

Brazilian Tunable Filter Imager (BTFI) Conceptual Design Review (CoDR)

Performance Modeling
Version 0.1

USP-IAG Universidade de São Paulo 24-25th September 2007

Performance Modeling

- Double-pass VPHGs
 - Limits of the modeling
 - Transmission Mode
 - Reflection Mode
- SNR
 - Emission line / Surface Brightness
 - Continuum / Point source

- Bragg's Condition
- Kogelnik Efficiency
 - Polarization S
 - "Thick" gratings
 - Weak gratings
 - Unslanted gratings

$$m\lambda = 2\Lambda \sin \theta_{air}$$

$$\eta_B = \sin^2(\frac{\pi \Delta n D}{\lambda_B \cos \theta_n})$$

$$Q = \frac{2\pi\lambda D}{n_0 \Lambda^2} \gg 1$$

$$\Delta n < \frac{\lambda_B \cos \theta_n}{2D}$$

$$\eta_{\lambda} = \eta_{B} sinc^{2} \left(\frac{\lambda_{B} - \lambda}{\Delta \lambda} \right)$$

Grating in transmission mode

```
Grating thickness = 7.22 \mu m
```

Refractive Index = 1.50

Grating strength = 0.033

Line frequency = 1960 lines/mm

Bragg angle $= 30^{\circ}$


 $\overline{\text{Bragg wavelength}} = 510 \text{ nm}$

Efficiency = 0.9995

 $\Delta\lambda$ = 101.95 nm $\Delta\theta$ = 9.11°

Q = 62

 $\Delta n_{REF} = 0.042$

Grating in transmission mode

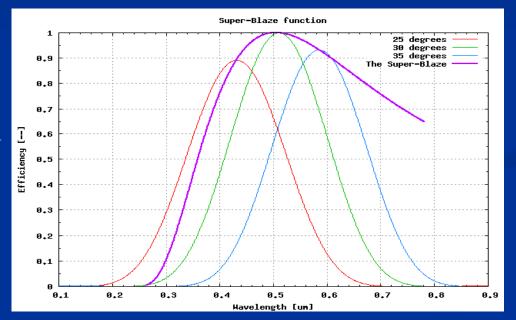
```
Grating thickness = 7.22 \mu m
```

Refractive Index = 1.50

Grating strength = 0.033

Line frequency = 1960 lines/mm

Bragg angle $= 30^{\circ}$


Bragg wavelength = 510 nm

Efficiency = 0.9995

$$\Delta\lambda$$
 = 101.95 nm $\Delta\theta$ = 9.11°

$$Q = 62$$

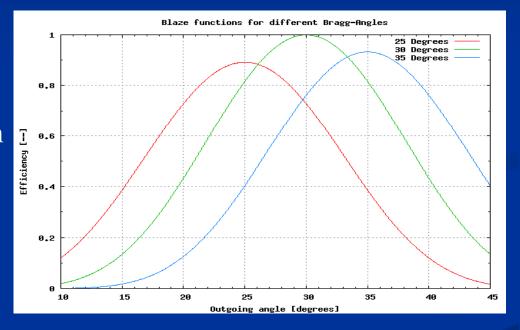
$$\Delta n_{\text{DEF}} = 0.042$$

Grating in transmission mode

```
Grating thickness = 7.22 \mu m
Refractive Index = 1.50
```

Grating strength = 0.033

Line frequency = 1960 lines/mm


Bragg angle $= 30^{\circ}$

Bragg wavelength = 510 nm

Efficiency = 0.9995

$$\Delta\lambda$$
 = 101.95 nm
 $\Delta\theta$ = 9.11°
O = 62

 $\Delta n_{RFF} = 0.0005$

Signal-to-Noise Ratio

L3CCD x CCD

Classic CCD

$$\sigma_{CCD}^2 = \sigma_{SKY}^2 + \sigma_{Dark}^2 + R_{ON}^2 n_{Sweep}$$

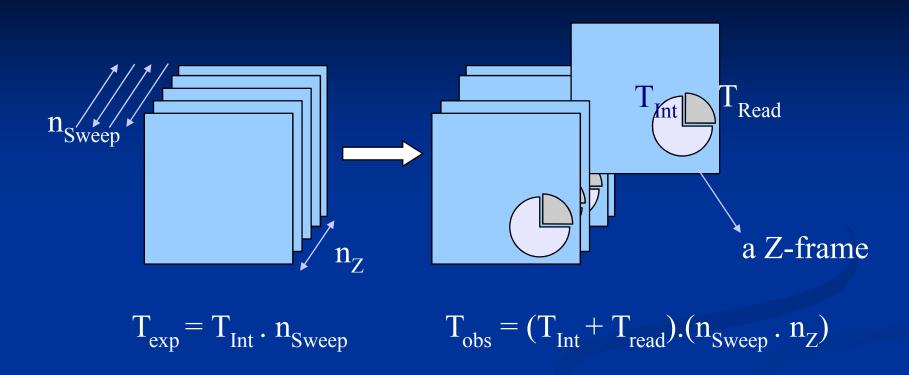
$$SNR = \frac{\Sigma}{\sqrt{\Sigma + F_{SS} \sigma^2}}$$

L3CCD

$$\sigma_{L3}^{2} = F^{2} \sigma_{Sky}^{2} + F^{2} \sigma_{Dark}^{2} + n_{Sweep} \frac{R_{ON}^{2}}{G^{2}} + n_{Sweep} F^{2} CIC$$

SNR calcs.

Emission-line / Surface Brightness

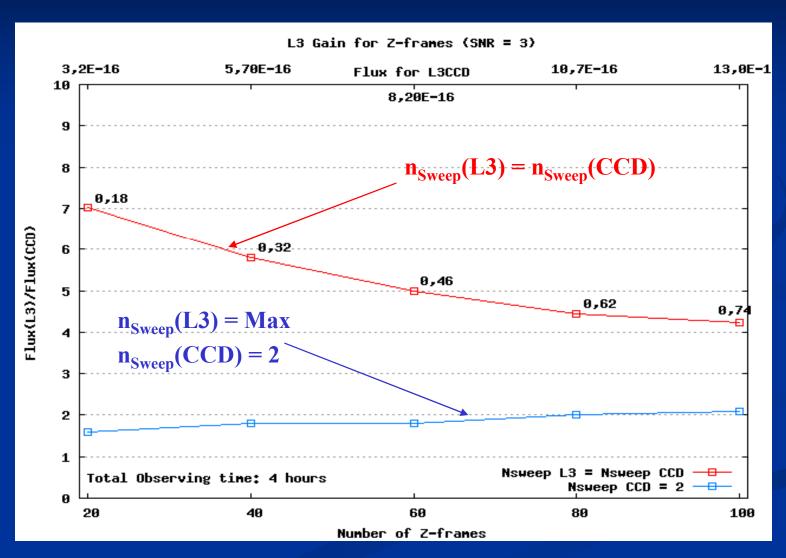

S _B	Object Surface Brightness [erg.s ⁻¹ .cm ⁻² .arcsec ⁻²]	2,00E-015 cgs	Σ	Object Flux in z-frame [e-/binned-pixel]	23,30
				Object Flux in single exposure [e-/binned-pixel]	1,16
T _{3D}	Total observing time [hours]	2 hrs	T _{Exp}	Exposure time per z-frame	205,00 s
n _z	Number of z-frames in a sweep []	32	T _{Int}	Integration time	10,25 s
n _{sweep}	Number of integrations per z-frame []	20	T _{Read} / T _{exp}	Duty cycle loss (%)	9,76 %
T _{Read}	Readout time [s]	1 s			
λ	Emission wavelength [Å]	5500 A			
Ø _{Te lescope}	Telescope's primary mirror diameter [m]	4,1 m	A _{Telescope}	Telescope's primary mirror area [cm^2]	132025 cm ²
S _{ampling}	Sampling per pixel [arcsec]	0,120 "	SArea	Sky area per binned-pixel [arcsec^2]	0,0144 "2
bp _x	Number of binned pixels in x-direction []	1			
bp _y	Number of binned pixels in y-direction []	1			
Q _{CCD}	Detector quantum efficiency [e ⁻ /photon]	0,90			
Q _{IT}	Instrument throughput []	0,12			
Q _{Atm}	Atmosphere throughput []	1,00			
S _{sky}	Sky surface brightness [erg.s-1.cm-2.arcsec-2]	0 cgs	σ_{sky}^{-2}	Sky flux [photons/binned-pixel]	0,0
F _{SS}	Sky subtraction factor []	1,2			
D	Dark-noise [es-1.pixel-1]	0,003	σ _{Dark} 2	Dark count [e-/binned-pixel]	0,62
RON(slow)	Read-noise (ms) [e.binned pixel-1]	3 rms	O _{Read CCD} ²	Read-noise squared [(e-/binned-pixel)^2]	180,00
RON(fast)	Read-noise (rms) [er.binned pixel-1]	20 rms	O _{Read L3} ²	Read-noise squared [(e-/binned-pixel)^2]	8000,00
G	L3CCD gain []	3000	O _{Read L3}		0,0009
CIC	Clock induced charges [ebinned pixel-1]	0,02 rms	σ _{CIC} ²		0,4000
			α		1,16
SNR _{ccD}		1,50	g		0,5907
SNR _{L3}		4,71	N		1,4043
SNR _{L3} /SNR _{c0}	CD	3,13	F ²		0,0070 1
►► Sheet1	1 / Sheet2 /		(III	
20			ш —		

SNR calcs.

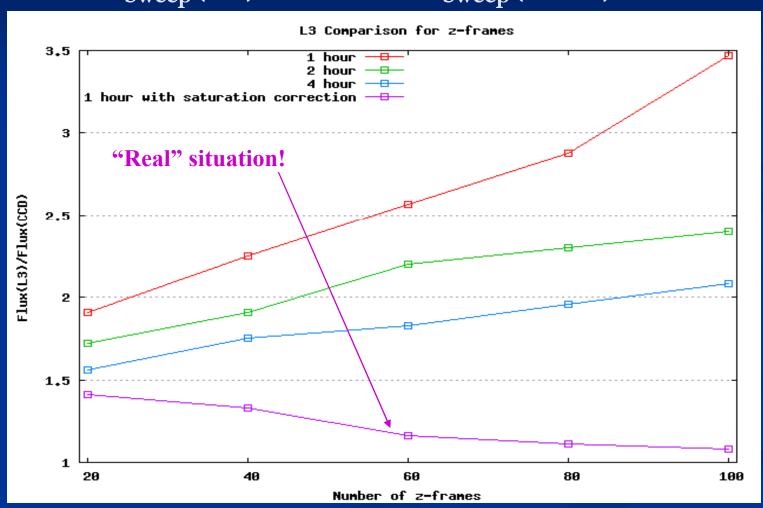
Continuum / Point Source (Mags)

m	Object's magnitude []		21	Spoint	Point-source brightness [photons.s-1.nm-1.m-2]	0,39
S ₀ [photon]	Zero-point for the waveband	[photons.s ⁻¹ .nm ⁻¹ .m ⁻²]	9,71E+007 V-ban	d Σ	Signal [ebinned pixel-1]	67,704388
					Object Flux in single exposure [e-/binned-pixel]	1,35
T _{3D}	Total observing time [hours]		8 Hrs	T _{Exp}	Exposure time per z-frame [s]	670 s
n _z	Number of frames in a swee	p []	40	T _{Read} / T _{exp}	Duty cicle loss [%]	7,463 %
n _{Sweep}	Number of integrations per z	z-frame []	50	n _{Exp}	Number of exposures []	2000
T _{Read}	Readout time [s]		1 s			
λ	Emission wavelength [A]		5500			
R	Spectral resolution []		10000			
Fwhm	Seeing [arcsec]		1,2 *	٨		40.00
Ø _{Telescope}	Telescope's primary mirror's	diameter [m]	4,1 m	A _{Telescope}	Telescope's primary mirror's area [m²]	13,20
Sampling	Sampling per pixel [arcsec]		0,120 "	S _{Area}	Sky area per binned-pixel [arcsec²]	0,0144 m²
bp _X	Number of binned pixels in a	•	1			⁴ 2
bp _Y	Number of binned pixels in	y-direction []	1			
Q _{CCD}	Detector quantum efficiency	[ephoton-1]	0,90			
Q _{IT}	Instrument throughput []		0,20			
Q _{Atm}	Atmosphere throughput []		1,00			
8000						
m _{sky}	Sky surface brightness []		40	S _{sky}	Sky surface brightness flux [photons.s ⁻¹ .nm ⁻¹ .m ⁻²]	0
F _{ss}	Sky subtraction factor []		1,2	σ _{Sky} ²	Sky noise [e ⁻ .binned pixel ⁻¹]	0,0000
<u> </u>		10.000	80000000			
D	Dark-noise charges [es-1.b	77/2	0,003	σ _{Dark} ²	Dark-noise [(e ⁻ .binned pixels ⁻¹) ²]	100,50
RON(slow)	Readout charges [e-binned	The second secon	3	σ _{Read CCD} ²	Expected number of events [ebinned pixel-1.frame-1]	450
RON(fast)	Read-noise (rms) [ebinned	pixel ⁻¹]	20	σ _{Read L3} ²	Read-noise squared [(e-/binned-pixel)^2]	20000
G	L3CCD gain []		3000	σ _{Read L3} ²	Readout noise for L3CCD [(e ⁻ .binned pixel ⁻¹) ²]	0,0022
CIC	Clock induced charges [eb	inned pixel ⁻¹]	0,024	σ _{CIC} ²	CIC noise [e ⁻ .binned pixels ⁻¹]	1,2000
OND				α	Expected number of events [e-binned pixel-1.frame-1]	1,3541
SNR _{ccd}	Classic CCD Signal-to-Nois		2,51	g	Proportion of counted events [(ebinned pixel-1.frame-1)*	0,5478
SNR _{L3}	L3CCD Signal-to-Noise Rati	0 []	4,92	N	Non-linear noise []	1,5722
SLR _{L3} /SNR _{C0}	D C		1,96	F ²	Noise factor []	0,0126
	1					
Sheet CO,	1/	•	III			

Modelled Observational Scenario



Note:


- $T_{Int} \sim 10*T_{read}$ to reduce duty cycle losses to acceptable level
- For PC: Saturation for flux rate > 0.1 cnts/ T_{Int}

 \Rightarrow Minimize $T_{int} \& T_{read} \Rightarrow$ Maximize n_{Sweep}

SNR as f(n_Z)

SNR as $f(n_Z)$ for: $n_{Sweep}(L3) = Max \& n_{Sweep}(CCD) = 2$

