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Abstract
Global warming is one of the major challenges facing humanity. The increase in the Earth’s temperature and thawing of ancient
ice release viable viruses, bacteria, fungi, and other microorganisms which were trapped for thousands and millions of years.
Such microorganisms may belong to novel microbial species, unknown genotypes of present pathogens, already eradicated
pathogens, or even known pathogens that gained extremely robust characteristics due to their subjection to long-term stress.
These worries drew more attention following the death of a child by ancient anthrax spores in Siberian in 2016 and the
reconstruction of smallpox and Spanish flu genomes from ancient frozen biological samples. The present review illustrates some
examples of recently recovered pathogens after being buried for millions of years, including some identified viable ancient
viruses, bacteria and even other forms of life.While some pathogens could be revived, genomes of other ancient pathogens which
could not be revived were re-constructed. The present study aims to highlight and alarm the hidden aspect of global warming on
the international public health, which represents future threats from the past for humanity.
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Introduction

With the continuous evolution and emergence of new un-
known pathogens in the last decades, such as SARS, MERS,
Ebola, and recently SARS2 (Covid-19), it is clear that inter-
national public health faces severe challenges. However, the
re-emergence of serious infectious diseases which were previ-
ously partially or completely eradicated represents a similar
public health hazard. One of the main reasons for the re-
occurrence of eradicated diseases is attributed to the global
warming. Among the most underestimated harmful effects
of the global warming is the melting of the ice layer and the
release of buried materials since decades including radioactive
wastes (Colgan et al. 2016), and liberates billions of tons of
carbon dioxide and methane gas into the air (Knoblauch et al.
2018), and could even release a huge amount of trapped heavy
metals to the surrounding environment and groundwater
(McConnell et al. 2018).

Thawing of frozen snow may also liberate frozen biologi-
cal materials since tens and hundreds of thousands of years,
including ancient viruses and bacteria. Microbiological exam-
ination of tissue samples obtained from a frozen mammoth in
Siberian revealed the presence of members of the genera
Carnobacterium and Lactosphera, which could be cultured
on anaerobic media (El-Sayed and Kamel 2020; Pikuta et al.
2011). Similarly, examination of the gut microbiome of the
frozen body of rhinoceros, which represents another extinct
animal species, could detect the presence of Firmicutes (main-
ly members of the family Clostridiaceae), Proteobacteria,
Actinobacteria, TM7, and Bacteroidetes (Mardanov et al.
2012). Ancient bacteria were also isolated from environmental
samples rather than the bodies of frozen animals. The diversity
of newly detected bacterial species in ice is huge. Climatic
changes that may lead to thawing of ice and the revival of
bacteria will have potential effects with unexpected conse-
quences. (Brouchkov et al. 2017). A 300,000-years-old virus
and 8 million years old bacteria could be isolated from
Siberian and Antarctica, respectively. Fourteen bacterial iso-
lates could also be isolated from 750,000-year-old ice samples
obtained from the Tibetan Plateau. In 2016, ancient anthrax
spores stored in frozen soil in Siberian resulted in the death of
a child died and hospitalization of an additional 20 persons
(El-Sayed and Kamel 2020; Christner et al. 2003). However,
the melted snow also released unknown bacteria/viruses that
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were trapped and preserved for thousands and possibly mil-
lions of years. Microbiological investigation of ice samples
obtained from the Tibetan Plateau revealed four types of
known viruses in addition to 28 novel viral genera and abun-
dant bacteria. Similarly, the investigation of frozen samples
from Siberia described for the first time a 30,000-year-old
giant virus. The virus retained its viability and infectivity
(Legendre et al. 2015).

The international worry is not only limited to the revival of
unknown ancient viruses but also pathogens which were al-
ready eradicated. Fatal pathogens as smallpox may re-emerge
from a mummified corpse (Reardon 2014).

Various bacteria respond to environmental stress by enter-
ing a viable non-culturable state (VBNC) (McDougald et al.
1999), even the presence of killed/non-viable bacterial DNA
in the melted ice represents a great threat according to the
concept of Griffith’s experiment. In 1928, Frederick Griffith
mixed a heat-killed rough strain with a smooth strain of
Streptococcus pneumoniae and injected the mixture in a
mouse. The mouse died due to bacterial transformation. It is
worth mentioning that killed microbes in glacial ice are very
well preserved due to the sub-zero temperature by (Griffiths
2000). Moreover, the revived ancient bacteria were subjected
to stress for many thousands and probably millions of years
which improved their ability to survive and overcome unsuit-
able environmental conditions. Among the developed survival
mechanisms of newly discovered bacteria is their ability to
resist the damaging effect of antibiotics (Petrova et al. 2011;
D'Costa et al. 2011).

Identification of viable ancient viruses

The high robustness of smallpox virus (variola) enabled the
virus to survive under different unfavourable conditions.
Remnants of smallpox DNA could be detected around the
world. The viral DNA could be identified in skin lesions of
the 3200-year-old mummy of Rameses V in Egypt (Reardon
2014).

In 1991, in a small village near the North Pole, Russian
experts discovered a wooden vault which was full of frozen
victims who died from smallpox in the nineteenth century
during the smallpox epidemic there. This discovery arose the
question about the possible comeback of smallpox following
floods induced by glacial ice thawing due to global warming.
This worry is justified by the robust properties of smallpox
and its ability to withstand freezing for a long time (Stone
2002; Ambrose 2011; Biagini et al. 2012).

Although all attempts to isolate viable variola from pre-
served human scabs and corpses were not successful, the viral
genome could be re-construct through sequencing the detect-
ed DNA fragments, which represents a huge threat for public
health (Reardon 2014; Duggan et al. 2016). Like smallpox

virus, different influenza viruses are also known to persist
natural freezing for a long time (Zhang et al. 2006). In 1997,
several trials were attempted to revive the 1918 pandemic
influenza virus from frozen samples. Although these trials
failed to achieve their goal, they could partially sequence
and characterize partial sequences of the restored RNA
(Taubenberger 1997; Reid et al. 1999). The trials continued
later with the development of reverse genetics technology
where the virus could be completely re-constructed
(Taubenberger et al. 2007, 2012). Additional unknown virus-
es could also be detected in a 700-year-old caribou frozen
stool which was stored in a permanent ice layer. Two viruses
(RNA and DNA viruses) could be recovered and character-
ized in two different laboratories from the frozen faecal sam-
ple (Ng et al. 2014).

One of the oldest viable viruses was detected in ice samples
obtained fromGreenland. Various genotypes of the plant virus
(Tomato mosaic tobamovirus) could be identified in approx-
imately 140,000-year-old ice layers. The highly conserved
viruses are characterized by their high stability and their wide
host range (Castello et al. 1999).

The newly discovered ancestral amoeba-infecting DNA
viruses (Pithovirus sibericum andMollivirus sibericum virus-
es) are estimated to be older than 30,000 years old. It belongs
to an unknown type of giant viruses. They are among the
largest viruses ever known and can even be seen under a light
microscope. Although Pithovirus sibericum is 1.5 μm in
length, its genome is relatively small (approximately 600 kb)
packaged in uniquely amphora-like shaped particles. The vi-
rus kept its viability and infectivity (Legendre et al. 2014,
2015.

Another virus (Emiliania huxleyi virus) was also detected
in 7000-year-old sediment samples obtained from the Black
Sea. The obtained data confirmed the ability of the virus to
survive hard environmental conditions for centuries (Coolen
2011).

As the viruses are defined as particles that are not alive
outside the living organism, their survival over thousands
of years was not a big surprise. The survival of ancient
frozen bacteria over millions of years despite the hard en-
vironmental conditions was not expected to date. The ad-
verse environmental conditions include not only the low
temperature but also the absence of nutrients and sources
of energy, in addition to the increase in the concentration
of nascent oxygen at low temperature (which has a dam-
aging effect on bacterial DNA /RNA and proteins).
However, the bacteria could maintain their metabolic ac-
tivities, could grow, and even could multiply through the
development of novel metabolic survival strategies, such
as methanogenesis in addition to their potential DNA re-
pair mechanisms in association with high-stress tolerance
(Lewis et al. 2008; Johnson et al. 2007; Vishnivetskaya
et al. 2000; Tuorto et al. 2014; Hultman et al. 2015).
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It is also worth mentioning that viable bacteria could be
detected not only in frozen ice but also in ancient highly pre-
served fossils. Bacillus sphaericus and Staphylococcus
succinus could be revived and cultured from 25 to 40
million-year-old Dominican amber (Greenblatt et al. 1999).

Identification of viable ancient bacteria

Ancient DNA fragments from various human pathogens
could be extracted and identified. Some of these DNA frag-
ments originated from the Bronze Age. Among the identified
pathogens are DNA from Mycobacterium tuberculosis,
Mycobacterium leprae, Vibrio cholerae, Yersinia pestis, and
Helicobacter pylori (Margaryan et al. 2018).

Generally, the isolation of various gram-positive and gram-
negative bacteria from ancient ice samples has been previous-
ly reported. In Siberian samples, the prevalence of gram-
negative bacteria was much higher than gram-positive ones.
The majority of these isolates were identified as Arthrobacter
(Actinobacteria) and Planococcus (Firmicutes) (Shi et al.
1997; Hinsa-Leasure et al. 2010).

Few pockets of 34-million-year old ice layers in the
Antarctic continent are still preserved. Investigation of the
ice samples revealed the presence of viable metabolically ac-
tive bacteria, which are estimated to be 8 million years old.
These bacteria are among the oldest known living organisms
on earth. The revival of the bacteria was only possible follow-
ing long incubation at 4 °C in the dark. Sequencing of the
DNA of the revived bacteria identified them as Arthrobacter
roseus (Bidle et al. 2007). Relatively younger viable bacteria
which are 3.5 million years could also be isolated from
Eastern Siberia. Sample examination detected various ar-
chaea, phototrophic cyanobacteria, algae, fungi, and even pro-
tozoa in addition to heterogeneous bacterial species in the
samples. The isolated bacteria belonged mainly to gram-
negativemembers. The majority of isolates could be identified
as Arthrobacter phenanthrenivorans , Subtercola
frigoramans, and Glaciimonas immobilis (Zhang et al. 2013).

Meanwhile, viable and highly robust 3.5-million-year old
strains of Bacillus sp., including Bacillus cereus and Bacillus
anthracis, were reported (Nicholson et al. 2000; Fursova et al.
2012). The dominance of spore-forming bacteria in ancient
Canadian ice samples was also reported. This is attributed to
their ability to withstand hard environmental conditions
(Steven et al. 2007).

On the other hand, microbiological examination of 3.5-
million-year old samples from Eastern Siberia revealed the
absolute dominance of microbial members of three phyla
Bacteroidetes, Proteobacteria, and Firmicutes (representing
about 99% of the identified bacterial population). In contrast,
the remaining 1% was represented by members of
Deinococcus-Thermus, Cyanobacteria/Chloroplast,

Fusobacteria, and Acidobacteria. In turn, members of the
fami l i e s Chi t inophagaceae , Caulobac teraceae ,
Sph ingomonadaceae , Brady rh i z ob i a c eae , a nd
Halomonadaceae clearly dominated over other microbes
(Brouchkov et al. 2017).

Younger samples from Northeast Eurasia (approximately 3
million years old) were also examined. Characterization of the
cultured bacteria revealed three major lineages: gamma-
Pro t e obac t e r i a (ma i n l y Xan t homonada c e a e ) ,
Actinobacteria, and Firmicutes. In addition, various aerobes
could be isolated from the ice samples including
Actinomycetales (Arthrobacter and Microbacteriaceae);
Firmicutes (Exiguobacterium and Planomicrobium);
Bacteroidetes (Flavobacterium); and finally alpha- and gam-
ma-Proteobacteria represented by Sphingomonas and
Psychrobacter, respectively (Vishnivetskaya et al. 2006).
About 30% of the grown bacteria could build endospores.
The isolated bacteria from the same location showed variation
according to the age of the samples. In contrast, the older
samples (up to 3 million years) revealed mainly high-GC
gram-positive bacteria; in addition to beta- and gamma-
Proteobacteria, younger samples from the region (up to
8000 years) contained mainly low-GC gram-positive bacteria
(Shi et al. 1997). At the same time, the microbial diversity of
younger samples clearly increased, while the prevalence of
spore-forming bacteria in the microbial population decreased.
The same findings were also observed in ice samples originat-
ing from Siberia, Canada, and Norway, where the spore-
forming bacteria (mainly Clostridia and Bacilli) were more
prevalent in ice layers (up to 33,000 years old), while non-
spore-forming species dominated in older samples (about
600,000 years old) (Liang et al. 2019).

Identification of other forms of life

The melted ancient ice samples contain not only viruses and
bacteria but also fungi, amoeba, nematodes, and even arthro-
pods. In 2013, a mycological examination of ancient Siberian
permafrost sediment detected different fungal species which
were viable and metabolically active (Zhang et al. 2013).

Similarly, various viable amoebae strains representing un-
known species from the genus Flamella (Amoebozoa,
Variosea) could be isolated from frozen Arctic samples.
Although the amoebae cysts were conserved over thousands
of years in frozen ice, they kept their viability and ability to
divide (Shmakova et al. 2016). Similarly, examination of
30,000 to 40,000-year-old permafrost deposit samples could
also detect viable nematodes (Panagrolaimus aff .
Detritophagus (Rhabditida) and Plectus aff. Parvus
(Plectida)) (Shatilovich et al. 2018). They were found to be
very tolerant to hard environmental conditions and low tem-
peratures up to − 80 °C (Kagoshima et al. 2012). In addition,
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ice samples from Antarctica harboured freeze-tolerant arthro-
pods such as the midges Belgica antarctica and Eretmoptera
murphyi (Teets and Denlinger 2014).

In conclusion, the consequences of global warming on in-
ternational public health are still underestimated. The climatic
changes have now been shown to influence various aspects of
human and animal health and represent a serious threat to the
existence of humanity.
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