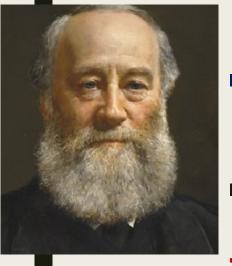
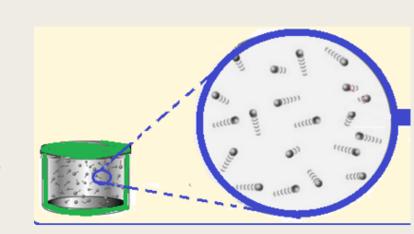
BCJ0205-15

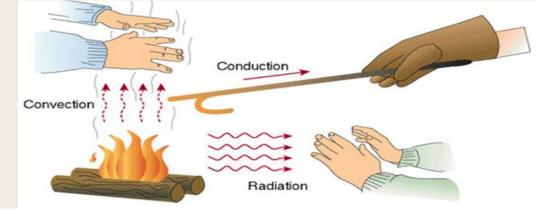

Fenômenos Térmicos

Prof. Paramita Barai

Modulo 3: Energia em Processos Térmicos: a Primeira Lei da Termodinâmica


Capítulo 17 do livro texto (Princípios de Física, Serway, Vol. 2)

Unidades 17.1, 17.2, 17.3 (páginas 159-167)



3.1 - Calor e Energia Interna

- James Prescott Joule (1818-1889) era um físico inglês
 - Realizou experimentos mostrando que a energia pode entrar ou sair de um sistema por meio do calor e do trabalho.
- A energia interna pode ser transformada em energia mecânica, e vice-versa.
- → Lei da conservação de energia → Primeira lei da termodinâmica.
- ❖ Energia Interna (E_{int}) é a energia associada aos átomos e moléculas de um sistema, quando vista de um quadro de repouso em relação ao sistema.
 - E_{int} inclui a energia cinética e potencial do movimento translacional, rotacional e vibracional dos átomos e moléculas do sistema, e a energia potencial intermolecular.
- Gás ideal monoatômico: E_{int} = energia cinética translacional total dos átomos.
- Gás diatômicos e poliatômicos: E_{int} também inclui outras formas de energia molecular:
 - Energia cinética rotacional
 - Energia cinética e potencial associada às vibrações das moléculas. Prof. P. Barai (FETERM @UFABC)

Calor

- Calor é um mecanismo pelo qual a energia é transferida entre um sistema e seu ambiente devido à diferença de temperatura entre eles.
 - ✓ Calor = a quantidade de energia Q transferida por este mecanismo.

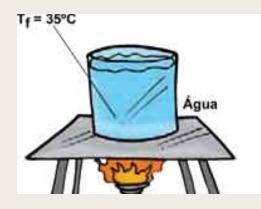
- Água fervente em contato com uma chama de gás:
 - A energia entra na água pelo calor dos gases quentes da chama.
 - A energia interna da água aumenta como resultado.
 - Água não tem mais calor com o passar do tempo.
- Devemos usar o termo calor apenas quando alguma energia foi transferida como resultado de uma diferença de temperatura.

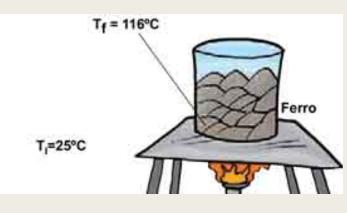
Unidades de Calor

- Antes de 1948, o calor era definido em termos das variações de temperatura que ele produzia em um corpo.

 1,0g
- Unidade do calor = Caloria = [cal]

água Q = 1 CAL água 15,5°C


1,0g


- Caloria (cal) foi = Quantidade de energia transferida necessária para elevar a temperatura de 1 g de água de 14,5 °C para 15,5 °C.
- Unidade térmica britânica (Btu), foi = Quantidade de energia transferida necessária para elevar a temperatura de 1 lb de água de 63 °F para 64 °F.
 - ✓ Em 1948, os cientistas concordaram que o calor (e trabalho) mede a transferência de energia.

$$1 \text{ cal} = 4,186 \text{ J}$$

- ✓ Então, o calor deve ter a mesma unidade da energia = Joule.
- ✓ Esta definição do calor é conhecida como o Equivalente Mecânico do Calor.

3.2 – Calor Específico

- Cada material precisa de uma quantidade única de energia por unidade de massa para alterar sua temperatura em 1 °C.
- Se a **energia** = \mathbf{Q} seja transferida para uma **massa** = \mathbf{m} , mudando a **temperatura** do material por $\Delta \mathbf{T}$.
- **Calor específico** = \mathbf{c} do material é definido.
- As <u>unidades</u> de calor específicas são
 - [J kg⁻¹ °C⁻¹]
 - [cal kg⁻¹ °C⁻¹]
- A Tabela lista os valores de c (calor específicos) para substâncias diferentes.

$$\mathbf{c} \equiv \frac{\mathbf{Q}}{\mathbf{m} \, \mathbf{\Lambda} \mathbf{T}}$$

SUBSTÂNCIA	CALOR ESPECÍFICO (cal/g°C)		
Água	1,00		
Gelo	0,50		
Alumínio	0,21		
Areia	0,20		
Vidro	0,16		
Aço	0,10		
Ouro	0,03		

Calor Específico

- Energia transferida = Q, massa = m, Variação de temperature = $\Delta T = T_2 - T_1$
- Quando **T** aumenta $(T_2 > T_1) \rightarrow \Delta T$ e **Q** são considerados positivos.
- $\begin{array}{c|c} & \Delta T \\ \hline & Q \\ \hline & T_1 \\ \end{array}$

- -Energia flui para o sistema.
- Quando T diminui $(T_2 < T_1) \rightarrow \Delta T$ e Q negativos.
 - -Energia flui para fora do sistema.

- Água tem um calor específico maior do que outras substâncias comuns.
 - Isso explica o fluxo de ar na praia.
 - Dia: Sol adiciona a mesma Q à areia e à água, mas $c_{areia} < c_{água} \rightarrow T_{areia} > T_{água}$
 - Ar frio mais denso empurra o ar quente menos denso para cima → uma brisa que sopra do oceano para a terra.
- Noite: circulação é revertido, pois o ar mais quente agora está sobre a água.

Calorimetria

- Técnica para medir o calor específico de um material:
 - 1) Elevar a temperatura do material para um valor mais alto.
 - 2) Colocá-la em um recipiente contendo água de massa e temperatura conhecidas.
 - 3) Medir a temperatura da combinação após o equilíbrio térmico ser alcançado.

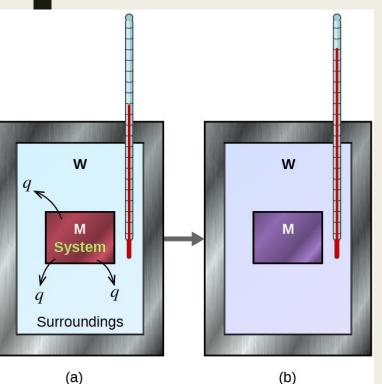
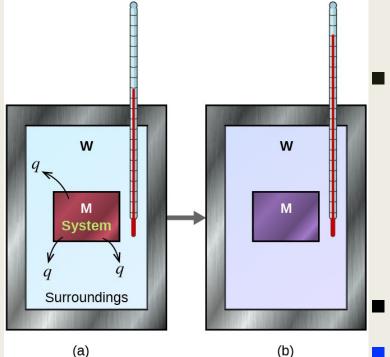



Figura (a) = Uma amostra quente colocada em água fria.

- Sistema = o Material + a Água
- O recipiente deve ser um bom isolante.
 - Nenhuma energia sai do sistema.
 - Usar o modelo de sistema isolado.
- Um recipiente que possui essa propriedade é chamado de <u>calorímetro</u>.
- A análise realizada com esse recipiente é chamada de calorimetria.
- Figura (b)
 - Há transferência de energia por calor da amostra quente para a água fria,
 - Até que ambos atinjam a mesma temperature.

Calorimetria

Princípio de conservação de energia para o sistema isolado → a energia que sai pelo calor do material mais aquecida = a energia que entra na água.

$$Q_{\text{frio}} = - Q_{\text{quente}}$$

Se, T = temperatura de equilíbrio térmico final.

Energia ganha pela água:

$$Q_{frio} = m_w c_w (T - T_w)$$

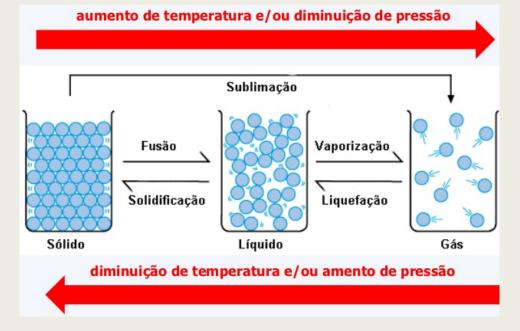
Energia perdida pelo material:

$$Q_{\text{quente}} = m_{x} c_{x} (T - T_{x})$$

$$\mathbf{m}_{\mathbf{w}} \, \mathbf{c}_{\mathbf{w}} \, (\mathbf{T} - \mathbf{T}_{\mathbf{w}}) = - \, \mathbf{m}_{\mathbf{x}} \, \mathbf{c}_{\mathbf{x}} \, (\mathbf{T} - \mathbf{T}_{\mathbf{x}})$$

Esta equação pode ser resolvida para o calor específico desconhecido $\mathbf{c}_{\mathbf{x}}$

Propriedades do material quente:


- $m_x = massa$,
- c_x = <u>Calor específico</u> (<u>desconhecido</u>),
- $T_x = Temperatura inicial.$

Propriedades da água

- $m_w = massa$,
- $\mathbf{c}_{\mathbf{w}} = \text{Calor específico}$,
- $T_w = Temperatura inicial.$

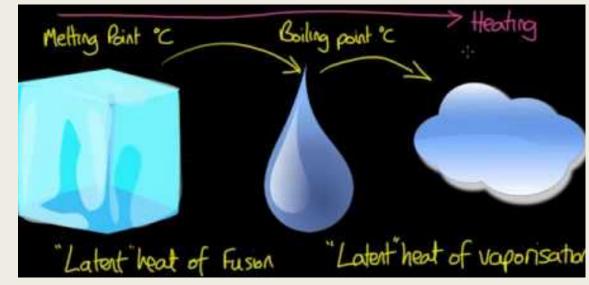
(3.3)

Mudança de Fase

- Quando a energia é transferida entre um material e seus arredores:
 - O material pode variar em temperatura.
 - Mudança de Fase: variação na energia interna do sistema, sem alterar sua temperature,
 - de sólido para líquido (Derretimento)
 - de líquido para gasoso (Ebulição)
 - Ruptura das ligações moleculares conforme o material se transforma do estado líquido para o estado gasoso, com aumento da energia potencial intermolecular.
 - Mudança na estrutura cristalina de um sólido.

3.3 - Calor Latente

Quantidade de energia transferida durante a mudança de fase depende da quantidade do material envolvida.


Material de fase mais alta = em uma T mais alta.

- Sistema de água + gelo → água é o material da fase mais alta.
- Sistema de vapor + água → vapor é o material da fase mais alta.
- Considere um sistema de água + gelo (duas fases diferentes em equilíbrio do mesmo material).
 - Massa inicial da água $= m_i$
 - Energia = \mathbf{Q} entre no sistema.
 - Massa final da água $= m_f$ (derretimento de parte do gelo).
 - Massa de gelo que derreteu, $\Delta m = m_f m_i$
- Calor Latente para esta mudança de fase = L
 - Essa energia adicionada ou removida n\(\tilde{a}\) resulta em uma mudan\(\tilde{c}\) ana temperatura.

$L \equiv \frac{Q}{\Delta m}$

Calor Latente

$$Q = L \Delta m$$

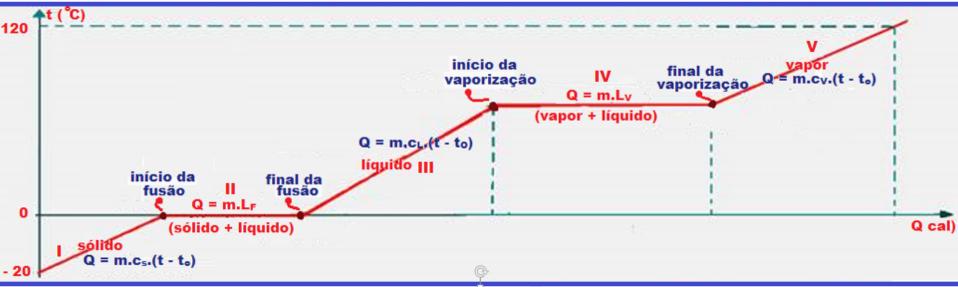

- lacktriangle Energia necessária para mudar a fase de uma substância pura $= \mathbf{Q}$
 - com, $\Delta m = Mudança na massa do material da fase mais alta.$
- Calor Latente de Fusão, L_f = mudança de fase é de sólido para líquido.
- lacktriangle Calor Latente de Vaporização, L_v = mudança de fase de líquido para gasoso.
- Quando a energia entra em um sistema, causando sua fusão ou vaporização, a quantidade de material de fase mais alta aumenta.
 - → Δm e Q são positivos.
- Quando a energia é extraída de um sistema, causando congelamento ou condensação, a quantidade de material de fase mais alta diminui.
 - → ∆m e Q são negativos.

TABELA 17.2 | Calores latentes de fusão e vaporização

Substância	Ponto de fusão (°C)	Calor latente de fusão (J/kg)	Ponto de ebulição (°C)	Calor latente de vaporização (J/kg)
Hélio ^a	-272,2	$5,23 \times 10^{3}$	-268,93	$2,09 \times 10^{4}$
Oxigênio	-218,79	$1,38 \times 10^{4}$	-182,97	$2,13 \times 10^{5}$
Nitrogênio	-209,97	$2,55 \times 10^{4}$	-195,81	$2,01 \times 10^{5}$
Álcool etílico	-114	$1,04 imes 10^5$	78	$8,54 \times 10^{5}$
Água	0,00	$3,33 \times 10^{5}$	100,00	$2,26 \times 10^{6}$
Enxofre	119	$3,\!81 imes 10^4$	444,60	$3,26 \times 10^{5}$
Chumbo	327,3	$2,45 \times 10^{4}$	1 750	$8,70 \times 10^{5}$
Alumínio	660	$3,97 \times 10^5$	2 450	$1,14 \times 10^{7}$
Prata	960,80	$8,82 \times 10^{4}$	2 193	$2,33 \times 10^{6}$
Ouro	1 063,00	$6,44 \times 10^{4}$	2 660	$1,58 \times 10^{6}$
Cobre	1 083	$1,34 \times 10^{5}$	1 187	$5,06 \times 10^{6}$

^aHélio não solidifica na pressão atmosférica. Portanto, seu ponto de fusão é dado sob a condição de que a pressão seja 2,5 MPa·

Temperatura versus Energia adicionada quando o gelo inicialmente a –20°C é convertido em vapor a 120°C

 Quantidades de Energia adicionadas em cada parte do gráfico :

$$Q(I) = m c_S \Delta T_S$$

$$Q(II) = m L_F$$

$$Q(III) = m c_L \Delta T_L$$

$$Q(IV) = m L_V$$

$$Q(V) = m c_V \Delta T_V$$