

Instrument Overview

Keith Taylor (USP) BTFI CoDR

24th September, 2007

Requirements & Performance (Pre-Sep'07)

<u>Requirements:</u>		Performance	Seeing-limited	GLAO		
	370<λ<950nm (EMCCD)	<u>Summary:</u>				
	4 science modes:	FoV	6*6 arcmin	3*3 arcmin		
	 2 * Spatial-Resolutions SL or GLAO 	Sampling	0.23 arcsec	0.12 arcsec		
$= 2 * \lambda$ -Resolution Ranges		FP (N~30)	Gap range, $\Delta \ell \sim 200 \mu$ ($\delta \lambda \sim \lambda^2/2 \ell N$			
	■ FP or iBTF	Single FP	Scan range, $\Delta\lambda \sim 30^*\delta\lambda$			
•	FP (single)		FP ¹ +Filters	250 <r<25,000< th=""></r<25,000<>		
	 High-R ; Big ; Expensive 					
	Supplier = SESO					
	$ \Delta \ell \sim 200 \mu \text{ (cf: QI } \sim 4 \mu) $	iBTF				
	iBTF (multiple)	DCG	Transmission:	5 <r<15< th=""></r<15<>		
	 Low-R ; Compact; Cheap 		Reflection:	10 < R < 50		
	 Tx; Scan-range Large Rx: Scan-range Small 	Doped-Glass	Transmission:	200 <r<1,000< th=""></r<1,000<>		
	 Complementary channel 		Reflection:	300 <r<2,000< th=""></r<2,000<>		

Performance Summary

Field of View (assuming EMCCD – 1600^2 ; 16µm pixel)

- GLAO-fed FoV \sim 3'; Spatial sampling \sim 0.12" (f/6.7 camera)
- SL-fed FoV \sim 6'; Spatial sampling \sim 0.24'' (f/3.3 camera)
- IQ for both systems: 80%EE within 2 pixels

Spectral Resolution:

- iBTF: 5 < R < 5,500
- FP: 250 < R < 40,000
- Peak [Average] efficiency > 18 [10]%
 - Telescope: ~61% [61%]
 - SAM: ~66% [59%]
 - BTFI: ~51% [40%]
 - CCD ~93% [61%]

Instrument Throughput

Wavelength	(nm)	350	450	550	650	750	850	950	P	eak	Average
									(*	%)	(%)
	Surface										
Telescope									(61	61
	3 * AI reflections	0.61	0.61	0.61	0.61	0.61	0.61	0.61			
SAM									(66	59
	4 * Hg reflections	0.65	0.71	0.81	0.90	0.92	0.94	0.96			
	1 * DM	0.84	0.84	0.84	0.84	0.84	0.84	0.84			
	1 * Dichroic	0.90	0.90	0.90	0.90	0.90	0.90	0.90			
	4 * A/R surfaces (MgF2)	0.89	0.93	0.95	0.95	0.93	0.92	0.91			
BTFI										51	40
	18 * A/R surfaces (MgF2)	0.59	0.72	0.79	0.79	0.72	0.69	0.65			
	2 * Hg reflections	0.81	0.84	0.90	0.95	0.96	0.97	0.98			
	Filter	0.85	0.85	0.85	0.85	0.85	0.85	0.85			
	FP (or BTFI)	0.60	0.70	0.80	0.80	0.80	0.70	0.60			
ССД		0.20	0.78	0.93	0.90	0.77	0.50	0.22		93	61
Totals	(%)	1	9	16	18	14	8	3		18	10

BTFI – current, 2-channel, configuration

Space envelope

Concept Evolution

- Oct'06: iBTF concept introduced as an alternative to Claudia's FP concept
 - Problems:
 - Maximum R? R<5,000 (est.)
 - 20<R<200 dead zone? *Tertiary concern*
 - Severe λ gradient in dispersion dirⁿ. Secondary concern
 - Could iBTF support wide field angles (<6°)? *Primary concern*
- Dec'06: PhotonEtc's 1st report on iBTF
 Confirms Tertiary concern
- Feb'07: PhotonEtc's 2nd report on iBTF
 Quantifies Secondary concern

Transmission gratings λ-gradient

2 different gratings needed

- cover 370-625nm and 625-1000nm r
- angles ranging from [23,9°;46,3°] for the « red » grating for low and high λ

• Effect $(\Delta \lambda)$ reduced by:

- Larger tilt angles
 - Smaller (<25°) tilt angle cause 0th or
- SL \Rightarrow GLAO by factor of 2
 - Argument against seeing-limited, Fo
- λ -scan >> $\Delta\lambda$
 - Compatible with iBTF survey mode

Concept Evolution, cont.

Mar'07: Collimator/camera designs (Damien Jones)
 Designs successful and *still current*

Spot Plots

Concept Evolution, cont.

May'07: KT & Rene visit SOAR to explore space envelope issues

Jun'07: KT & Rene layout optics based on:
 Single [VPHG + Retro-Reflector + Tilt mechanism]
 Large VPHGs (<200mm) and comparably large retro-mirrors

Solution: Pupil-Relay (eg: Offner) from 1st to 2nd VPHG
 ⇒ Dual VPHGs (~50mm) + Single Tilt mechanism
 ⇒ Pupil-Relay is large but will fit in space envelope

Pupil-Relay Configuration (Jun'07)

Pupil-Relay with FP/"complementary" (but not 0th order) channel

Concept Evolution, cont.

Jun'07: DJ – Pupil-Relay has fundamental problems Chromatic aberrations not controlled

- Refractive alternative *may* be practical, but ...
 - DJ "Large complex/costly optics"

Jul'07: PMG – independent tilt control no problem

- ⇒ Freedom to articulate VPHGs and retro-reflectors independently
- ⇒ Abandon Pupil-Relay, for now
- ⇒ Look again at minimizing size of VPHGs

Concept Evolution, cont.

Aug'07: KT & SBO brainstorm layout issues (2 possibilities):

SBO delivers preliminary findings (31st Aug)

■ Final report due (19th Sep)

Aug'07: KT & Rene trial layout of SBO's provisional concepts

- VPHG size reduced to ~100mm (still large)
- 1st grating simple rotation ; 2nd grating rotation/translation

Original iBTF configuration: non-Pupil-Relay (Reflection)

iBTF Transmission (DCG)

 $\begin{array}{c} \textbf{R} \sim \textbf{100} \\ \text{Tuning}_{25^{\circ}\text{-}45^{\circ}} \text{ from } \lambda \sim 460 \text{ to } 700 \text{nm} \end{array}$

16

iBTF Reflection (DCG)

R ~200 Tuning_{25°-45°} from λ ~620 to 675nm

17

iBTF Transmission (Doped-Glass)

R ~3,420 Tuning_{25°-45°} from λ ~500 to 850nm **R** ~200 Tuning_{25°-45°} from λ ~650 to 1,100nm

iBTF Reflection (Doped-Glass)

R~5,400

Tuning_{25°-45°} from $\lambda \sim 620$ to 675nm

R ~1,000

Tuning_{25°-45°} from $\lambda \sim 620$ to 675nm

BTFI on SOAR/SAM visitor port

The Current Perspective

Sep'07: Claudia + KT: (The "Requirements Epiphany" lunch)
Abandon wide-field:
FoV ~3' is acceptable even if GLAO fails
Dual FP configuration can now be supported
Smaller VPHGs: now ~70mm
Coll/Cam optics much simpler/smaller/fewer/cheaper
No need for large camera exchange mechanisms

NB: All figures / drawings based on large-field design

Requirements & Performance (Pre-Sep'07)

<u>Requirements:</u>		Performance	Seeing-limited	GLAO		
	390<λ<950nm (EMCCD)	<u>Summary:</u>				
	4 science modes:	FoV	6*6 arcmin	3*3 arcmin		
	 2 * Spatial-Resolutions SL or GLAO 	Sampling	0.23 arcsec	0.12 arcsec		
	$= 2 * \lambda$ -Resolution Ranges	FP (N~30)	Gap range, $\Delta \ell \sim 200 \mu (\delta \lambda \sim \lambda^2/2 \ell N)$			
	■ FP or iBTF	Single FP	Scan range, $\Delta\lambda \sim 30*\delta\lambda$			
	FP (single)		FP ¹ +Filters	250 <r<25,000< th=""></r<25,000<>		
	 High-R ; Big ; Expensive 					
	 Supplier = SESO Δℓ ~200μ (cf: QI ~4μ) 	iBTF				
	iBTF (multiple)	DCG	Transmission:	5 <r<15< th=""></r<15<>		
	Low-R ; Compact; Cheap		Reflection:	10 < R < 50		
	 Tx; Scan-range Large Rx: Scan-range Small 	Doped-Glass	Transmission:	200 <r<1,000< th=""></r<1,000<>		
	 Complementary channel 		Reflection:	300 <r<2,000< th=""></r<2,000<>		

Requirements & Performance (Post-Sep'07)

<u>Requirements:</u>		Performance	Seeing-limited	GLAO		
	390<λ<950nm (EMCCD)	<u>Summary:</u>	(back-up)			
•	4 science modes:	FoV	3*3 arcmin	3*3 arcmin		
	 1 * Spatial-Resolution GLAO (SL as back-up) 	Sampling	0.12 arcsec	0.12 arcsec		
	$= 2 * \lambda - \text{Resolution Ranges}$	FP (N~30)	Gap range, ∆ℓ ~200	$0\mu (\delta\lambda \sim \lambda^2/2\ell N)$		
	■ FP or iBTF	Dual FP	Scan range, $\Delta\lambda$ ~	$\lambda \sim 30*\delta\lambda$		
•	FP (dual)	Option 1 _[baseline]	FP ¹ +Filters	250 <r<25,000< th=""></r<25,000<>		
	 High-R ; Big ; Expensive Supplier = SESO 	Option 2 _[upgrade]	FP ¹ +FP ² +Filters	16,000 <r<40,000< th=""></r<40,000<>		
	$ Supplier = 3ESO $ $ \Delta \ell \sim 200 \mu \text{ (cf: QI ~4} \mu \text{)} $	iBTF				
	iBTF (multiple)	DCG	Transmission:	5 <r<100< th=""></r<100<>		
	 Low-R ; Compact; Cheap 		Reflection:	? <r<200< th=""></r<200<>		
	 Tx; Scan-range Large Rx: Scan-range Small 	Doped-Glass	Transmission:	200 <r<3,000< th=""></r<3,000<>		
	 Complementary channel 		Reflection:	1,000 <r<5,500< th=""></r<5,500<>		

Which do we base-line?

Pre-Sept'07 advantages:

- Large seeing-limited FoV (~6*6 arcmin)
- Single FP ($\Phi \sim 70$ mm) cost issue?
- Simultaneous iBTF mode always available

Post-Sept'07 advantages:

- 2 cameras (2*f/6.7) instead of 4 (2*f/3.3 & 2*f/6.7):
 - No f/3.3 cameras required complex/expensive
 - No need for camera exchange mechanism
- Smaller iBTF gratings:
 - Smaller λ -gradient by factor of 2
 - ~70mm instead of ~100mm
- Dual FP operation:
 - FP¹ in pupil ($\Phi \sim 70$ mm) + FP² in image plane ($\Phi \sim 100$ mm)
 - Higher Rs (>25,000) available
 - Better continuum/sky/star suppression
 - Significantly fewer IFs required for high-R work cost savings
 - FP² can be regarded as an upgrade path (or borrowed from 3DNTT?)

 Use of IR-direct port for SL work is a back-up when GLAO is nonoperational