Radiative Processes in the Interstellar Medium

(V) IR from AGN

Moshe Elitzur University of Kentucky

Unified Scheme for AGN

 $M \sim 10^{6} - 10^{9} M_{\odot}$ $R_{s} \sim 10^{11} - 10^{14} cm$

Unified Scheme – IR Puzzles

- Huge column range (10²² 10²⁵ cm⁻²) in x-rays, modest SED variation in IR
- 10µm absorption feature in type 2 never deep; depth uncorrelated with x-rays
- No 10µm feature in type 1

```
Pier & Krolik 92, 93:
```


- Uniform density (although clumpy)
- No scattering

Huge variation among SED's

Uniform density Models

Efstathiou & Rowan-Robinson '95 – tapered disks:

IR Puzzles

Nenkova, Reziar& Edibios, Apl 930, L9, 2002

Clumps [™]!

Clumpy Medium
filling factor:
$$\phi = n_c V_c << 1$$
 $n_c (pc^{-3})$
 $\phi = n_c A_c R_c = R_c/\ell << 1$

segment ds: $dN(s) = \frac{ds}{\ell(s)}$

emission: $S_{c\lambda}dN(s)$

Natta & Panagia 84: $P_{esc} = e^{-t}$; $t = N(s)(1 - e^{-\tau})$

$$I_{C\lambda} = \int e^{-t} S_{c\lambda} dN(s)$$

Clump Emission - Anisotropy

Direct & Indirect Heating

Composite source function: $S_c(\alpha,r) = p S^d(\alpha,r) + (1-p) S^i(r)$

 $p(r) = e^{-N(r)}$

Clump modeling

Solutions by DUSTY http://www.pa.uky.edu/~moshe/dusty/

Slab Temperature Profile

- Increase τ_V :
 - Temperature of cool material is flat
 - Temperature profile saturates

Clump emission, $\tau_V = 100$

Limited 10µm depth!!!

Unified Scheme – IR Puzzles

Clumpiness!!!

Huge column range (10²² – 10²⁵ cm⁻²) in x-rays, modest SED variation in IR

• 10µm absorption feature in type 2 never deep; depth uncorrelated with x-rays

No 10µm feature in type 1

AGN Modeling:

 $N_{T}(\beta) = N_{T}(0) \exp(-\beta^{2}/\sigma^{2})$

$$\begin{split} T_{mi} &= 1500 \text{ K} \quad (R_i = 0.85 \text{pc } L^{\frac{1}{2}}_{12}), \quad Y = R_o/R_i, \quad \sigma \\ \tau_V \\ \ell &\propto r^q: \quad q, \quad N_T = \int_{R_i}^{R_o} \frac{dr}{\ell} \end{split}$$

Geometry effect

Angular and radial parameters (torus only)

Anisotropic obscuration but isotropic emission? (Lutz et al '04)

Comparison with Observations

Parameter Range:

•
$$\sigma = 30^{\circ} - 60^{\circ}$$

•
$$\tau_V = 40 - 120$$

•
$$R_o/L_{12}^{\frac{1}{2}} = 10 - 100 \text{ pc}$$

Standard Galactic ISM Dust!

Brightness Profiles (I)

 $\theta_i = R_i / 15 Mpc \approx 0.02$ "

VLTI – milliarcsec J-band!

"structures on scales of approximately 0.03 arcsec"

Jaffe et al '04

Torus Outer Radius

 $R_i = 0.85 pc L_{12}^{1/2}$ $Y = R_o/R_i$

Brightness Profiles (II)

Herschel (6" at 100 μ m) ?

Brightness Contours down to 10⁻⁶ of peak

Sample cloud realization

q = 1, N_T = 5, Y = 100,
$$\tau_V$$
 = 100

 ϕ irrelevant when $\phi \ll 1$! (R_c irrelevant when R_c $\ll \ell$)

<u>assume</u> : $\phi = 0.1$, $L_{12} = 1$		
	R _i	R _o
r (pc)	1	100
R _c (pc)	0.1	9
n (cm ⁻³)	3-10 ⁵	3-10 ³

X-ray variability

Risaliti, Elvis & Nicastro 2002

time scales \sim months – 20 years radial distances $\sim 0.1 \text{ pc} - 10 \text{ pc}$

Disk winds?

Kartje, Konigl & Elitzur 1999

Clumpy Tori

- IR emission average over many los
- x-ray absorption single los
- type 1 vs 2 probability
- flips between type $1 \leftrightarrow 2$
- Seyfert 1.x intercloud medium?
- molecular lines kinematics