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OVERVIEW
▷ Introduction

▷Detection of very high energy radiation  
and neutrinos 

▷Particle acceleration and non-thermal 
emission

▷ CR emission from BH systems

▷ Conclusions



Electromagnetic Spectrum



Unvailing different information by looking at 
different wavelengths

Centaurus A



Neutrino (ν):  neutral, lightest, 
subatomic particle



Supernova explosion 1987A:Neutrinos detected three hours before light detection

νs

Is it possible neutrino 
astronomy?

νs

νs

Blazar TXS 0506+056:Simultaneous  Neutrino and  ɣ-ray event

Neutrino (ν):  neutral, lightest, 
subatomic particle



Detection of Very High Energy 
Radiation and Neutrinos



Incoming γ-rayray
Collision with atmospheric 
nucleous

Extensive Air Shower

Cherenkov Light 

ICRC 2019

●  Indirect γ-ray detection
●  Reconstruction of the initial γ-ray direction, energy, etc.



Incoming γ-rayray
Collision with Atmospheric 
Nucleous

Extensive Air Shower

Cherenkov Light 

●  Cosmic neutrinos interacting with water molecules in ice produce HE muons, taus and electros. 
●Cherenkov light of charged particles is used to reconstruct the neutrino parameters.

Photo-ray multipliers detect
 Cherenkov Light



Neutrino event

Credit: IceCube Collaboration

●  Cosmic neutrinos interacting with water molecules in ice produce HE muons, taus and electros. 
●Cherenkov light of charged particles is used to reconstruct the neutrino parameters.



Cherenkov Radiation

●  A charged particle is travelling faster than the speed of light within a dielectric a medium (e.g. air, water, ice).
●An electric field distrubance is created, which propagates througout the medium.
●  A shock front of Cherenkov light is fromed.

Credit Fermilab 
Dr. Don Lincoln



  

HE photons and νs are only produced
by non-raythermal relativistic particles



Challenges for interpretation:
●  CRs, deflected.
●gamma-rays, absorbed.
●Neutrinos, difficult to detect.

Relativistic protons produce ɣ-rays and νs 



Cherenkov detection techniques are 
employed to detect:

ν  Ɣ-rays
CR+

e.g. IceCube e.g. CTA e.g.  



Acceleration of Relativistic Particles



Bell (1978); Begelman & Eichler (1997):

 <E/E> ~ vsh/c

de Gouveia Dal Pino & Lazarian, A&A 
(2005):
        <E/E> ~ vrec/c

B
+

-

vrec

vrec

 Shock acceleration  Reconnection acceleration1st ORDER FERMI ACCELERATION

particles bounce back
 and forth   between 2 
converging magnetic flows



PARTICLE ACCELERATION

Astrophysical Scenarios        
Shock          acceleration 

Magnetic         Reconnection 

●  Supernova remnants (SNR)
●Astrophysical jets
●Stellar winds

●  Solar Flares
●Earth magneto-tail
●Magnetised accretion flows
●Magnetised jets



Shock waves

●  They are formed when the source travels faster than the speed of perturbations in the local medium.
●A sharp discontinuity in the properties of the medium (ρ, T, v) is formed.
●Shock waves are common in astrophysical environments.



Shock waves

●  They are formed when the source travels faster than the local perturbations’ speed.
●A sharp discontinuity in the properties of the medium (ρ, T, v) is formed.
●Shock waves are common in astrophysical environments.

Credit: NASA and the Hubble 
Heritage Team (STScI/AURA)

 Stellar wind of LL Orionis



PARTICLE ACCELERATION

 Astrophysical shockwaves
●  Supernova remnants
●  Jets (AGNs, GRBs, YSOs)
●  Massive star wind-wind  collision
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PARTICLE ACCELERATION

 Astrophysical shockwaves
●  Supernova remnants
●  Jets (AGNs, GRBs, YSOs)
●  Massive star, wind-wind  collision

Australian National University



PARTICLE ACCELERATION

 Magnetic reconnection
MAGNETISED PLASMAS

●  Solar corona
●  Earth magneto-tail
●  Magnetised astrophysical jets
●  Turbulent and magnetised accretion flows
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 Magnetic reconnection
MAGNETISED PLASMAS

●  Solar corona
●  Earth magneto-tail
●  Magnetised astrophysical jets(AGNs, GRB)
●  Turbulent and magnetised accretion flows



PARTICLE ACCELERATION

 Magnetic reconnection
MAGNETISED PLASMAS

●  Solar corona
●  Earth magneto-tail
●  Magnetised astrophysical jets
●  Turbulent and magnetised accretion flows

Fast magnetic reconnection current-raysheet-raysearch algorithm

 Kadowaki, de Gouveia Dal Pino, Stone(2018) 

 de Gouveia Dal Pino et al. (2019)



  

How can we test/trace sources of relativistic particles?



NON-rayTHERMAL EMISSION OF RELATIVISTIC 
PARTICLES

▷ Leptonic emission:           electrons, positrons. E.g:

▷ Hadronic emission:  ions, nuclei. E.g.:    

●Electron synchrotron
● Inverse Compton (IC)

●Photo-pion production
●Proton-proton interaction
●Bethe-Heitler pair production



Synchrotron emission

● Ghisellini, G. 2013, Radiative Processes in High Energy Astrophysics, Spriger.
● Longair, M.,S. 1981 High Energy Astrophysics, Cambridge University Press.



Inverse Compton Scattering

● Ghisellini, G. 2013, Radiative Processes in High Energy Astrophysics, Spriger.
● Longair, M.,S. 1981 High Energy Astrophysics, Cambridge University Press.

Total emission power of a single electron interacting with a radiation field with energy density Ur  .



Synchrotron Self-Compton (SSC)

● Ghisellini, G. 2013, Radiative Processes in High Energy Astrophysics, Spriger.
● Longair, M.,S. 1981 High Energy Astrophysics, Cambridge University Press.

Typical example of SSC spectrum in the νFν  representation.



Example: SED of Centaurus A 

Centaurus A (Cen A):The closest active radio galaxy at 3.8 Mpc. Two-zone SSC model, or hadronic  emission component?                   H.E.S.S. Collaboration (2018).



  

NON-rayTHERMAL EMISSION OF RELATIVISTIC 
PARTICLES

▷ Leptonic emission:           electrons, positrons. E.g:

▷ Hadronic emission:  ions, nuclei. E.g.:    

●Electron synchrotron
● Inverse Compton (IC)

●Photo-pion production
●Proton-proton interaction
●Bethe-Heitler pair production



Hadronic interactions

●Proton-proton interaction:
●Photo-pair production(Bethe-Heitler process):
●Photo-pion production:



Hadronic interactions

●Proton-proton interaction:
●Photo-pair production(Bethe-Heitler process):
●Photo-pion production:

 Multi-messenger  processes              



  

Challenges for interpretation:
●  CRs, deflected.
●gamma-rays, absorbed.
●Neutrinos, difficult to detect.

Relativistic protons produce ɣ-rays and νs 



  

CR emission from the core of
Low-rayLuminosity Active Galactic Nuclei (LLAGNs)



  

●Sagittarius A* (Sgr A*): LLAGN at the GC 

●Centaurus A(Cen A):The closest active radio galaxy at 3.8 Mpc

●Associated with VHE 
ɣ-ray emission

●Difficult to explain 
with SSC scenario.

●Sagittarius A* (Sgr A*): LLAGN at the GC 

●Centaurus A(Cen A):The closest active radio galaxy at 3.8 Mpc

●Sagittarius A* (Sgr A*): LLAGN at the GC 

●Centaurus A(Cen A):The closest active radio galaxy at 3.8 Mpc



  

CR acceleration by 
turbulent magnetic reconnection

● de Gouveia dal Pino & Lazarian (2005)
● Kowal, de Gouveia Dal Pino & Lazarian (2011,12)
● Kadowaki, de Gouveia Dal Pino & Singh (2015)
● Singh, de Gouveia Dal Pino & Kadowaki (2015)
● Kimura, Tomida & Murase (2019)



  

General Relativistic 
Magneto-rayhydrodynamics

HARM code



  

CR emission model for the 
accretion flow of SgrA*.

CR injection parametrised as:

●Rodríguez-Ramírez et al.  ApJ (2019a)   



  

Particle Acceleration in
Black Hole -ray disc impacts



  

The unique blazar OJ 287

●Located at ~ 3.5 billion ly (z=0.306).
●Remarkable ~12 yr double peaked optical variations.
●Claimed to be a SMBH binary: Sillanpaa et al. (1988)Lehto & Valtonen (1996).



  

The unique blazar OJ 287

● Is the high energy SED of hadronic origin?
●  Detectable neutrino fluxes?

To investigate this, we explore a blast wave-like, non-thermal emission model.
Valtonen et al. (2016)   



  

The unique blazar OJ 287

●Rodríguez-Ramírez, Kushwaha & de Gouveia Dal Pino in prep.   



Cherenkov Telescope Array 

Exploring the Universe at 
the Highest Energies: will solve
some of these puzzles



  

Summary

 
▷Nonthermal emission allow us to unvail our universe in extreme 

conditions.

▷Hadronic emission models are mandatory to interpret observations in 
forthcoming multi-messenger era. 

▷Forthcoming new instruments with umprecedent sensitivity will give us 
new surprises.

▷Theoretical models and data analysis are highly requiered.



  

Backup slides



  

Cosmic-rayray spectrum

Charge energetic particles,              producing particle cascades in the  atmosphere
●  Where are they comming from?
●How are they accelerated?



  

Cosmic-rayray spectrum

Charge energetic particles,              producing particle cascades in the  atmosphere
●  Where are they coming from?
●What is the acceleration mechanism?
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