A computational model for solar flares: kinectics and microwave/X-ray emission

Paulo José de A. Simões

paulo@craam.mackenzie.br

Centro de Rádio Astronomia e Astrofísica Mackenzie - CRAAM

I Workshop de Computação Científica em Astronomia 02-05 de Junho de 2011

FAPESP Proc. no. 2008/09339-2 and 2009/18386-7

Solar activity and solar flares

Solar activity cycle: 11 years Solar flares:

release of magnetic energy \rightarrow heating and acceleration of particles production of electromagnetic waves: radio to gamma rays acelerated electrons trapped in magnetic fields \rightarrow microwave and X-rays occurr in active regions (above sunspots) \rightarrow magnetic loops

Yohkoh X-ray Image of a Solar Flare, Combined Image in Soft X-rays (left) and Soft X-rays with Hard X-ray Contours (right). Jan 13, 1992.

Flare models

Qualitative models (cartoons)

Quantitative model

Homogeneous source model

microwave/X-ray emission

Magnetic field **B**

Plasma density: homogeneous Plasma temperature: isothermal Accelerated electron density: homogeneous

Cartoons: http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/

Model improvement

Solar flares are not static! + dynamics of the accelerated electrons

Getting rid of the cillinder/sphere/cube models: + 3D modeling of the source geometry, magnetic field, plasma density

Microwave and X-rays emission from electrons + 3D radiative transfer

Model improvement

observations

Electron dynamics

$$\frac{\partial f}{\partial t} = -\mu c\beta \frac{\partial f}{\partial s} - \frac{\partial}{\partial \mu} \dot{\mu} f - \frac{\partial}{\partial E} \dot{E} f + \frac{\partial}{\partial \mu} \left(D_{\mu\mu} \frac{\partial f}{\partial \mu} \right) + S(E,\mu,s,t)$$

Fokker-Planck equation

- 1. Electrons' movement
- 2. Magnetic trapping
- 3. Energy loss (Coulomb collisions)
- 4. Pitch-angle diffusion (Coulomb collisions)
- 5. Source function (injection)

Numerical solution of the Fokker-Planck equation Hamilton et al., 1990, *ApJ*

Finite differences methods grid: f(E, u, s) advancing in time

FORTRAN code

Magnetic field and plasma density defined as functions of position:

B(s) N(s)

Microwave and X-rays emission

Microwave

Gyrosynchrotron radiation of electron distribution f(E,u)

Ramaty, 1969, *ApJ* IDL and C code

X-rays

Thin and thick-target bremsstrahlung of electron distribution f(E)

Brown, 1971, *ApJ* FORTRAN codes

Numerical integration Equations (and numerical codes) defined for **uniform/homogeneous** sources

From the Fokker-Planck code: discrete space \rightarrow homogeneous cell

So microwave and X-rays codes can be used.

Geometric model

Discrete loop geometry

3D voxel filled volume

Each section of the loop Corresponds to a cell from Fokker-Planck result

Source model

Magnetic field

Spatial variation

- + electron trapping
- + microwave emission

Background plasma

Homogeneous density and isothermal

Loop geometry

Loop main radius Cross-section radius Heliographic position (lat. and lon.) Loop orientation (inclination and rotation)

Loop geometry: definitions

3D radiative transfer

Homogeneous voxels Refraction index ~ 1

Solution of the radiative transfer equation for a homogeneous region:

$$I_{1} = \frac{\dot{j}_{1}}{k_{1}} (1 - e^{-k_{1}L}) + I_{0}e^{-k_{1}L}$$

Computational flowchart

Model output

Using the model: 2002 August 24 flare

GOES X3.1 ~30 min (radio) No X-rays observations (RHESSI) Loop structure seen in NoRH

Two injections main and 'bump' Beam and Pancake

Good fittings

lightcurves, spectrum and main footpoint sources

Looptop 'bump' source

Improvement of loop model and/or physical model

- B field asymmetry
- complex loop geometry
- other diffusion processes

Multi-thread model

Multiple loop structure Allows more possibilities

Multi-thread model

Force-free field extrapolations

Observational images (NoRH, RHESSI) Magnetograms: force-free field extrapolations Extrapolated field lines as the field model

(PhD student Tereza Satiko, DAS/INPE)

Calculated microwave map

Sub-THz spectral component

Increasing spectral component observed above 100 GHz (Solar Submillimeter Telescope) Several emission mechanisms proposed (e.g. Fleishman and Kontar, 2010) We found an explanation with our model: *Sub-THz flare emission: an evidence for relativistic electron beams*

in the dense chromosphere (Melnikov, Costa, Simões)

Future development

Flare model

Chromospheric evaporation, plasma heating (e.g. Liu et al, 2009, *ApJ*) Return current (ohmic losses) (e.g. Karlický and Kasparová, 2009, *A&A*) Strong diffusion (electron-whistler) (e.g. Bespalov et al, 1991, *ApJ*) Self-interaction of fast electrons (e.g. Galloway et al, 2010, *A&A*) Electron-electron bremsstrahlung (Kontar et al, 2007, *ApJ*) Langmuir waves (Hannah and Kontar, 2011, *A&A*) Acceleration models (stochastic, betatron, etc.)

Computational method

High Performance Computing (HPC): Parallel processing (MPI/OpenMP)

Cluster: 4U x 2 AMD Magny-Cours (12 cores) = 96 CPUs + 48 GB RAM GPU processing (CUDA)

Nvidia Tesla C2050: 448 CUDA cores + 3GB DDR3

FAPESP Proc. no. 2009/18386-7 (Dr. Giménez de Castro – CRAAM)