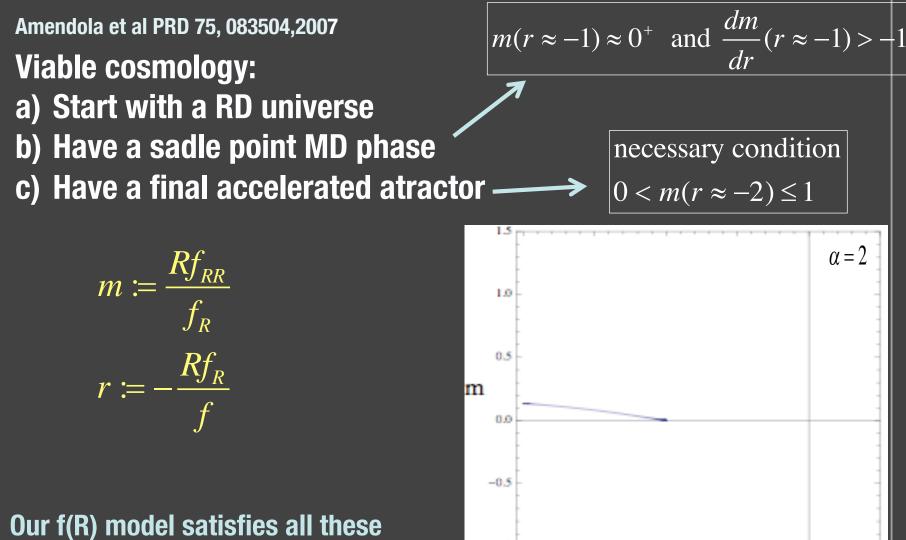
$$\begin{split} f(R) &= R - \alpha R_* \ln \left(1 + \frac{R}{R_*} \right) \\ \Box \chi &= \frac{\mathrm{d}V}{\mathrm{d}\chi} - \mathcal{F} \qquad \Box = -\frac{\partial^2}{\partial t^2} - 3H \frac{\partial}{\partial t} \\ \chi &:= f_R = 1 + \Delta_R \qquad \frac{\mathrm{d}V(R(\chi))}{\mathrm{d}\chi} := \frac{1}{3} \left(2f - \chi R \right) \\ \chi[R(t)] &= 1 - \frac{\alpha R_*}{R(t) + R_*} \,. \\ \frac{3V(\chi)}{R_*} &= -\alpha \left(2\chi - 3 \right) \ln \left(\frac{\alpha}{1 - \chi} \right) + \left(\chi - 1 \right) \left(\frac{\chi - 3}{2} - \alpha \right) \,. \\ V(\chi \to 1^-) &\approx \frac{\alpha R_*}{3} \ln \left(\frac{\alpha}{1 - \chi} \right) \to +\infty \end{split}$$



To understand the necessary conditions to solve the problems it is better to go to the Einstein frame



What about Cosmology?



2.0

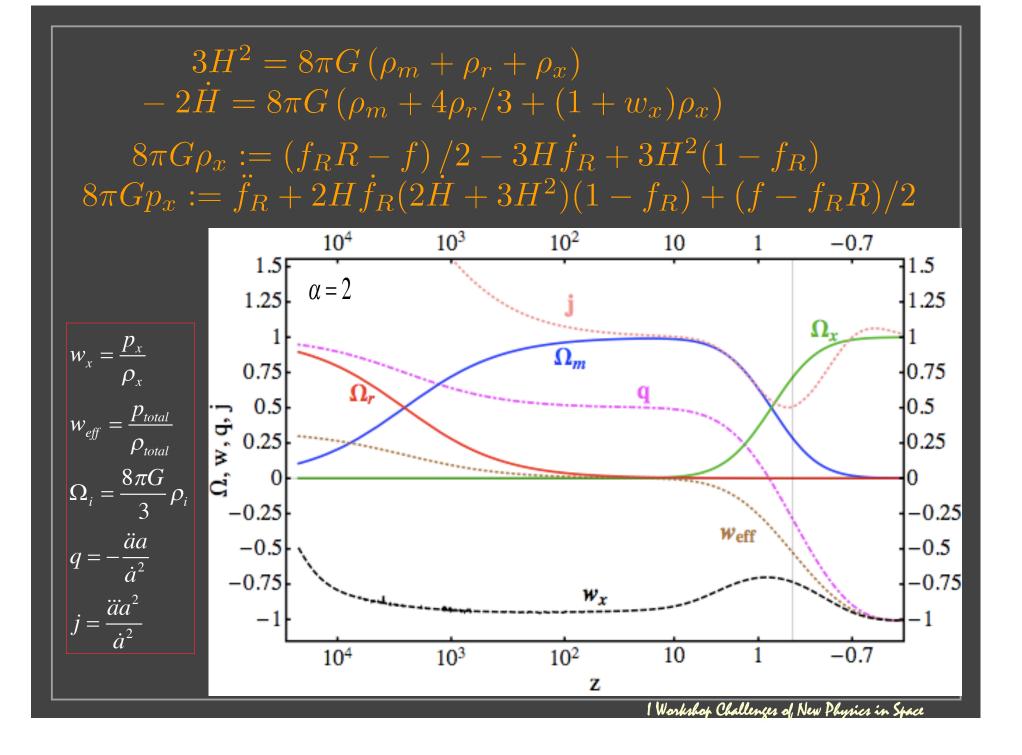
-1.5

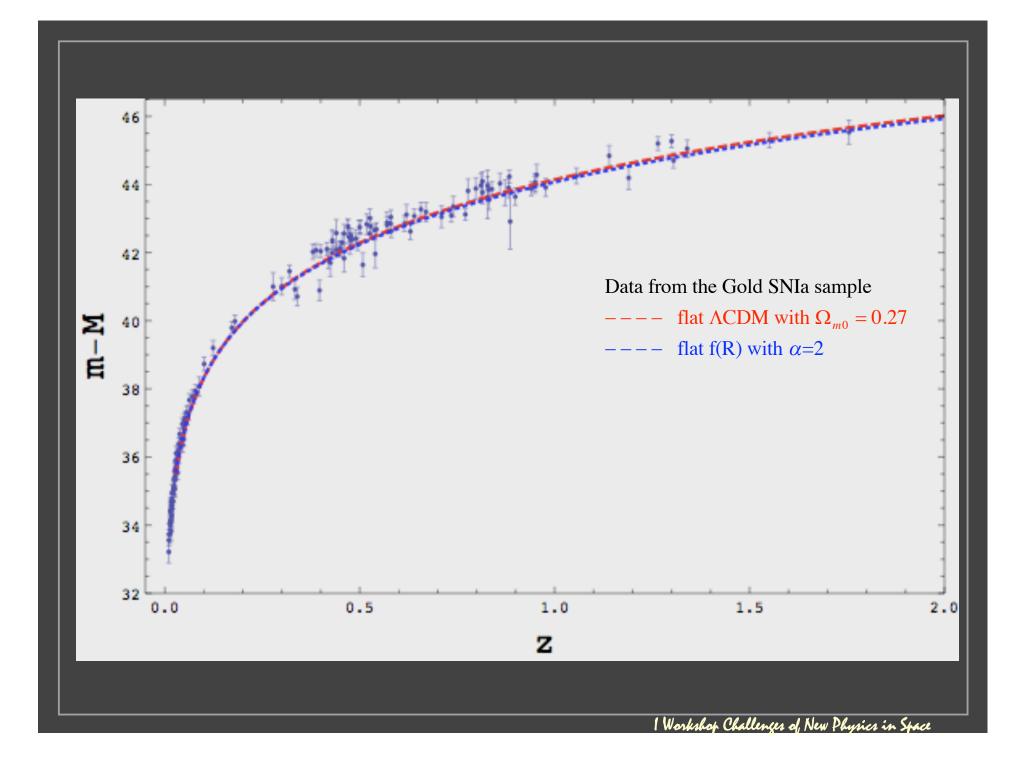
constraints for α >1, regardless of R_{*}

-0.5

0.0

0.5





Conclusion & Final Remarks

- We have shown that some recent results in the literature regarding divergences in f(R) are not as general as previously thought.
- We obtained the conditions that should satisfy any f(R) in order to be singularity-free and investigated a particular model that satisfies these conditions.
- Cosmological observational constraints are under investigation.
- The model is fully compatible with the Chameleon mechanism. We are now investigating the constraints from solar system and local gravity tests.