Sigam a Energia

FOLLOW THE LIFE

- Solvent
- Biogenic elements
- Source of Free Energy

searches for life within our solar system commonly retreat from a search for life to a search for "life as we know it," meaning life based on liquid water, a suite of so-called "biogenic" elements (most famously carbon), and a usable source of free energy.

(Chyba & Hand, 2005, p. 34)

SIGA A VIDA

- Siga a água (Follow the water)
- Siga o carbono
- Siga o nitrogênio
- Siga o fósforo
- ⇒ Siga a energia
 - Siga a entropia
 - Siga a informação
 - Siga o significado

How does life get the energy?

- Photosynthesis
- A) Oxygenic:
- $CO_2 + H_2O + h\nu (Energy) \rightarrow CH_2O + O_2$
- B) Anoxygenic
- $CO_2 + 2H_2S + h\nu (Energy) \rightarrow CH_2O + 2S + H_2O$

In reality: $6CO_2 + 6H_2O + hv (Energy) \rightarrow C_6H_{12}O_6 + 6O_2$ Glucose

How does life extract the energy?

- Respiration
- $CH_2O + O_2 \rightarrow CO_2 + H_2O + Energy$

In reality:

- $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$
- Fermentation

 $C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_6O + Energy$

But there are ways to get energy without photosynthesis.

- Methanogenesis
- $CO_2 + 4 H_2 \rightarrow CH_4 + 2H_2O + Energy$
- Sulfate reduction

 $4H_2 + SO_4^{2-} \rightarrow S^{2-} + 4H_2O + Energy$

ATP

• Every living cell uses ATP (adenosine triphosphate) to store and release energy

FOLLOW THE PHOSPHOROS?

FOLLOW THE LIFE

- Solvent
- → Biogenic elements
 - Source of Free Energy

searches for life within our solar system commonly retreat from a search for life to a search for "life as we know it," meaning life based on liquid water, a suite of so-called "biogenic" elements (most famously carbon), and a usable source of free energy.

(Chyba & Hand, 2005, p. 34)

SIGA A VIDA

- Siga a água (Follow the water)
- Siga o carbono
- Siga o nitrogênio
- ⇒ Siga o fósforo
 - Siga a energia
 - Siga a entropia
 - Siga a informação
 - Siga o significado

Nucleotide

Each nucleotide:
1) Five-carbon sugar molecule
2) One or more phosphate groups
3) Nitrogen-containing compound – nitrogenous base

Figure 1.7 (a) The structure of a nucleotide consisting of a phosphate group, sugar molecule and nitrogenous base (cytosine in this instance). (b) Nucleotides polymerize by simple reactions that involve the loss of water to form nucleic acids. ((a) Zubay, 2000)

Classification of living organisms by carbon and energy sources

- Autotroph organism gets carbon directly from the atmosphere (CO₂)
- Heterotroph organism gets carbon by consuming preexisting organics
- "Photo" energy to make ATP comes from light
- "Chemo" energy to make ATP comes from chemical reactions (chemical disequilibrium)

Two primary sources of energy

Sun

Earth's Interior

Solar Radiation:

The source for 99.9% of Earth's energy

03/01/24 13:19

NASA/ESA SOHO

- Total luminosity of a star is determined by the temperature of the stellar surface.
 - The total amount of radiation received by a planet would depend on the position of a planet with respect to a star.
- The stellar surface temperature also determines the spectrum (the wavelengths at which the star mostly emits) of the received radiation by the planet
 - The atmospheric absorption alters the spectrum of the of the radiation at the surface of the planet

Electromagnetic Spectrum

Visible Light (VIS)

0.7 to 0.4 μm

Our eyes are sensitive to this region of the spectrum

Red-Orange-Yellow-Green-Blue-Indigo-Violet

Solar Spectrum

The sun emits radiation at all wavelengths

Most of its energy is in the IR-VIS-UV portions of the spectrum

~50% of the energy is in the visible region ~40% in the near-IR ~10% in the UV

Wavelength (m)

Categories of UV Radiation

<u>Name</u> <u>Wavelength(s)</u> <u>Biological Effect</u>

UV-A > 320 nm Relatively harmless

UV-B 290-320 nm Harmful

UV-C < 290 nm

Very harmful, but blocked by O_3 and O_2

UV-B concern

- DNA and proteins absorb UV-B
- Animals: skin cancer, cataracts, suppressed immune system
- Plants: photosynthesis inhibition, leaf expansion, plant growth ...

Stellar spectrum is important for life!

- Photosynthesis requires visible radiation (0.4-0.7 microns)
- Photosynthesis can be inhibited by UV radiation (UV-B)
- Organisms have to protect themselves from UV but have to be able to absorb visible radiation at the same time.

- Em 1792, Thomas Wedgewood observa em um forno que a <u>temperatura</u> está relacionado com a <u>cor</u> da luz emitida por um <u>objeto aquecido</u>.
- No final do séc. XIX surge o conceito do corpo negro: um objeto (abstrato) que <u>absorve toda a radiação</u> e não emite nem reflete nada.
 - Na prática o objeto <u>emite radiação</u> e a distribuição desta radiação <u>depende apenas da temperatura do objeto</u>.
- Em 1898, Wilhelm Wien propôs uma lei de distribuição da intensidade da radiação de corpo negro para <u>altas freqüências</u>, mas que falha em comprimento de onda longo.
- Lord Rayleight e James Jeans obtêm uma lei válida para <u>baixa</u> <u>freqüência</u>, mas que leva à "<u>catastrofe do ultravioleta</u>" (diverge para pequenos comprimentos de onda).

• A teoria clássica do final do século XIX não consegue explicar a radiação do corpo negro

- Em 1900, utilizando a <u>teoria quântica</u>, Max Plank descobre a distribuição de corpo negro, conhecida como <u>lei de Planck</u>.
- Intensidade, *I*(v, *T*) corresponde ao <u>espectro de corpo negro</u> para uma dada temperatura.

 Estrelas são exemplo de astros "quase corpos negros".

 <u>Lei de Wien</u> (descoberta em 1893): relação entre o comprimento de onde a <u>emissão é máxima</u> e a <u>temperatura</u> do corpo negro.

- Em 1879, Joseph Stefan descobre empiricamente a relação entre a energia emitida por um corpo negro e sua temperatura
- Em 1884, Ludwig Boltzmann demonstra esta lei.
- Lei de Stefan-Boltzmann: $\varepsilon = \sigma T^4$
- ϵ é a energia emitida por unidade de tempo (potência) por unidade de superfície.
- $\sigma \rightarrow$ constante de Stefan-Boltzmann: 5,67×10⁻⁸ watt m⁻² K⁻⁴
- Por exemplo:
 - *T* = 5800 K (Sol) → ϵ = 6417 watt/cm² (corresponde p/ o Sol 3,9×10²⁶ watt)
 - *T* = 310 K (37°C) → ε = 524 watt/metro²
 - T = 2,7 K (radiação cósmica de fundo) → ε = 3 watt/ km² (6,7×10⁴⁸ watt p/ RCF)

- Lei de Stefan-Boltzmann: $\varepsilon = \sigma T^4$
- ε é a energia emitida (potência) por unidade de superfície.
- $\sigma \rightarrow \text{constante de Stefan-Boltzmann} = 5,67 \times 10^{-8} \text{ watt m}^{-2} \text{ K}^{-4}$
- Luminosidade: L = $4\pi R^2 \sigma T^4$ Temperatura efetiva do Sol: T=5.875 K

The Sun

- ~4.6 billion years old
- G2 class star (~8% of stars are G class) based on photospheric (stellar surface) temperature
- >100 million stars are of the same class in our galaxy
- Not only supports almost all life on Earth via photosynthesis but also drives the Earth's climate and weather

The Sun – Basic Facts

- Distance from Earth
 - $-1 \text{ AU} = 1.5^{*}10^{8} \text{ km}$
- Travel time for Light to Earth
 About 8 minutes
- Travel time for solar wind to 1 AU

 A few days
- Mean surface temperature
 5800K
- Temperature in the Center
 1.55x10⁷ K
- Temperature in the Corona
 - A few million K

The Sun – Basic Facts

- Mass
 - 333,000 Earth Masses
 - 99% mass of the Solar system
- Diameter
 - 103 Earth Diameters
- Average Density
 - 1410 kg/m³
- Composition (by mass)
 - 74% Hydrogen, 25%
 Helium, 1% other elements

How does the Sun Influence Earth?

- Provides the energy that creates life, warms the planet, drives the dynamic atmosphere and oceans. UV light can cause mutations.
- Geomagnetic storms
 - Aurora
 - Power-grid failures (Canada, 1989); Telecommunications failures
- High-energy solar particles
 - can destroy ozone
 - lethal radiation dosages to astronauts and passengers/pilots on polar air-travel routes

Ejected material encounters the Earth's magnetosphere

Earth

Solar energy from hydrogen fusion

2004/01/30 01:19

Solar Radiation

Photosynthesis

Sun is in a hydrostatic balance – neither expands nor shrinks

 Gravitational force is balanced by the energy from thermonuclear fusion

Proton-Proton chain

The Sun's Energy Source is Thermonuclear Fusion in its Core

- Proton-proton chain
 - Four hydrogen nuclei
 "fuse" to form a single
 helium nucleus
- Thermonuclear fusion occurs only at the very high temperatures at the Sun's core
- Will continue to heat the Sun for another 5 billion years

The Structure of the Sun

The Solar Constant

- Solar Luminosity
 - Total energy emitted by the Sun per second
 - $-L = 3.9 \times 10^{26} W = 3.9 \times 10^{26} Joules/sec$

One Joule is the work done, or energy expended, by a force of one Newton (N) moving an object one meter along the direction of the force

The force of Earth's gravity on a 100 kg human is about 1000 N

- 1 Calorie (1 cal) = 4,184 J
- 1 "Calorie" (food energy) = 1 kcal
- 1 gram TNT (trinitrotoluene) = 4184 J

The solar constant

Solar Flux

 Luminosity divided by the area (the amount of energy per sec <u>per area</u>)

- Solar Constant
 - Solar Flux at the Earth's orbit R_{earth-orbit}
 =1.5x10⁸ km

 $-L/(4\pi \times (R_{earth-orbit})^2) = \dots$

The solar constant

Each planet has its own solar constant...

As energy moves away from the sun, it is spread over a greater and greater area.

This is the Inverse Square Law

Some Basic Information:

Area of a circle = πr^2

Area of a sphere = $4 \pi r^2$

Copyright © 2004 Pearson Prentice Hall, Inc.

 $S_{Earth} = S_0 = 1370 \text{ W/m}^2$

$$S_{Mars} = ? R_{Mars orbit} = 1.52 AU$$

 $S_{Venus} = ? R_{Venus orbit} = 0.72 AU$

$$S_{Jupiter} = ? R_{Jupiter orbit} = 5.2 AU$$
 Venus

$S_{Venus} = 2642.8 \text{ W/m}^2 \text{ at Venus orbit}$

$S_{Earth} = 1370 \text{ W/m}^2$ at Earth orbit

$S_{Mars} = 593.0 \text{ W/m}^2$ at Mars orbit

 $S_{Jupiter} = 50.7 \text{ W/m}^2$ at Jupiter orbit

Equator vs. Poles

- Earth is spherical
- The same solar beam would "cover" different areas in the equatorial and polar regions
- Polar regions would always get less solar flux than equatorial regions

Copyright © 2004 Pearson Prentice Hall, Inc.

But the Sun is not really constant !

- Solar luminosity varies
- What causes this variability is an active area of research

Total Solar Irradiance

Solar Evolution

Solar Luminosity versus Time

Faint Young Sun is important for climate. Not so critical for photosynthesis.

Why the Sun gets brighter with time.

- H fuses to form He in the core
- Core becomes denser
- Core contracts and heats up
- Fusion reactions proceed faster
- More energy is produced ⇒ more energy needs to be emitted

The boundaries of the Habitable Zone evolve with time

Continuous Habitable Zone (CHZ)

 A region, in which a planet may reside and maintain liquid water throughout most of a star's life.

Sun as an energy source

- Sun is the main source of energy on the Earth's surface
- Sun produces energy through thermonuclear fusion in the core
- The solar surface (photosphere) emits this energy in the form of electromagnetic waves (mostly at visible wavelengths)

Sun as an energy source

- Solar flux decreases as radiation spreads out away from the Sun
- Planets are exposed to some small amount of the total solar radiation
- A small portion of that radiation can be used for photosynthesis
- Other biota can eat energy-rich organic molecules from photoautotrophs or each other.

Energy/food chain

Photosynthesis

Respiration

Solar Radiation

Other sources of energy.

- Earth is geologically active
- Earthquakes, Volcanoes and slow motion of the continents (plate tectonics) do not depend on the energy from the Sun
- There should internal heat source!
- The heat provides energy for chemosynthesis instead of photosynthesis

Storing of energy by life

- Photosynthesis
- Oxygenic:
- $6CO_2 + 6H_2O + h\nu \text{ (Energy)} \rightarrow C_6H_{12}O_6 + 6O_2$
- Anoxygenic
- $CO_2 + 2H_2S + h\nu \text{ (Energy)} \rightarrow CH_2O + 2S + H_2O$
- Chemosynthesis
- Methanogenesis $CO_2 + 4 H_2 \rightarrow CH_4 + 2H_2O + Energy$ - Sulfate reduction

 $4H_2 + SO_4^{2-} \rightarrow S^{2-} + 4H_2O + Energy$

Earquakes

Volcanoes

Source of energy in the Earth's interior?

- Nuclear heating

 Radioactive decay (dominant)
- Gravitational Heating
 - Heat from accretion
 - Heat released from Earth's differentiation
 - Tidal heating (negligible for Earth)

Nuclear Energy

Radioactive decay

- Radioactive decay is the process in which an unstable *atomic nucleus* loses energy in the form of particles or electromagnetic waves and transforms towards a more stable *nucleus*.
- Example:
- ${}^{239}\text{Pu} \rightarrow {}^{235}\text{U} + {}^{4}\text{He}$

used in weapons

Radioactivity on Earth

- Earth rocks has some amount of Uranium (and other radioactive elements potassium)
- Uranium can spontaneously decay to Thorium and eventually to Lead (stable)
- Energy is released during radioactive decay

In reality ²³⁸U decay happens in a number of steps

Radioactive decay of: U-238

Decay of ²³⁸U to ²³⁴Th takes the longest period of time. It takes 4.468 billion years to convert half of ²³⁸U to ²³⁴Th!

Present-day major heat-producing isotopes				
Isotope	Heat release [W/kg isotope]	Half-life [years]	Mean mantle concentration [mass fraction]	Heat release [W/kg mantle]
238	9.46 × 10 ⁻⁵	4.47 × 10 ⁹	30.8 × 10 ⁻⁹	2.91 × 10 ⁻¹²
²³⁵ U	5.69 × 10 ⁻⁴	7.04 × 10 ⁸	0.22 × 10 ⁻⁹	1.25 × 10 ⁻¹³
²³² Th	2.64 × 10 ⁻⁵	1.40 × 10 ¹⁰	124 × 10 ⁻⁹	3.27 × 10 ⁻¹²
⁴⁰ K	2.92 × 10 ⁻⁵	1.25 × 10 ⁹	36.9 × 10 ⁻⁹	1.08 × 10 ⁻¹²

In reality ²³⁸U decay happens in a number of steps

Radioactive decay of: U-238

Decay of ²³⁸U to ²³⁴Th takes the longest period of time. It takes 4.468 billion years to convert half of ²³⁸U to ²³⁴Th!

Gravitational Energy
Internal heat from accretion.

- Nebular hypotheis: The solar system formed from a collapse of the giant molecular cloud
- Due to some trigger (supernova) a specific region of the cloud became denser
- Due to gravity that region started to attract more and more hydrogen
- Eventually in a specific region of the cloud the density of hydrogen became high enough to start thermonuclear reactions – Sun.

Giant Molecular Cloud

- Remaining dust and grains grew to clumps (diameter ~10 meters)
- Clumps grew into planetesimals (diameter ~5 km)
- Planetesimals grew into planets
- Tremendous amount of energy was released when planetesimals ran into each other – accretion

Accretion (continued)

- We still see the evidence of such collisions on the surface of the Moon
- There are a few craters on the Earth's surface as well

How much energy is in an impactor?

- Let's consider an impactor with radius ~10 km which collides with Earth at 20 km/sec
- How much energy it will release?
- Density 3 g/cm³ = 3000 kg/m³
- $M = Density^* (4/3) * \pi^* R^3$
- $E(Kinetic) = M^*V^2/2$
- Convert (J) to grams of TNT using
- 1 gram TNT (trinitrotoluene) = 4184 J
- E (gram TNT) = ...???

Internal energy from differentiation

Early Earth heats up due to radioactive decay and impacts. Over time the temperature of the planet interior rises towards the Fe-melting temperatures

The iron "drops" follow gravity and accumulate towards the core. Lighter materials, such as silicate minerals, migrate upwards in exchange. Extra release of energy!

- Radioactive decay, accretion and sinking of heavy metals provide energy in the Earth's interior (Internal energy)
- Internal energy is the driver of volcanism, earthquakes and plate tectonics in general
- Tectonics constantly brings "fresh" rocks and volcanic gases to the surface where they can react with chemicals in the ocean releasing energy for life

Tidal Heating

Tidal Friction

- The Earth's rotation tends to outrun the raising and lowering of the tides
- Moon's gravity exerts a small amount of drag tidal friction due to torques
- This friction gradually slows the Earth's rotation

Synchronous rotation

- The Moon always keep the same face turned toward the Earth synchronous rotation.
- Synchronous rotation closely related to tides:

 Earth's gravity effects are much stronger on the Moon → Earth would raise much stronger tides on the Moon → tidal friction would be more severe → Moon would slow down its rotation much faster → synchronous rotation

Tidal Friction is particularly severe for the moons of the Jovian planets

Jupiter's satellites

- Galileo (1610) discovered four large satellites (moons) of Jupiter.
- Galilean moons: Io, Europa, Ganymede and Callisto

Relative characteristics

	lo	Europa	Ganymede	Callisto	Moon
Radius (km)	1822	1561	2631	2410	1738
Mean density (g/cm³)	3.53	3.01	1.94	1.83	3.34
Average surface Temperature (K)	118	103	113	118	253
Period (days)	1.769	3.551	7.155	16.689	27.322

Water/ice density is ~ 1 g/cm³

Tidal Heating

- Satellite orbits are non-circular \rightarrow
- Jupiter raises tide bulges of different height because satellite's distance to Jupiter changes
- Oscillation of bulges produce extra tidal heating
- Orbital velocity is also not constant → additional tidal heating (libration)

 Tidal heating is the way to convert orbital rotational energy of the moon and parent planet into heat → very important for the Jovian moons because the solar energy flux is so weak. Io is more volcanically active than the Earth!

Europa

- Second closest to Jupiter and the smallest of the four Galilean moons. Spectroscopic observations indicate the presence of water ice on the surface.
- Very few impact craters the surface has to be very young.
- But is the resurfacing caused by liquid water or by warm soft viscous ice?

- Tidal heating depends on the distance from the parent planet (Jupiter).
- Io is too close to Jupiter and has too much tidal heating. Callisto is too far and has to little heating – Callisto has very old heavily cratered surface.

