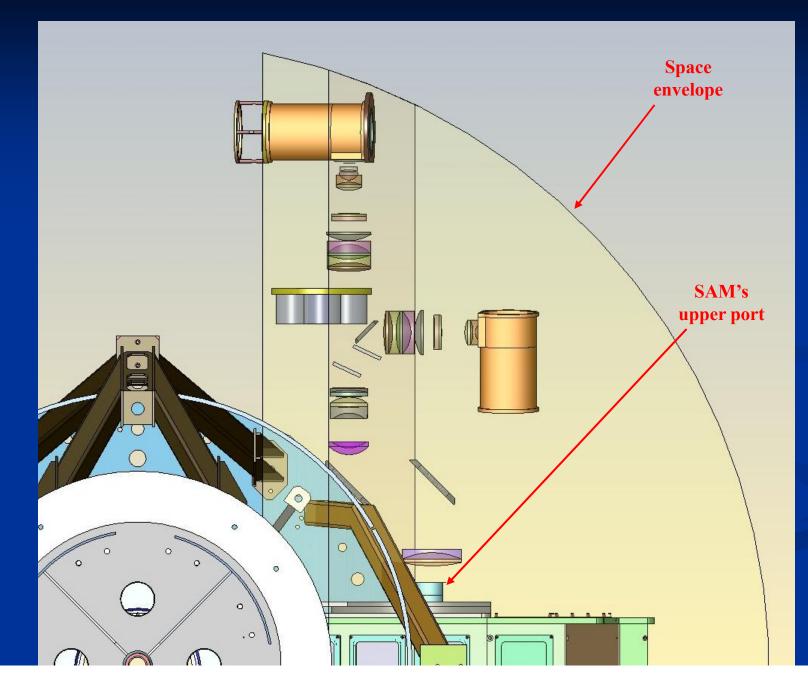


Instrument Development

Keith Taylor (USP) BTFI CoDR

24th September, 2007

Change in Base-line


Pre-Sept'07 advantages:

- Large seeing-limited FoV (~6*6 arcmin)
- Single FP ($\phi \sim 70$ mm) cost issue?
- Simultaneous iBTF mode always available

Post-Sept'07 advantages:

- 2 cameras (2*f/6.7) instead of 4 (2*f/3.3 & 2*f/6.7):
 - No f/3.3 cameras required complex/expensive
 - No need for camera exchange mechanism
- Smaller iBTF gratings:
 - ~70mm instead of ~100mm
- Dual FP operation:
 - FP¹ in pupil ($\Phi \sim 70$ mm) + FP² in image plane ($\Phi \sim 100$ mm)
 - Higher Rs (>25,000) available
 - Better continuum/sky/star suppression
 - Significantly fewer IFs required for high-R work cost savings
 - FP² can be regarded as an upgrade path (or borrowed from 3DNTT?)
- Use of IR-direct port for SL work is a back-up when GLAO is nonoperational

BTFI on SOAR/SAM visitor port

Observatory Interfaces

Will BTFI be competitive in non-GLAO mode? – Yes, but ...

- Loss of uniqueness space (cf: 3DNTT etc.)
 - \Rightarrow iBTF capabilities (R <250) needs to be **emphasized**
- How will we share SAM with SIFS?
 - SIFS pick-off mirror within BTFI? are we too late?
 - SIFS fibre bundle could, in principle, be mounted in FP¹ carriage for simultaneous TF + IFU spectroscopy
 - Should IR-direct port be an option for seeing-limited operation? Yes
 - Important back-up facility Confirm availability & space envelope
- Is Acquisition & Guiding adequate? Yes
 - No requirement for OIWFS for SAM operation.
 - We can use 2nd channel (lowest-R) for guiding, if necessary.
 - Requires internal flexure FEA
- Weight limit for SAM's VI-port (currently ~100kg unrealistic)
 - No good numbers need FEA for SAM + BTFI
 - BTFI weight budget ~200kg (not including electronics or contingency)

Optical Design Development

- New optical design specification required:
 - Collimator FoV ~4.25' dia. (reduced from ~8.5')
 - Simplify design : Reduce cost : Avoid fold mirrors (?)
 - Ease iBTF crowding & tuning angle constraints
 - Collimator pupil relief <150mm (as before)
 - Camera f-ratio $\sim f/6.7$
 - Reduced from f/8 to accommodate EMCCD
 - 1600^2 , $16\mu m$ pixel, format
 - No requirement for $\sim f/3.3$ large field camera
 - Pupil relief: $\sim 100 170$ mm range
 - Dependent on iBTF angle (in Rx & Tx)

FP Procurement

- 2 SESO etalons (same/different?; cost?)
 - KT & Rene to visit in Nov'07
- Do we have space for FP¹ at f/16.5 input focal surface? Yes
 - $\Phi \sim 100$ mm ~ 3.5 -by-3.5 arcmin
 - Optical depth of FP¹ requires either:
 - Re-focusing collimator
 - Placing dummy etalon in "Clear" etalon slide position
 - Preferred, but extra weight
- FP² in 50mm pupil space
 - $\Phi < \sim 70$ mm clear dia.
 - Is a smaller SESO etalon significantly cheaper? SESO visit
 - Do we need to plan for FP¹ in pupil? Yes

Alignment of FP¹ (Low-R in Image Plane)

- By eye:
 - Only for etalon gaps, $\ell > 10\mu$ (ie: R >1,000)
 - No visible rings (angles too large for eye)
 - FP¹ retracted out of image space:
 - Na line source (eg)
 - Viewing window
 - Head room required
- Need automated procedure
 - Can be done with FP¹ in-situ (but with FP² retracted)
 - In-beam calibration line source
 - from SAM/SOAR system?
 - 4-hole mask in image plane
 - Rapid data-cube acquisition
 - On-line analysis software and feed-back to plate parallelism adjustment
 - Algorithm has to converge robustly

Alignment of FP² (High-R in Pupil Plane)

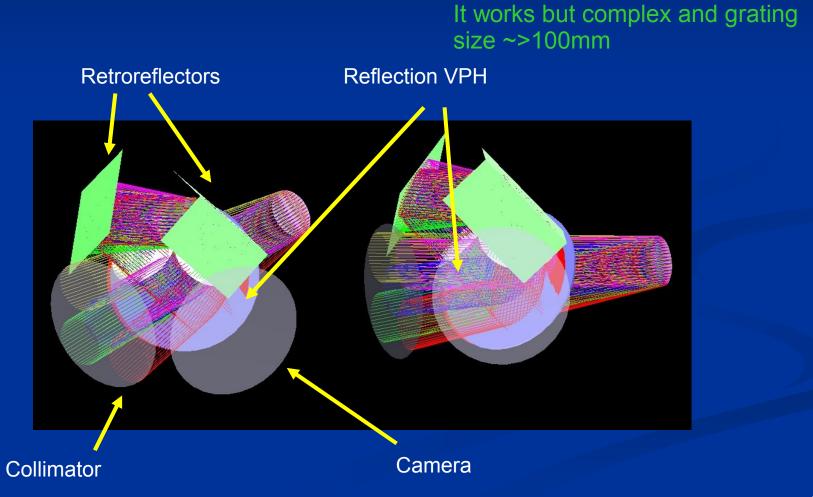
By eye:

- FP² rings visible for all gaps
- FP¹ retracted out of image plane:
 - Na line source (eg)
 - Viewing window
 - Head room
- Automated procedure preferred:
 - Can be done with FP² (and FP¹) in-situ
 - 4-hole hartmann mask required (in filter wheel?)
 - Remotely operable (4-posⁿ)
 - Data cube acquisition synch^d with Hartmann mask posⁿ
 - Algorithm different from FP¹ alignment
 - Also has to converge robustly

iBTF issues

iBTF exchange and control:

- How many VPHG pairs are required? 4, initially
- Ergonomics of the *manual* exchange process
- Do we need to exchange them during the night? Rarely
- Do they need to be aligned on installation? Yes
 - Pitch / Roll / Yaw
 - Need to define alignment procedure (in each case)
- VPHG¹ Pitch only ; VPHG² Pitch & Translation
 - Opto-mechanical tolerances see "Critical Alignment" slide
 - Maximum speed ~<1Hz per z-step
 - Tilt angle range? -25° to 45°
 - Accessible ranges of R see later slide
 - Avoid 0th order vignetting/contamination


iBTF issues, continued

iBTF configuration:

- Have we abandoned pupil-relays? Yes
 - Gratings are now small enough
- What about SBO's single VPHG option?
 - Single VPHG ✓
 - Large VPHG (by $\sim 50\%$) **?**
 - 3 extra reflections
 - Simpler tilt mechanism ✓
 - No translation
 - Tilt angle range?
 - Collimator/Camera angle = 90°
- VPHG doped-glass mosaics?
 - Smallest configuration requires 2-by-2 (40mm square)
 - Internal alignment/mounting? see "Critical Alignment" slide

Crossed retroreflector

Hard to visualize and complex to design.

Detectors Issues

- EMCCD as base-line {vs. classical slow-read CCD or GaAs PCs} – what are the arguments?
 - Data cube acquisition (*naïve calculations*)
 - Assume data-cube is ~ 100 [20] λ -samples deep
 - Assume read-noise $\sim 3e^{-}$ (rms)
 - If $T_{Cube} \sim 4$ [8] hrs $\Rightarrow T_{\lambda} < 140s$ [1500s]:
 - ⇒ Detector noise limited for R >125 [800] (Nyquist λ -sampling)
 - \Rightarrow High-QE photon counting ideal for all R >125 [800]
 - If: $T_{\lambda} < T_{Variability} < T_{Cube}$ (for seeing \mathcal{O} transparency: this is always the case – [1/f noise])
 - \Rightarrow Rapid λ -scanning highly desirable
 - $\Rightarrow T_{read-out} > 1s \text{ (limit set by maximum pixel read-rate ~3MHz)} \\\Rightarrow T_{\lambda} \sim 10^{*}T_{Read-out} \text{ to minimize duty-cycle losses}$
 - ⇒ Photon counting for ~ALL data-cube acquisition

Detectors Issues, cont. #2

3 readout modes

- Classical, slow reads (200kHz)
 - $\sim 3e^{-} (rms)$
- Amplification mode
 - Analogue, non-photon counting: DQE = QE/2 (Gain-noise)
 - CIC (important but poorly quantified) + dark noise
- Photon counting mode
 - $\bullet \quad DQE = QE$
 - Flux rate <10*Frame-rate (typically <0.1Hz/pixel)
 - ⇒ Small dynamic range (non-linearity can be ~corrected, but SNR hit)
 - Trade between CIC + dark noise
- Smaller format EMCCDs had frame-store but *NOT* the 1600² version:
 - What effect on CIC noise? seems OK
 - Any other issues? seems OK (tbc)

Detectors Issues, cont. #3

Requirements:

- Supports all 3 modes
 - Classical reads give $\sim 3e^{-}/s$ for ultra-faint, low-R work
 - Amplification mode for ultra-low flux @ high-R
 - Photon counting for most 3D obs. med/high-R
- Controller has to be supported by SOAR staff
 - Does not exclude Daigle controller
 - Visitor instrument status for 1st year (tbc)
- Can be run under ArcView

Questions:

- Daigle -vs- modified-Leach:
 - Performance; Robustness ; Supportability
- Expected value for CIC noise assume 0.024/pixel (tbc)
 - How will this evolve over time?
 - BTFI detector lab characterization will tell

Electro-Mechanical Issues

Mechanisms (Manual or Remote?):

- Aperture exchange (3-pos^{n.} slide) mask/filter/clear
- FP^{1&2} retraction (2-posⁿ slide) *2 viewing port
- **FP**^{1&2} **control** (SESO controller)
- VPHG^{1&2} exchange
- VPHG¹ pitch
- VPHG² pitch & translation
- Filter slide (6-posⁿ) 5 filters + clear
 - Tilt mechanism -0° to 15°
- CCD shutters (activated by CCD)
 - Fast (<0.1s) for photon counting

■ EMCCD^{1&2} controller (Leach or Daigle?)

NB: Dry air/ N_2 flushing (of complete instrument) for etalon stability

Software Issues

- Mechanism control
 - iBTF actuation
 - Filter slide

Etalon (FP) controller *2 (SESO/LAM)

- GUI development
 - z-scanning
 - **Parallelism & \lambda-calibration**
- EMCCD controller *2
 - GUI development (ArcView)
 - 3-modes
- Data Reduction
 - FP & iBTF calibration
 - Quick look
 - Pipeline

Critical Alignments

Collimator/Camera (need tolerance analysis for all components/groups)

- Internal
 - Critical but built as units
- External
 - Tilt/Axial relaxed
- Focus relaxed
 - Cameras no adjustment
 - Collimator no adjustments
- Fold mirrors adjustment & stability/z-frame ~3" (~2µ across ~100mm)
- VPHGs adjustment & stability/z-frame
 - Rx Pitch/Roll as per Fold Mirrors ; Yaw ~1' (or 30µ across ~100mm)
 - Tx Pitch ~40"; Roll ~1°; Yaw ~1' (or 30μ across ~100mm)
- **FPs**
 - Internal alignment (parallelism) critical (~2nm; with Capacitance Micrometry)
 - External alignment- tilt/translation/axial v. relaxed
 - External stability translation/axial v. relaxed ; FP² tilt/data-cube ~3"
- IFs Tilt mechanism relaxed

Daytime Calibrations

$- FP^{1\&2}$

- Visual inspection
 - Plate parallelism (coarse)
- In-beam (automated)
 - Plate parallelism (fine)
 - *l* determination
 - λ calibration
 - White-light 3D flat-field
 - Emission-line 3D data cube

■ iBTF

- Tilt alignment (coarse)
- Rotational alignment (fine)
- λ calibration
- White-light 3D flat-field
- Emission-line 3D data cube

Nighttime Calibration

$- \overline{FP^{1\&2}}$

- In-beam (automated) every 3-4 hours
 - Plate parallelism (fine)
 - λ calibration (cube or ring)

■ iBTF

- λ calibration every 3-4 hours
- EMCCD
 - EM Gain calibration every 2-3 hours? tbc
 - Dark

Bias

- CIC noise measures? tbc
- Photometric
 - Absolute
 - Differential

Calibration requirements

- FP^{1&2}

■ FP slides for installation & visual inspection

- Hand-held FP (x,y,z) controller
- Line source and diffuser for illumination
- Viewing port
- Line and continuum sources from ISB
- Image plane mask needs 3-posⁿ slide (manual)
 - Matrix pin-hole for spatial mapping (astrometry)
 - 4-hole mask (cardinal posⁿ) for FP^{Image} parallelism & λ -calibration
- Automatic parallelism procedure (software control loops)
 - FP¹ (λ -calibration lamp + 4-hole mask):
 - λ -scan \Rightarrow 4*1D λ -profiles \Rightarrow (x,y,z) adjustment \Rightarrow iteration
 - \blacksquare FP²
 - 4-posⁿ pupil mask (in Filter wheel) remotely operated
 - $Pos^n #n (n=1:4): \lambda$ -scan (1D) \Rightarrow Gaussian fits
 - Repeat for all 4 $pos^n \Rightarrow (x,y,z)$ adjustment \Rightarrow iteration