

Large-scale structure in the KiDS/DR3: from groups to voids

Marcus V. Costa-Duarte IAG/USP

mvcduarte@usp.br

Astro 12hs - IAG/USP - 19/10/2017

Summary

- Introduction
- GAMA and KiDS surveys
- The galaxy environment in GAMA/G3C groups using the KiDS/DR3 database
- Voids identification and weak lensing analysis (ongoing project)

What do we observe in the local Universe?

What do we observe in the local Universe?

What do we observe in the local Universe?

And the analytical models...

- Assuming SFR efficiency, metal enrichment and gas removal laws (as function of stellar mass), it is possible to constraint the time scales and final characteristcs of galaxies.
- Strangulation or outflows?

Peng, Maiolino and Cochrane +15

And the analytical models...

And the analytical models...

- Assuming SF metal enrich 0.3 removal laws stellar mass) to constraint? 0.2 scales and fi characterist 0.1
- Strangulatio

- N-body simulations are important to investigate the halo/LSS formation and evolution through cosmic time.
- The understanding of the baryonic part says how much we know about star formation, gas cooling, etc.
- AGN feedback, SF laws, SAMs

EAGLE Simulation (Schaye+15)

GSMFs in EAGLE simulations

Hydrodynamical treatment

Other galaxy properties in EAGLE simulations

- The galaxy evolution is mostly in agreement between observations and simulations.
- However, it is still not defined when/where/how each quenching mechanism acts.

GAMA and KiDS surveys

The GAMA survey is a <u>spectroscopic survey</u> of 300k galaxies down to r=19,8 over 286 deg².

- <u>G3C catalogue is a galaxy group catalogue</u> which has been compiled by using an <u>adaptive FoF algorithm</u>.
- A galaxy population analysis of G3C groups suffers from galaxy completeness due to magnitude-limited sample.

- The KiDS survey covers ~450 sq.deg. in ugri bands down to r=25.

- <u>KiDS sample</u>: volume-limited sample consists of galaxies brighter than r<22.5 and Mr<-19.3.
- Propose a galaxy environment technique adapted to include PDF(z).
- Apply it on KiDS database and <u>investigate the G3C galaxy population as</u> <u>function of the environment</u>.

The galaxy environment technique

- Galaxy environment is defined as local density of galaxies within a certain volume.
- The k-Nearest Neighbour (kNN) technique is adapted to include the PDFs.
- Neighbours -> Probability of being a neighbour
- We consider a cylinder which its length follows the photo-z uncertainties of KiDS photo-zs.
- Test this technique on KiDS mock catalogue

 $\sigma(R_0, z_0) = \frac{S_k}{\pi R_{\rm kNN}^2}.$

 $P_{i} = \int_{z_{0} - \Delta_{z}(1 + z_{0})}^{z_{0} + \Delta_{z}(1 + z_{0})} PDF(z)dz.$

KiDS mock catalogue

- KiDS-like sample extracted from Merson+12 lightcones.
- The photo-zs are generated by using the match GAMA/KiDS.
- Contamination due to photo-z uncertainties and border effects are taken into account.

The galaxy environment technique

Ζ.

The galaxy environment technique

denser environments

- This technique was <u>able to</u> <u>recover</u> the relation between the luminosity, local density and (g-r).
- Denser environments present higher fraction of red galaxies for a certain luminosity bin.

The G3C galaxy population analysis

- The density profiles of G3C groups becomes more prominent for higher group masses.

The G3C galaxy population analysis

- Higher fraction at the center for more luminous galaxies.
- Most luminous
 bins -> few
 number statistics
- Our analysis is limited by the photo-z uncertainties.

The G3C galaxy population analysis Normalised G3C radius

- High dominance of red galaxies up to R/R₁₀₀<0.5.
- <u>Small shift in density</u> <u>contrast at the center</u>, between blue and red galaxies
- At 0.5<R/R₁₀₀<1, blue galaxies start being predominant.
- On the outskirts, blue galaxies are the majority (~2:1).
- Projection effects will be taken into account.

Conclusions

- We demonstrated the capability of the adapted k-NN technique to recover the galaxy environment in G3C groups using a (deeper) KiDS sample.
- Systematically higher fraction of red galaxies at central regions of more massive G3C groups ($R/R_{100} < 0.5$), indicating more intense environment.
- The density contrast distribution for red galaxies present an excess of high density regions when compared to the blue one.
- However, our results were limited by the KiDS photo-z uncertainties.
- Perspective: projection effects will be taken into account using PDFs of galaxies.
- Apply this technique in other photo-z surveys: J-PAS, S-PLUS and J-PLUS.

A weak lensing study of troughs using the KiDS, GAMA and MICE galaxy catalogues

Browers et al., in preparation

<u>Ongoing project...</u>

- Troughs -> projected underdensities regions in the galaxy density field.
- Weak lensing analysis using GAMA and KiDS volume-limited samples.

Mellier99

Ongoing project...

- Troughs -> projected underdensities regions in the galaxy density field.
- Weak lensing analysis using GAMA and KiDS volume-limited samples.
- Ridges and Troughs are identified using fixed apertures in the sky.

Ongoing project...

