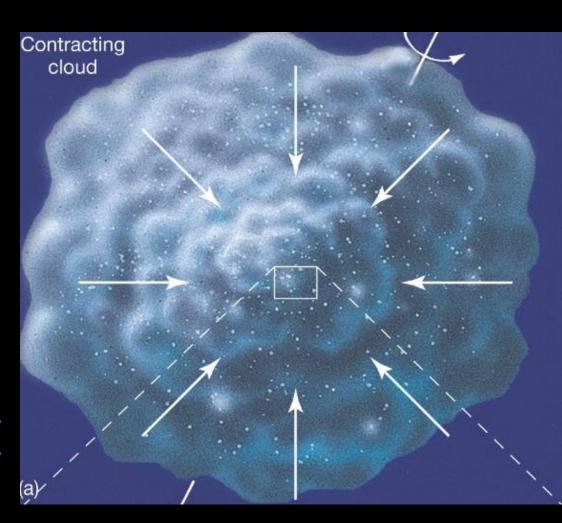
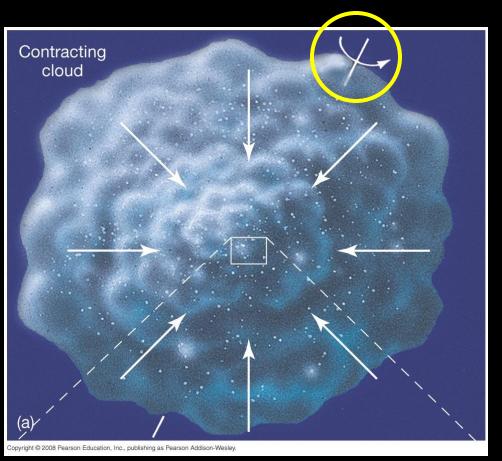
AULA7

FORMAÇÃO DO SISTEMA SOLAR E EXOPLANETAS AGA0215


Profa. Thais Idiart

Contração Nebular

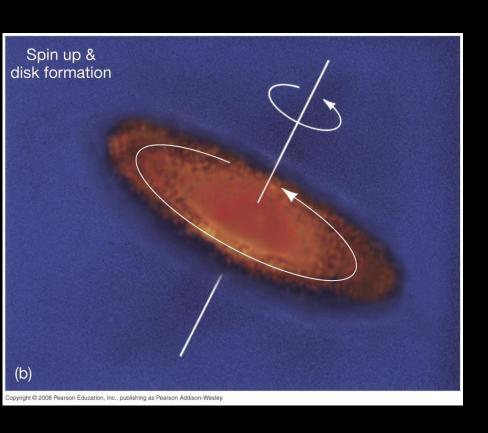
Primeiro modelo de contração nebular René Descartes (século XVII)


Nuvem grande e rotante de gás e poeira começa a se contrair sob a influência de sua própria gravidade ⇒ fica + densa e mais quente no seu centro e eventualmente forma uma estrela.

Enquanto o Sol se forma no centro mais quente e denso da nuvem, os planetas se formam nas regiões mais externas e frias ⇒ planetas são subprodutos da formação de estrelas.

Contração Nebular

Laplace (1796) ⇒ demonstração <u>QUALITATIVA</u> do colapso de uma nuvem de gás que gira (formato do sistema solar)

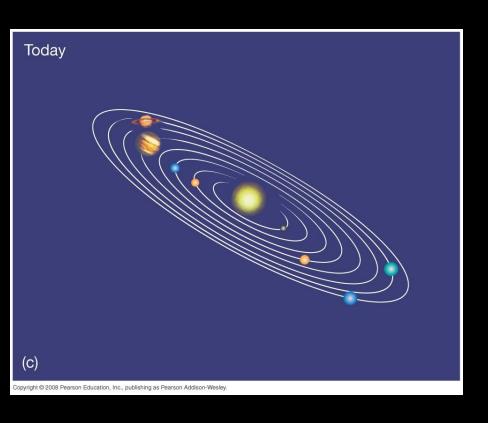

Quanto mais uma nuvem interestelar se contrai, mais rápido ela gira

conservação de momentum angular :

$$L = m. v \times r$$

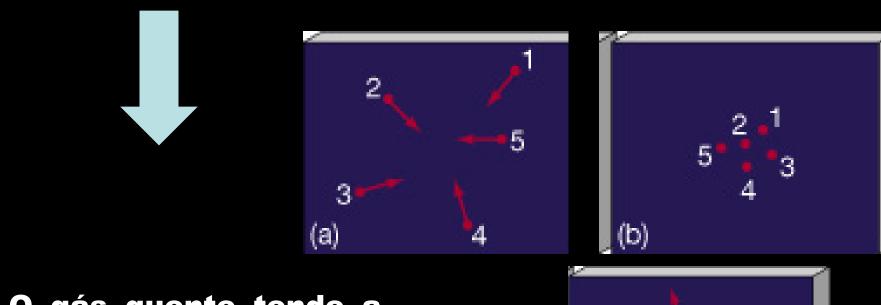
Contração Nebular

Laplace (1796) ⇒ demonstração qualitativa


Força centrífuga se opõe ao colapso na região perpendicular ao eixo de rotação

⇒ nuvem colapsa + rapidamente paralelo ao eixo de rotação

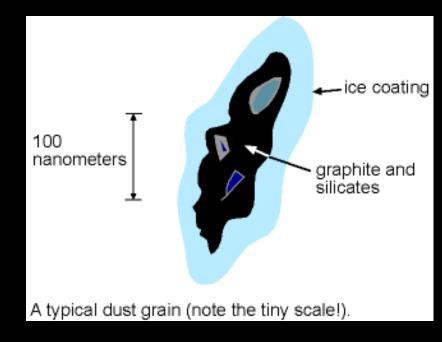
PANQUECA


Contração Nebular

Laplace (1796) ⇒ demonstração qualitativa

FORMAÇÃO DO SISTEMA SOLAR Teoria Nebular

Mas... Disco de gás quente NÃO forma conjuntos de nuvens que eventualmente formarão planetas!


O gás quente tende a se dispersar e não se aglomerar

INGREDIENTE CHAVE: PRESENÇA DE POEIRA INTERESTELAR

POEIRA: grãos (aglomerados de moléculas) formados por:

- Carbonáceos (ex. grafite)
- Silicatos
 (exemplo: Olivina (Mg²+, Fe²+)₂SiO₄)
 + cobertura de gelo

a) Resfriamento do gás quente através da presença de metais: irradia o calor através de emissão de radiação no Infravermelho IR.

Conversão de energia térmica (energia cinética) em energia radiante (fótons – partículas de luz) no IR

Para excitar os elementos mais abundantes como H ou He requer altas energias ⇒ temperaturas muito altas para excitação **COLISIONAL** de seus estados fundamentais ⇒ <u>mais provável excitar elétrons em átomos mais pesados</u>.

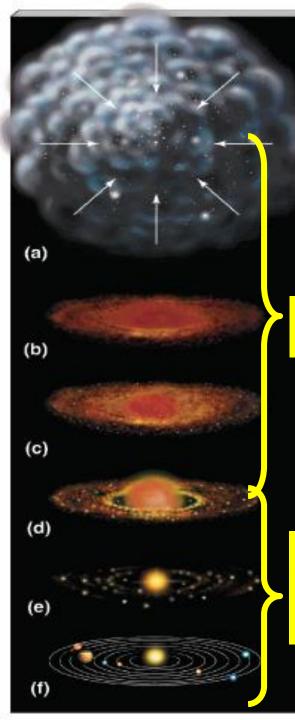
Colisão de H ou elétrons com íons e átomos neutros mais pesados: TRANSMITE ENERGIA CINÉTICA = elétron vai para um nível de maior energia. ⇒ transformação em emissão de fótons no IR quando o elétron volta para um nível de menor energia [desexcitação]

Mas... se o decaimento radiativo ocorre por meio de uma transição permitida pelas regras de seleção ⇒ é muito provável que o fóton seja REABSORVIDO novamente pelo gás (reexcitação)

➡ TRANSIÇÃO PERMITIDA É INEFICIENTE PARA O RESFRIAMENTO.

Em gases de baixíssima densidade existe uma probabilidade maior da ocorrência de TRANSIÇÕES PROIBIDAS (que não seguem as regras de seleção)

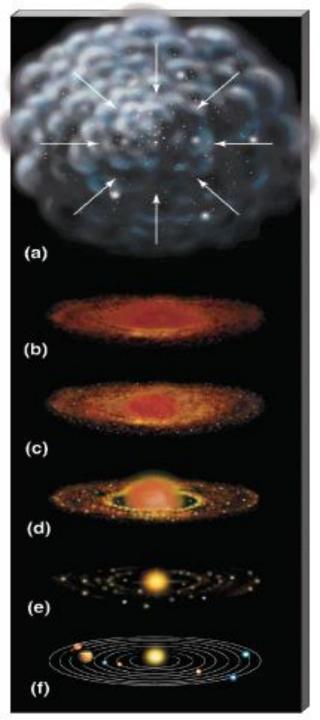
Ex. Resfriamento de uma nuvem HI (H neutro)					
Ion/Espectro	Transição	colisionador	∆E/k	λ(μm)	
entre subníveis T de excitação					
C+/[CII]	${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$	H ₂ , H, é	92K	158	
O°/[OI]	$^{3}P_{1} \rightarrow ^{3}P_{2}$	H,é	228K	63,2	
	$^{3}P_{o}^{\rightarrow}$ $^{2}P_{1}$		99K	146	


Radiação emitida por transições proibidas (regras de seleção) são menos prováveis de serem reabsorvidas

INGREDIENTE CHAVE: PRESENÇA DE POEIRA INTERESTELAR

- b) Resfriamento ⇒ diminui pressão interna ⇒ facilita colapso
- c) Facilita um agrupamento maior de moléculas através de núcleos de condensação formados pela poeira ⇒ como gotas de chuva que se formam na atmosfera da Terra: poeira e fuligem atuam como núcleos de condensação ao redor dos quais moléculas de água podem se aglomerar.

Grãos de poeira formam núcleos de condensação ao redor do quais a matéria começa a se aglomerar (efeito bola de neve)

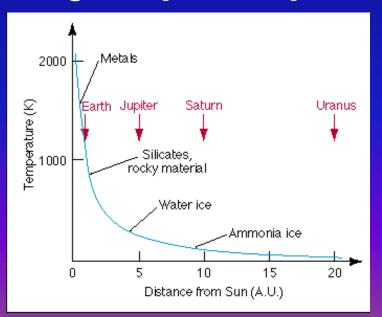

- (a) Uma nuvem de gás que tem uma rotação inicial, começa a se contrair devido a sua própria massa (ocorre o colapso gravitacional).
- (b) Quanto mais uma nuvem interestelar se contrai, mais rápido ela gira (conservação de momentum angular L = m, $v \times r$: formação de um DISCO.

1 milhão de anos

- (c) Grãos de poeira atuam como núcleos de condensação: através de colisões, moléculas se aderem aos grãos e formam pequenos corpos chamados "planetesimais" (tamanho da Lua).
- (d) A sequência das colisões forma corpos cada vez maiores, no centro forma-se o **PROTOSOL** (PROTOESTRELA).

alguns milhões de anos

- (e) A ignição termonuclear do Sol (NASCE uma estrela) aquece o disco, fazendo com que os corpos + próximos, menores e + voláteis evaporem
- (f) O sistema solar é formado com a configuração que é observada atualmente



Idade do sistema solar = 4,5×10⁹ anos

Sucesso do modelo de formação do sistema solar

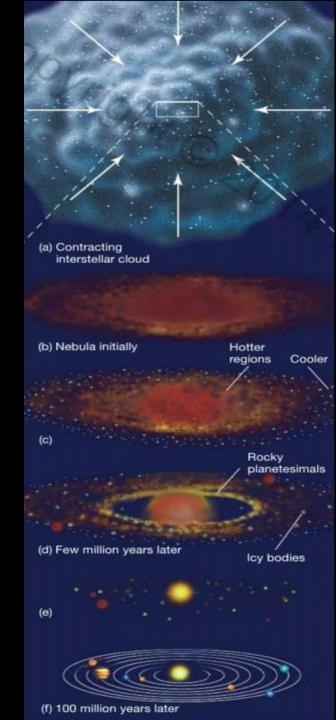
- •as órbitas dos planetas e satélites seguem a rotação original da mesma nuvem de gás e poeira que os formou.
- as órbitas dos planetas principais estão ~
 no mesmo plano (FORMAÇÃO DO DISCO)

Temperatura no sistema solar primitivo antes da aglutinação começar

Temperatura maior: somente metais podem se condensar para formar grãos.

Temperatura menor: podem se formar grãos de gelo

Resumindo:

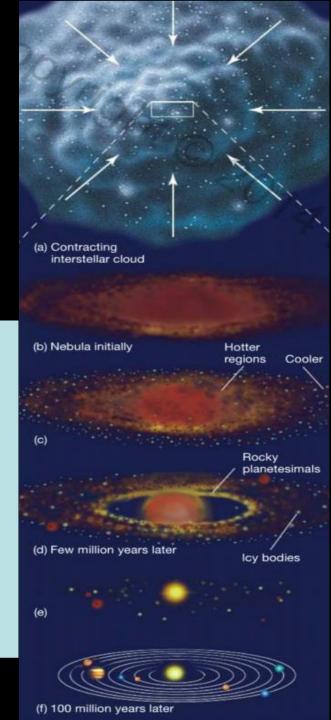

TEORIA DA CONTRAÇÃO NEBULAR + TEORIA DA CONDENSAÇÃO

Explicam as características do nosso sistema solar:

Órbitas dos planetas principais:

- 1. aproximadamente circulares
- 2. Aproximadamente no mesmo plano
- 3. na mesma direção da rotação do Sol em torno do seu próprio eixo

Consequência do formato e rotação da nuvem mãe.


Resumindo:

TEORIA DA CONTRAÇÃO NEBULAR + TEORIA DA CONDENSAÇÃO

Explicam as características do nosso sistema solar:

Crescimento dos protoplanetas através da aglomeração de matéria e posterior aquecimento da nebulosa quando o Sol se torna uma estrela:

- 1. Planetas se encontram largamente espaçados
- 2. Restos (debris) da fase de acreção + fragmentação: ASTEROIDES, O CINTURÃO DE KUIPER E NUVEM DE OORT.

Mas...

TEORIA DA CONTRAÇÃO NEBULAR + TEORIA DA CONDENSAÇÃO

TEORIAS SÃO FLEXÍVEIS NO QUE DIZ RESPEITO A DETALHES:

Exemplos:

TEORIA NEBULAR: não implica necessariamente que os planetas devem todos rotar em torno de seu próprio eixo no mesmo sentido.

TEORIA DA CONDENSAÇÃO: <u>encontros randômicos</u> <u>combinam os planetesimais em protoplanetas.</u>

Algumas características do sistema solar que podem ser modeladas por eventos randômicos:

- ❖ 1ou 2 protoplanetas podem ter colidido com Vênus na época de sua formação, dando origem à sua rotação muito lenta e retrógrada.
- ❖ o sistema Terra-Lua pode ter surgido da colisão entre a protoTerra e um objeto da ordem do tamanho de Marte.
- ❖ o eixo de rotação de Urano pode ter sido causado por colisões de dois ou mais protoplanetas na época da sua formação.

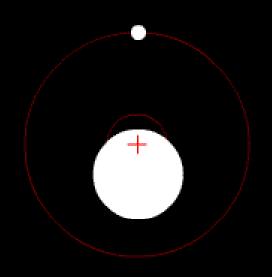
❖ interações entre os planetas jovianos e um ou mais planetesimais podem explicar algumas irregularidades nas luas destes planetas (movimento retrógrado da orbita de Tritão (maior lua de Netuno)).

PLANETAS EM OUTROS SISTEMAS SOLARES OU EXOPLANETAS

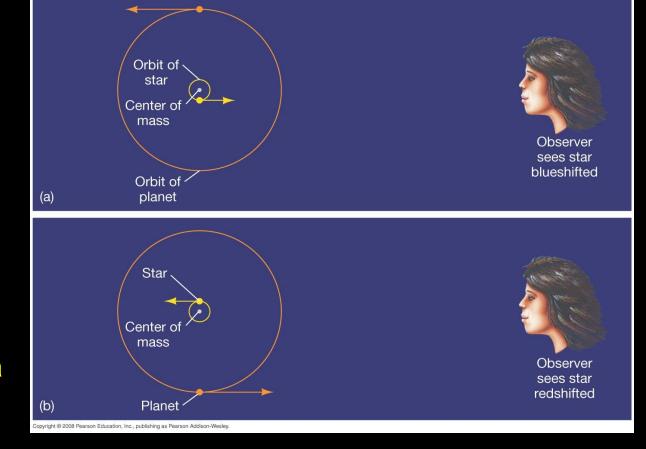
A PROCURA DE PLANETAS EXTRASOLARES

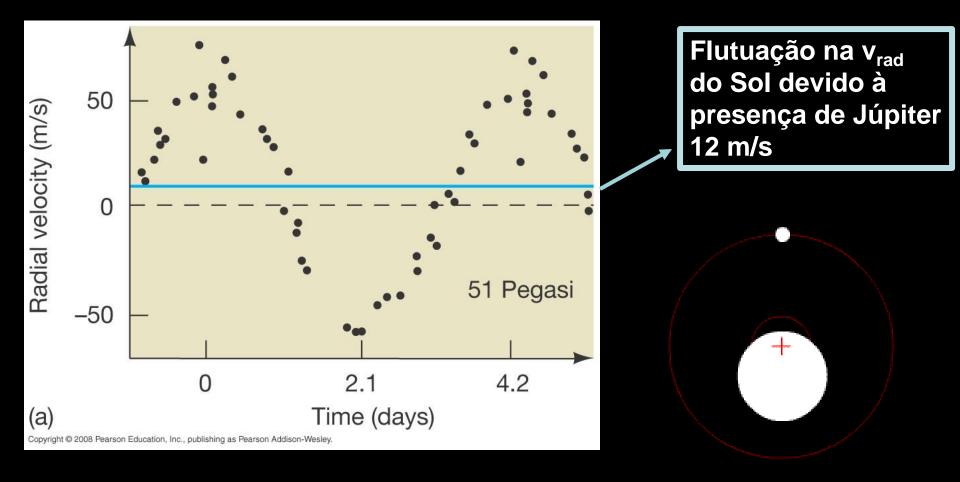
- Possibilidade de vida astrobiologia
- Teste das teorias de formação do sistema solar

Planetas extra-solares são muito fracos em brilho e os descobertos geralmente estão muito próximos às suas estrelas ⇒ difícil a observação direta.


SOMENTE ALGUMAS POUCAS CENTENAS DE PLANETAS FORAM DETECTADOS POR **IMAGEAMENTO DIRETO**

Na figura ao lado : planeta tipo Júpiter (5M₁) orbitando a 55 UA uma anã marrom (failed star), fraca o suficiente para se observar o planeta (brilho da estrela não ofusca!).


Medidas indiretas: análise da luz da estrela


VARIAÇÕES NA VELOCIDADE RADIAL DE ESTRELAS

Velocidade radial: componente da velocidade da estrela paralela a nossa linha de observação

EFEITO DOPPLER

(a) Variação na velocidade radial da estrela 51 Pegasi (estrela gêmea do Sol – 1M_☉). v_{rad}= ± 50 m/s. Período orbital ~ 4,2 dias (1994) ⇒ fornece um limite inferior para a massa m do planeta.

RECEITA DE CÁLCULO para estimar a massa de um exoplaneta

1) LEI DE KEPLER

$$(M_{\bigstar} + m_{plan}) = \frac{a^3}{P^2}$$

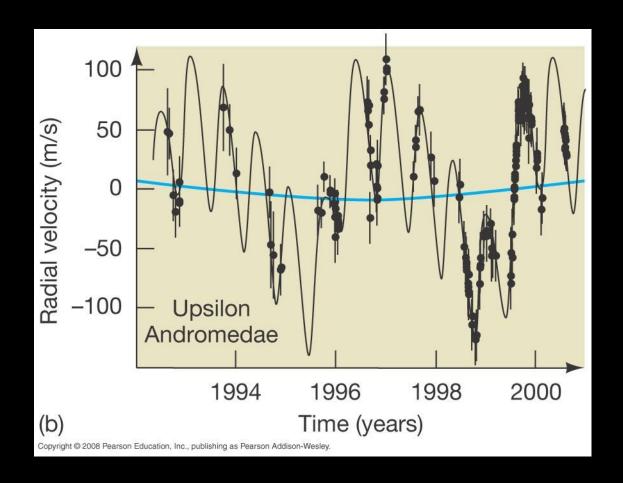
Tendo o P observado, estimativa de **a** (semieixo maior da orbita.

2) LEIS DE NEWTON

$$F_c = F_G$$

$$\frac{m_{plan}V_{plan}^{2}}{a} = \frac{Gm_{plan}M_{\bigstar}}{a^{2}} \Rightarrow V_{plan}^{2} = \frac{GM_{\bigstar}}{a}$$

Estimativa da massa do planeta:


Estimativa de V_{plan} orbital do planeta

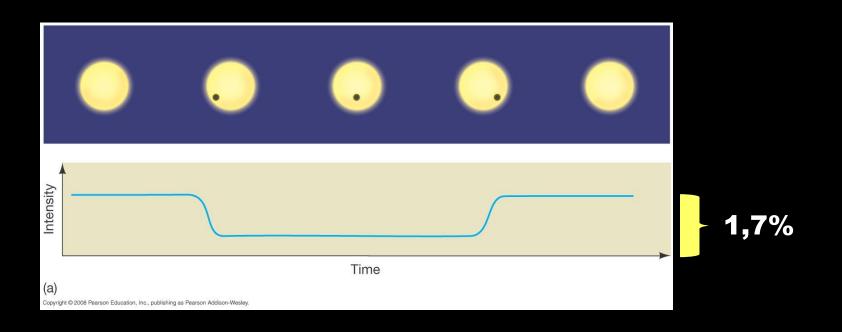
3) CONSERVAÇÃO DO MOMENTUM LINEAR

$$p_{\bigstar} = p_{plan} \Rightarrow M_{\bigstar} V_{\bigstar} = m_{plan} V_{plan}$$

LIMITE INFERIOR DE MASSA: medimos V_{rad} = a componente da velocidade orbital na linha de visada V_{\star} × sin θ

$$m_{plan}^{(\lim inf)} = \frac{M \star V_{rad} \star}{V_{plan}}$$

(b) Variação na velocidade radial da estrela Upsilon Andromedae (outra estrela gêmea do Sol). Evidência de 3 planetas com limites inferiores de massa 0,7, 2,1 e 4,3 $M_{\rm J}$, com órbitas com semieixo maior de 0,06, 0,83 e 2,6 UA respectivamente.


Comparação com os 3 planetas do sistema Upsilon Andromedae

Até hoje (07/09/2023) foram detectados 1063 sistemas extra-solares confirmados através de medida da V_{rad}

Medidas indiretas: análise da luz da estrela

TRÂNSITO

- Estrela HD209458. Determinação do raio do planeta (1,4R_J).
- Determinação da variação na v_{rad} da estrela ⇒ o planeta orbita a uma distância de 7 milhões de km (0,05 UA) e massa inferior estimada é de m_{plan} = 0,6 M_J
- A queda no brilho ocorre a cada 3,5 dias.
- ÚNICO MÉTODO QUE ESTIMA O TAMANHO DO PLANETA.

Densidade = 200 kg/m³ (0,2 g/cm³) ⇒ planeta gasoso gigante e quente (orbita bem próximo a estrela)

TRÂNSITO

Este método funciona apenas com uma pequena porcentagem de planetas cujos planos orbitais estejam perfeitamente alinhados com nossa linha de visada, mas pode ser aplicado mesmo a estrelas muito distantes.

Survey de telescópios espaciais para detectar trânsitos

Missão CoRoT (Convection Rotation and Planetary Transits 2006-2014): órbita geocêntrica:

- 34 planetas confirmados e estudados em detalhes.
- O menor exoplaneta detectado pelo CoRoT: $5M_{\oplus}$ e 1,7D $_{\oplus}$.
- 160.000 curvas de luz de estrelas com variações de brilho.

TRÂNSITO

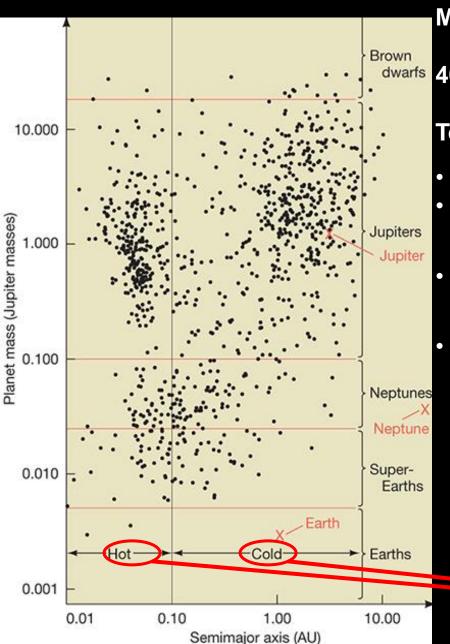

Sonda Kepler (2009-final de outubro de 2018): órbita heliocêntrica

2778 planetas foram confirmados, 1984 a serem confirmados.

811 são ~ do tamanho da Terra $(0,7_{\oplus} \text{ a } 1,25_{\oplus})$

O último a ser lançado : TESS Transiting Exoplanet Survey Satellite (Julho 2018).

385 novos planetas confirmados


PROPRIEDADES DOS EXOPLANETAS

https://exoplanetarchive.ipac.caltech.edu/

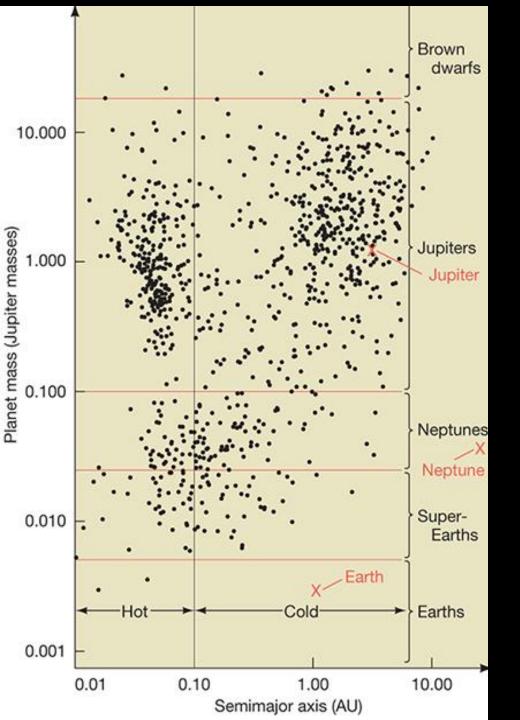
Até hoje (07/09/23) : 5514 planetas extra-solares e 2335 sistemas múltiplos confirmados

Pelo menos 10% das estrelas + próximas observadas apresentam planetas

Planetas tipo Júpiter, netuno, Super-Terra e terra

Massas determinadas por v_{rad} :

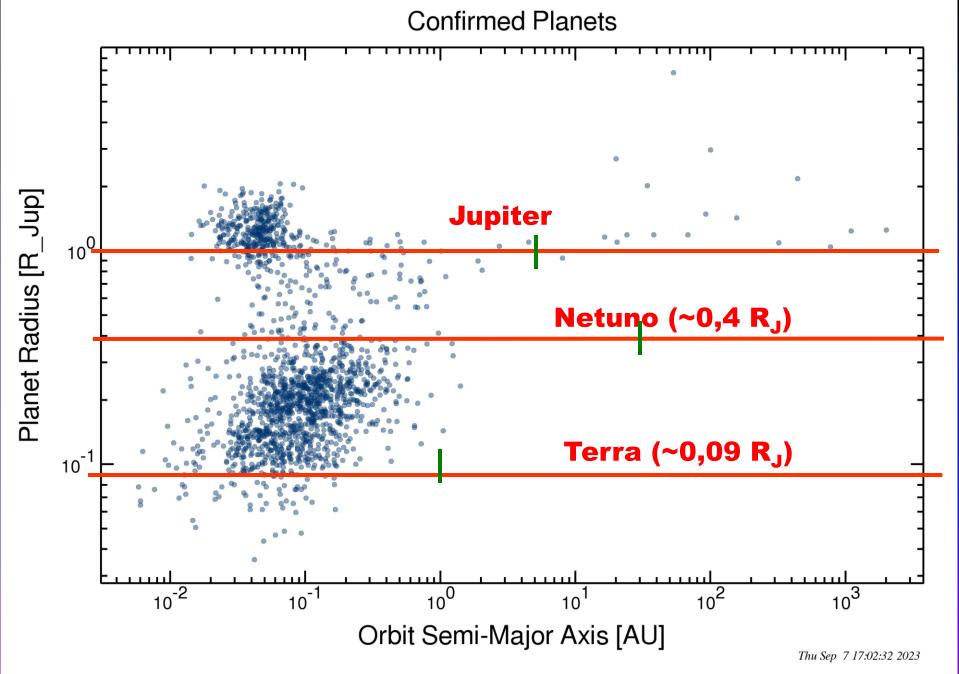
dwarfs 400 planetas extra-solares

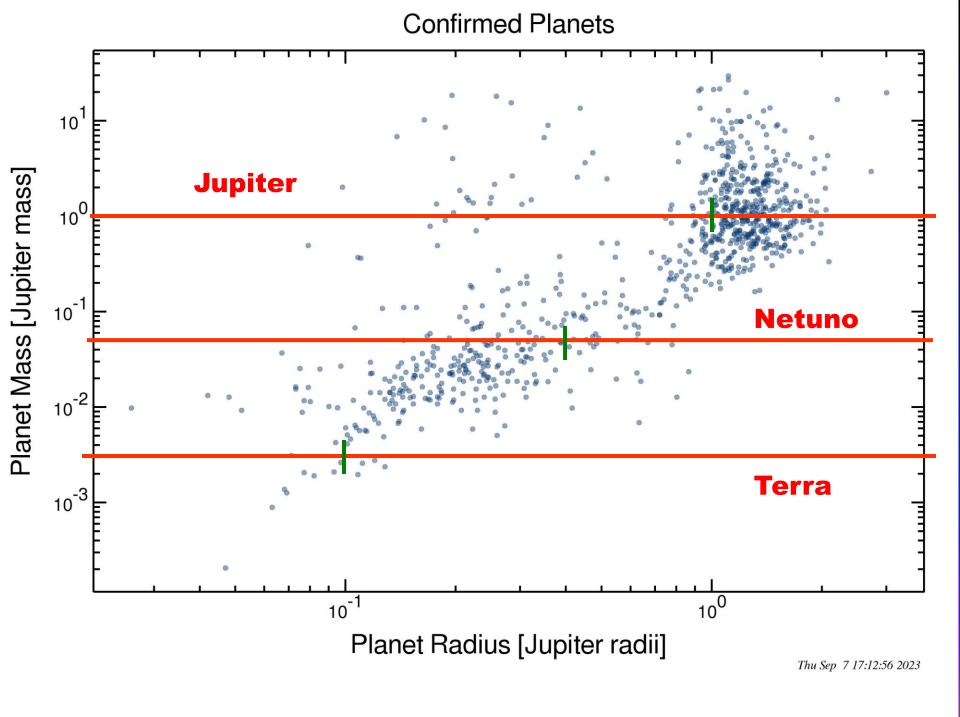

Terminologia:

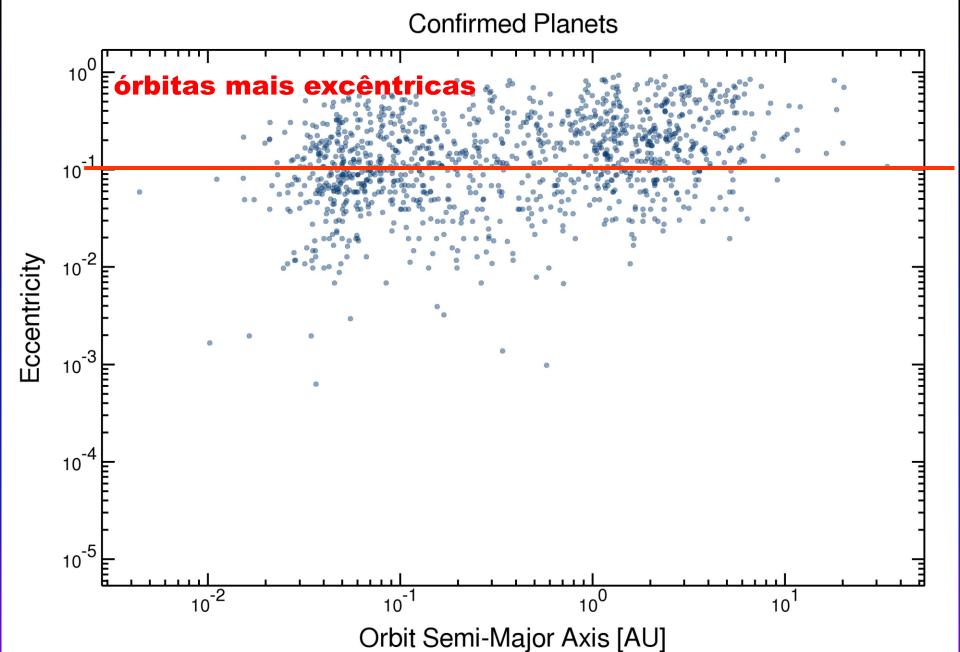
- Jupiters: planetas gasosos massivos
- Jupiter quente: encontra-se próximo a estrela - mãe: atmosfera turbulenta
- Netunos: planetas gasosos menos massivos
- Super Terras : planetas com 2M_⊕<M<10M_⊕

Obs. Teoricamente $10M_{\oplus}$ representa o limite inferior de massa necessária para que o núcleo planetário rochoso agregue grandes quantidades de gás nebular, tornando-se assim um gigante gasoso.

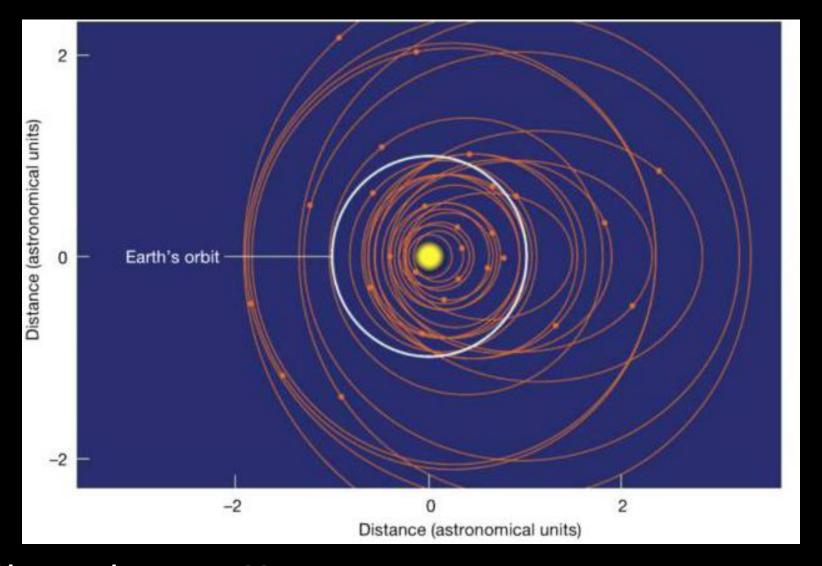
Terras : planetas com M < 2 M_⊕


Baseado na distância


Método de v_{rad} não pode medir variações na estrela devido a órbitas de planetas muito pequenos ou muito distantes (mesmo serve para trânsito).

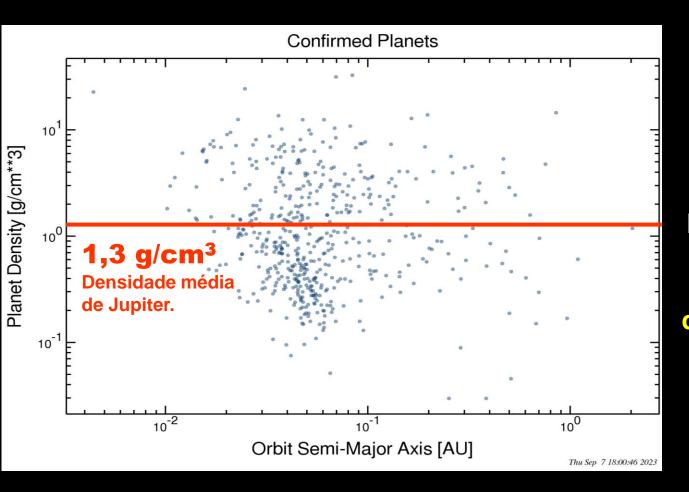

ATENÇÃO: BIAS OBSERVACIONAL

Métodos privilegiam objetos mais massivos ou maiores em tamanho e que orbitam mais próximos às suas estrelas.



Plot dos exoplanetas confirmados

Thu Sep 7 17:29:54 2023


Planetas de massa ~ M_J. Órbitas de planetas extra-solares (muitos estão a 0,05 UA da estrela). Muitos planetas tem alta excentricidade orbital (o que não ocorre com os jovianos do nosso sistema solar).

COMPOSIÇÃO QUÍMICA DOS EXOPLANETAS

Estimando MASSA e RAIO ⇒ DENSIDADE

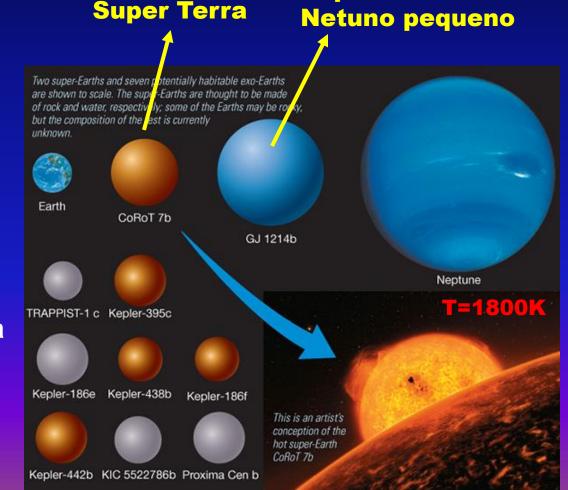
ESTIMATIVA DA COMPOSIÇÃO QUÍMICA

PROBLEMAS:
Densidades muito
baixas entre 1,3 < ρ
< 0,2 g/cm³
Inconsistentes com
modelos teóricos:
menor do que
densidade mais leve
de puro H + He!!!

COMPOSIÇÃO QUÍMICA DOS EXOPLANETAS

Possível explicação: planetas gasosos muito próximos as estrelas ⇒ calor e efeitos de maré fizeram com que o tamanho destes planetas ficassem maiores do que o normal ⇒ densidades menores

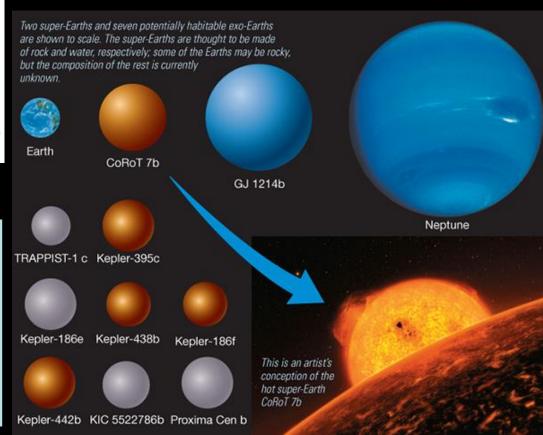
	Dens.
	g/cm ³
Sol	1,410
Mercúrio	5,4
Vênus	5,2
Terra	5,5
Lua	3,3
Marte	3,9
Ceres (Planeta anão)	2,7
Júpiter	1,3
Saturno	0,7
Urano	1,3
Neptuno	1,6
Plutão (Planeta anão)	2,1
Hale-Bopp (cometa)	0,1


Centenas de Terras e Super - Terras tem M e R conhecidos, com densidades médias de $0.4 < \rho < 12 \text{ g/cm}^3$.

 Menor limite de densidade: anões gasosos: núcleo de rocha/gelo e atmosferas de H + He ?

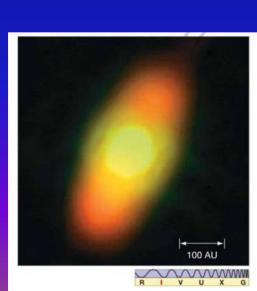
Maior limite de densidade: composição rochosa: terras comprimidas?

CoRot 7b: $5.7M_{\oplus}$ e $1.7R_{\oplus}$ \Rightarrow $\rho = 7.5$ g/cm³ a= 0.02 UA (quente)


GJ 1214b: 6,3M_⊕ e 2,9R_⊕ ⇒ ρ = 1,5 g/cm³ (Netuno pequeno) núcleo de água/gelo cercado por uma atmosfera de H + He

10 Habitable zone Kepler-442 b 1.3 Earth radii KIC5522786 b 1.2 Earth radii Mass of star (solar units) Kepler-438 b-1.1 Earth radii Kepler-186 e -1.3 Earth radii Kepler-186 f 1.1 Earth radii Kepler-395 c 1.3 Earth radii To date, some 55 Earths (blue) and super-Earths (red) have been found Proxima Centauri b in or near the habitable zones of 1.3 Earth masses their parent stars. TRAPPIST-1 c 1.0 Earth radii 0.01 0.1 10 Distance from star (AU)

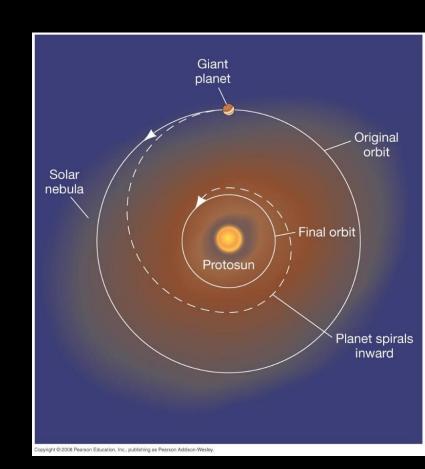
7-8 planetas confirmados pela Kepler que estão na zona habitável: distantes o suficiente da estrela para possuir água líquida em suas superfícies.


Marrom : rochoso Azul: gasoso e gelo no núcleo

Comparação com as propriedades do nosso sistema solar com o observado em exoplanetas

- 1. Órbitas coplanares e largamente espaçadas: sistemas com múltiplos exoplanetas também parecem apresentar o mesmo.
- 2. Planetas orbitam na mesma direção da rotação solar: exoplanetas parecem apresentar o mesmo. No entanto, foi achado um Júpiter quente com normal a órbita perpendicular ao eixo de rotação da estrela (possível colisão com outro objeto?).
- 3. Debris como asteroides e objetos do cinturão de Kuiper: não dá para observar isso em sistemas extra-solares, mas em estrelas recém formadas dá para se observar um disco de matéria ao redor.

SST Estrela recém formada

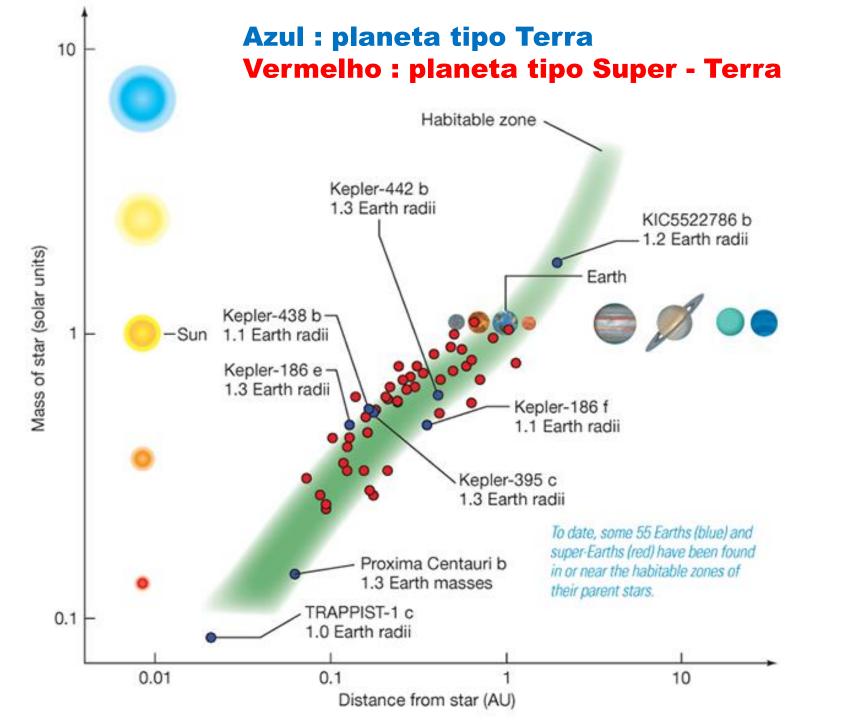


Como se formam os planetas do tipo Júpiter quente, se a proximidade com a estrela faria este tipo de formação improvável?

R. O Júpiter quente poderia ter sido formado em uma órbita mais externa e aos poucos foi espiralando na direção da estrela por fricção com o disco nebular.

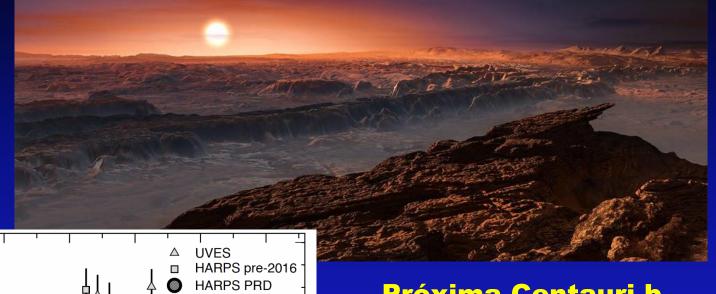
Este efeito continua até o disco começar a ser disperso pela estrela recém nascida. Este processo não inibe a formação posterior de planetas terrestres no disco interno do sistema solar.

No nosso sistema solar isso não aconteceu porque a formação de Saturno estabilizou a órbita de Júpiter.


A PROCURA POR PLANETAS TIPO TERRA

Condições para formação de vida:

Existência de água líquida na superfície ⇒ planeta na zona habitável ⇒ T superficial entre 0 e 100° C.



Zona habitável ⇒ depende da distância e do brilho intrínseco da estrela

AGOSTO 2016

Planeta do tipo terrestre foi descoberto orbitando Próxima Centauri, a estrela mais próxima do nosso sistema solar, que fica a uma distância de 4,2 anos-luz.

RV [m/s] 10 Phase [days]

Próxima Centauri b

Método da velocidade radial (telescópios: 3,6 m do ESO em la Silla e o VLT[8 m]).