Radiative Processes in the Interstellar Medium (III) Masers

> Moshe Elitzur University of Kentucky



## 1<sup>st</sup> radio molecule (1963)



## **MASER MOLECULES**

- OH (hydroxyl)
- H<sub>2</sub>O (water)
- SiO
- CH

- HCN
- NH<sub>3</sub> (ammonia)
- CH<sub>3</sub>OH (methanol)
- H<sub>2</sub>CO (formaldehyde)

$$\lambda \sim 1 \text{mm} - 30 \text{ cm}$$

# **MASER ENVIRONMENTS**

- Comets
- Molecular clouds
- Star-forming regions
- Red giant & supergiant stars
- Supernova remnants
- Galaxies (up to z = 0.265)
- H maser in MWC 349

## Questions

- How do you know a maser when you see one?
- What IS a maser, anyhow?
- Why do they occur so readily in space?

## "Mysterium":

- Anomalous excitation pattern
- Narrow linewidths
- High polarization
- Extreme brightness

Brightness Temperature:  $I_v = B_v(T_b)$ Excitation Temperature:  $n_2/n_1 = \exp(-\Delta E/kT_x)$ 

$$\frac{\mathrm{dB}_{\mathrm{v}}(\mathrm{T}_{\mathrm{b}})}{\mathrm{d}\tau_{\mathrm{v}}} = \mathrm{B}_{\mathrm{v}}(\mathrm{T}_{\mathrm{x}}) - \mathrm{B}_{\mathrm{v}}(\mathrm{T}_{\mathrm{b}})$$

Generally:  $T_b \leq T_x \sim T$ 

Masers: 
$$T_b \sim 10^{10} - 10^{15} \text{ K} \parallel \parallel$$

Microwave Amplification by Stimulated Emission of Radiation Radiative

ve transfer:
$$\frac{dI}{d\ell} = \epsilon - \kappa I$$
I = I\_{in}e^{-\tau} $\tau = \int \kappa d\ell$  $\epsilon \propto n_2 A$  $\kappa \propto (n_1 - n_2) B$ Normally: $n_2 << n_1 \Rightarrow$  absorption

Population Inversion:  $n_2 > n_1$ 

$$\begin{aligned} \kappa &\propto n_1 - n_2 < 0! \\ I &= I_{in} e^{+|\tau|!} \\ absorption \implies AMPLIFICATION! \end{aligned}$$



Why ISM?

- Low densities deviations from equilibrium
- Astronomical dimensions large <u>column</u> densities

#### Natural environment for masers

### **Amplified Radiation**

$$\mathbf{I}(\ell) = \mathbf{I}(\ell_0) \exp\left(\int_{\ell_0}^{\ell} \kappa d\ell\right)$$

- Velocity coherence along line-of-sight
- longer path, higher intensity





SiO masers in TX Cam



Kemball & Diamond '97

## Polarization map:











,

#### H<sub>2</sub>O masers in W51





Genzel et al '81

#### Velocity-coherent regions in shocked gas!



Elitzur, Hollenbach & McKee (89, 92)



Torrelles et al 2001

#### Black Hole in NGC4258









#### System Properties:

| Central mass      | $4 	imes 10^7  M_{\&}$ |
|-------------------|------------------------|
| Disk inner radius | 0.14 pc                |
| Disk thickness    | <0.0003 pc             |
| Distance          | 7.3 Mpc                |

NGC7538 IRS1 K-image (G. Weigelt)

$$\begin{array}{l} \mathsf{M} = 30 \ \mathsf{M}_{\odot} \\ \mathsf{L} = 8 \cdot 10^4 \ \mathsf{L}_{\odot} \end{array}$$





### NGC 7538 – a disk?



Minier, Booth, & Conway '98

#### Maps:



#### p-v diagrams:







## The Data



Pestalozzi et al '04

## **Position Velocity diagrams**



- Straight line: single r or solid-body rotation
- Curvature ⇔ Differential Rotation!

## **Keplerian Rotation**





## The Model

$$\begin{aligned} \tau_v &= \int \kappa_0(r) \phi(v) \, ds \\ \phi(v) &= \phi_D [v - v_0(1 + v/c)] \\ v &= \Omega \theta \end{aligned}$$



$$\tau(\theta, v) = \tau_0 \int \eta(\rho) \exp\left[-\frac{1}{2} \left(\frac{v - \Omega(\rho) \theta}{\Delta v_{\rm D}}\right)^2\right] \frac{d\rho}{\sqrt{1 - (\theta/\rho)^2}}$$

$$\begin{split} \tau_0 &= 18 \ (16) \qquad \Delta v_D = 0.4 \ \text{km s}^{-1} \\ \Omega &= \Omega_o (\rho_o/\rho)^{3/2} \qquad \eta \propto \rho^{-p} \qquad h = R_i/R_o \end{split}$$





## Results

- $\Omega_{\rm m} = \frac{1}{2}(\Omega_{\rm i} + \Omega_{\rm o}) = 0.055 \text{ km/s/mas}$
- p = -0.5
- $R_o/R_i = 2.9$

 $\Omega = \mathsf{D}(\mathsf{GM}/\mathsf{R}^3)^{\frac{1}{2}} \implies$ 

•  $R_i, R_o = ?$ 



### 'spine', 'kink' & dynamic range



## **Protostellar Accretion Disks**

- R ~ 10's 100's AU
- M ~ .01 .1 M<sub>SP</sub>

**Observational Evidence:** 

O T Tau stars (M ▲ 2 M<sub>SP</sub>)

? Herbig Ae/Be stars (2 M ▲ M ▲ 10 M → )

??? High mass (M  $\vee$  10 M<sub> $\odot$ </sub>)

#### Methanol Masers – Tracers of Circumstellar Disks?



----- 12 GHz

Norris et al '98