Chemistry of Star Formation

Outline

- **1. Chemistry of Star Formation**
- 2. A Case Study : IRAS 16293-2422
- 3. Chemistry of Protoplanetary Disks

Chemical & Dynamical Time-scales

 $t_{\rm FF} = 4.3 \ {\rm x} \ 10^7 \ {\rm n}^{-1/2} {\rm yr}$

 $t_{AD} = 7.3 \times 10^{13} x_e$ yr

 t_{SS} (diffuse) ~ 10³ yr

 t_{SS} (dense) ~ 10⁷ yr

 t_E (dense) ~ few x 10⁵ yr

 $t_{ACC} \sim 3 \times 10^9 \text{ n}^{-1} \text{ yr}$

COLD PRE-STELLAR CORES

- Observed in regions of low-mass star formation
- n> 10⁶ cm⁻³, T~10-20 K
- Depletion of heavy molecules : CO, CS, CCS, H₂CO (B 68, L1544)
- Selective depletion towards the centre: CO vs N₂
- Very high D/H : HDCO, D₂CO, NHD₂, ND₃, N₂D⁺ (L1544, B1, IRAS 16293-2422, L134N)

$H_3^+ + HD$	>	$\mathrm{H_2D^+} + \mathrm{H_2}$
$H_2D^+ + HD$	>	$D_2H^+ + H_2$
$D_2H^+ + HD$	>	$D_3^+ + H_2$

- High gas phase DI/HI ratios, so enhanced D/H in surface reactions could explain CD₃OH, CHD₂OH, D₂S, D₂COetc, in later evolution
- Also evidence for massive prestellar cores (e.g. MSX IRDC clouds)

MASSIVE HOT MOLECULAR CORES

- Embedded protostar; precursors of UCHII regions
- Lifetime ~ 10⁵ yr
- n> 10⁶ cm⁻³, T~100-300 K
- High abundances of H₂O, NH₃, CH₃OH ...
- Enhanced D/H ratios: HDO, DCN, CH₃OD ...
- **Rich in complex molecules:** HCOOH, HC₃N, CH₃CN, CH₃OH, CH₃CCH, CH₃CHO, C₂H₅OH, HCOOCH₃, CH₃OCH₃, CH₃COCH₃, C₂H₃CN, C₂H₅CN and CH₃COOH.

Survey of organic molecules in G327

HOT CORE EVOLUTION

- Theory: Brown et al. (1988)
 - I. Static dense cloud n ~ 10³ cm⁻³, T= 10 K; isothermal free-fall collapse to n ~ 10⁷ cm⁻³; gas phase chemistry + accretion on grains

II. Short (?) period of total depletion

III. Warm-up to ~ 100-300K and mantle evaporation.

ORIGIN OF HOT CORE MOLECULES

- 1. Accreted during static/collapse phase I: CO, C₂H₂, HCN
- 2. Formed on grains during phases I & II: H₂O, NH₃, CH₃OH, CO₂
- 3. Formed in Phase III by post-evaporation gas chemistry:

methanol ... (CH₃)₂O, HCOOCH₃

 $CH_{3}OH_{2}^{+} + CH_{3}OH --> (CH_{3})_{2}OH^{+} + H$

ammonia ... HCN, CH₃CN, HC₃N,

Complex molecules from radiative associations?

CONSTRAINING SURFACE CHEMISTRY

- STRATEGY: observe hot core composition and develop models of post-evaporation chemistry, then determine if
 - 1. Formed pre-warm-up by gas reactions and simple accretion? CO
 - 2. Formed in hot post-evaporation gas chemistry? CH₃OCH₃
- 3. Formed on grains during phases I & II ? C₂H₅OH

If so, look for viable reaction pathways ...

Ehrenfreund, Charnley & Botta (2005)

LOW-MASS STAR FORMATION

8000 AU envelope; disk; outflow

Hogerheijde 1998, after Shu et al. 1987

(PSRD graphic by Nancy Hulbirt, based on a conceptual drawing by Edward Scott, Univ. of Hawaii.)

Organic Molecules in the IRAS 16293-2422 Hot Corino

Observations with the SMA (Kuan et al. 2004) Theory and Experiments Predictions

IRAS 16293-2422

- Low-mass protostellar core located in Rho Ophiuchus; D ~ 160 pc.
- High spatial resolution continuum observations show it is a protobinary system (A & B) with a projected separation of ~840 AU.
- 30 different molecular species excluding isotopes detected in single-dish observations; including HCOOH, HC₃N, CH₃CN, CH₃OH, CH₃CCH, CH₃CHO, HCOOCH₃, CH₃OCH₃, C₂H₅CN and CH₃COOH.

Sample images of large organic molecules

Crosses mark the positions of Source A and Source B, as denoted in the continuum image.

Molecular Column Densities and Fractional Abundances

MOLECULAR COLUMN DENSITIES AND FRACTIONAL ABUNDANCES TOWARD IRAS 16293-2422.								
	 I16293A				 I16293B			
Molecule	$\int I_{\nu} dV$	\overline{N}	X	$\int I_{\nu} dV$	\overline{N}	X	X	
	$(Jy bm^{-1}km s^{-1})$	(cm^{-2})	$(N/N_{\rm H_2})$	$(Jy bm^{-1}km s^{-1})$	(cm^{-2})	$(N/N_{ m H_2})$		
SO	2.69	4.2(+16)	2.6(-8)				$1.9(-7)^{a}$	
SO_2	4.42	2.2(+17)	1.4(-7)	3.00	1.5(+17)	9.2(-8)	$1.2(-7)^{a}$	
$^{34}\mathrm{SO}_2$	2.50	2.3(+16)	1.4(-8)					
$\rm OC^{34}S$	12.36	4.7(+15)	3.0(-9)	8.32	3.2(+15)	2.0(-9)		
HCN	270.58	9.2(+14)	5.8(-10)	161.86	5.5(+14)	3.4(-10)	$3.2(-9)^{b}$	
HCN $(v_2=1)$	9.89	2.7(+15)	1.7(-9)	2.15	5.8(+14)	3.6(-10)	$3.2(-9)^{b}$	
$\mathrm{HC}^{15}\mathrm{N}$	42.86	1.2(+14)	7.4(-11)	6.97	1.9(+13)	1.2(-11)		
H_2CS	5.94	1.5(+15)	9.4(-10)	5.31	1.3(+15)	8.4(-10)	$8.(-10)^{a}$	
$C^{13}CCS$	—			3.75	9.6(+13)	6.2(-11)		
c-C ₃ H ₂				10.03	7.2(+15)	4.5(-9)	$6.3(-11)^{b}$	
CH_2CO				3.22	1.9(+15)	1.2(-9)	$3.(-10)^{a}$	
$\mathrm{HC_{3}N}$	16.73	6.7(+14)	4.2(-10)	4.86	2.0(+14)	1.2(-10)	$1.8(-9)^{a}$	
CH_3OH	13.62	1.1(+18)	6.8(-7)	6.20	5.0(+17)	3.1(-7)	$1.4(-7)^{a}$	
$^{13}\mathrm{CH}_{3}\mathrm{OH}$	5.34	8.1(+16)	5.0(-8)					
CH_2CHCN	8.58	1.5(+16)	9.4(-9)	2.34	4.1(+15)	2.6(-9)	$1.5(-9)^{a}$	
CH_2CDCN		5.9(+14)	3.7(-10)		$8.8(+14)^{c}$	5.5(-10)		
HCOOCH_3		$1.2(+16)^{c}$	7.5(-9)		$8.7(+15)^{ m c}$	5.4(-9)	$1.4(-8)^{a}$	
$(CH_3)_2O$	8.49	6.6(+15)	4.1(-9)	10.32	8.0(+15)	5.0(-9)	$8.(-9)^{a}$	

ъл TD A C 1 COOD 0400

^a Orion KL hot core; from Sutton *et al.* (1995).

^b Sgr B2(M) hot core; from Sutton *et al.* (1991).

^c The averaged column density from all transitions observed.

Interstellar Glycine

Detected in three hot molecular cores

- Sgr B2(N-LMH)
- Orion KL
- W51 e1/e2

27 glycine lines were detected in 19 different spectral bands in one or more sources

Kuan et al. 2003

Amino Acids via Ion-Molecule Reactions

From surface-formed **aminoalcohols**? $NH_2CH_2OH_2^+ + HCOOH \longrightarrow NH_2CH_2COOH_2^+ + H_2O$ $NH_2(CH_2)_2OH_2^+ + HCOOH \longrightarrow NH_2(CH_2)_2COOH_2^+ + H_2O$

Ices rich in NH₂OH ? Then, from hydroxlamine (Blagojevic et al. 2003):

 $\begin{array}{rcl} \mathsf{NH}_2\mathsf{OH}_2^+ + \mathsf{CH}_3\mathsf{COOH} &\longrightarrow & \mathsf{NH}_2\mathsf{CH}_2\mathsf{COOH}_2^+ &+ \mathsf{H}_2\mathsf{O}\\ \mathsf{NH}_2\mathsf{OH}_2^+ + \mathsf{CH}_3\mathsf{CH}_2\mathsf{COOH} &\longrightarrow & \mathsf{NH}_2\,(\mathsf{CH}_2)_2\mathsf{COOH}_2^+ &+ \mathsf{H}_2\mathsf{O} \end{array}$

SIFT experiments (Blagojevic & Bohme) determine reaction efficiency & structure of product molecular ions (e.g. alpha-Alanine vs. beta-Alanine)

Quantum-chemical studies (Petrie) used to investigate reactions involving highly unstable reactants (NH₂CH₂OH).

Gas Phase Synthesis of Protostellar Amino Acids

(PSRD graphic by Nancy Hulbirt, based on a conceptual drawing by Edward Scott, Univ. of Hawaii.)

I16293A: a protostellar disk

Takakuwa et al. (2004)

CO Gas and Ice in CS Disks

G. Blake et al. 2003 (personal communication)

Chemical Characteristics of Circumstellar Disks

- DM Tau, GG Tau, L1157, LkCa15, TW Hya (Dutrey et al, 1997, 2000)
- Molecules detected: CO, C¹⁸O, ¹³CO, HCN, HNC, CN, CS H₂CO, HCO⁺, H¹³CO⁺, C₂H, CH₃OH, N₂H⁺, DCO⁺
- Depletion by factors of 3-100 relative to molecular cloud abundances (TMC-1) - sticking on grains important
- Radical and ion emission originates in disk surface photochemistry.

Processes affecting ices and dust

in Protoplanetary Disks.

The composition of disk material is extremely sensitive to initial composition, nebular processing, and nebular dynamics.

some recent models of disk chemistry and their ingredients

Table 1.2. Recent models of chemistry in protoplanetary disks. A comparison of the main features of some prominent models in the literature. The columns are as follows. (1) Physics: the underlying description of the disk structure; Semi-Analytical (S); Bell et al. (1997; B); Hayashi minimum mass solar nebula (Hayashi 1981; H); Steady Accretion Disk (A; Lynden-Bell & Pringle 1974); D'Alessio et al. (D; 1998); Chiang & Goldreich (1997, 1999; C); Nomura (N; 2002). (2) Chemistry: Prasad & Huntress (1980; PH); Mitchell (1984), Baulch et al. (1992) (MB); explicit grain surface reactions, not including gas-grain interaction, H₂ formation or recombination of ions (S); UMIST reaction kinetics (U; Le Teuff et al. 2000; Millar et al. 1997); Ohio State reaction kinetics (O; Terzieva & Herbst 1998); deuterium fractionation reactions (D). (3) Dimension: 1-D midplane model, or 1+1D vertical structure calculation. (4) Ionisation: cosmic ray (C), UV photon (U), X-ray photon (X), ionisation due to the decay of extinct radionuclides (R). (5) Gas-grain interaction: freeze-out and thermal/non-thermal desorption. (6) Dust destruction (carbon, troilite, silicate). (7) Observables reported; column densities (CD); D/H ratios; line profiles resulting from radiative transfer calculations. (8) Coupling: true coupling of chemistry and dynamics.

Model	Р	Chem	D	Ι	\mathbf{G}	D	Obs	С
Aikawa et al. (1996)	Н	PH	1	U,C	Y	Ν	CD	Ν
Bauer et al. (1997)	s	MB	1	-	Ν	Y	No	Ν
Finocchi & Gail (1997)	S	MB	1	-	Ν	Y	No	Ν
Willacy et al. (1998)	в	U,S	1	C,R	Y	Ν	No	Ν
Aikawa & Herbst (1999)	н	0	1 + 1	X,C,U	Y	Ν	CD	Ν
Aikawa et al. (1999)	Α	U	1	С	Υ	Ν	No	Ν
Aikawa & Herbst (1999b)	Α	O,D	1	С	Y	Ν	D/H	Ν
Willacy & Langer (2000)	С	U,S	1 + 1	$_{\rm U,C,R}$	Y	Ν	CD	Ν
Aikawa & Herbst (2001)	н	O,D	1 + 1	X,C,U	Y	Ν	CD,D/H	Ν
Aikawa et al. (2002)	D	0	1 + 1	U,C	Y	Ν	CD,Line	Ν
Markwick et al. (2002)	в	U	1 + 1	X,C,U,R	Y	Ν	CD	Ν
van Zadelhoff et al. (2003)	D	0	1 + 1	U,C	Y	Ν	Line	Ν
Millar et al. (2003)	Ν	U	1 + 1	U,C,R	Y	Ν	CD	Ν
Ilgner et al. (2003)	в	U	1 + 1	U,C,R	Y	Ν	No	Y

Structure of a Disk for R < 100 AU.

X-rays in Disk Chemistry

High X-ray flux

No X-ray flux

After Markwick et al. A & A 385:632-646 (2002)

Gas-grain interaction

Observed molecules; CN, CO, NH₃, H₂CO, HCN, HNC, CS, HCO⁺, HCS⁺

In the inner regions, ice mantles are evaporated

Summary

1. Studying gas phase chemistry in SF constrains possible grain processes

2. High resolution observations, expts. & models can combine to help understand molecular composition of SF cores

3. Disk Chemistry - the next frontier with ALMA

What happens to interstellar matter ?

- Large-scale inward transport of most of the gas and dust and outward transport of most of the angular momentum
- Turbulent motions produced an outward diffusion of material from the inner nebula
- This led to radial mixing of the products of two chemistries:
- ✓ the cold outer protosolar nebula, where accretion favours retention of ISM integrity, was in fact a chemically active region cosmic rays (beyond about 10 AU) and other sources of ionization such as X-rays, UV photons and radioactive decay (e.g., ²⁶Al and ⁶⁰Fe,) can drive a non-equilibrium chemistry involving ion-molecule and neutral-neutral reactions
- ✓ in the hot inner nebula (within about 1 AU), material can be completely destroyed and lose its interstellar integrity

Highly-Excited Vibrational Transitions

 Highly excited transitions of HCN, SO and SO₂ (lower energy levels 1050 K, 1660 K and 1800 K above ground) For IRAS 16293, the arcsecond resolution of the Submillimetre Array (1'' = 160 AU), provides the perfect tool for imaging highly-excited submillimetre molecular emission

343.55 - 344.22 GHz (LSB) and 354.21- 354.88 GHz (USB). Angular resolution is 2.6" x 1.2"(~200 x 400 AU).

Sample Spectra of Complex Organic Molecules

