Radiative Processes in the Interstellar Medium

(II) Shocks & PDRs

Moshe Elitzur University of Kentucky

Rotational transitions: A ~ 10^{-5} s^{-1} < σv > ~ $10^{-10} \text{ cm}^3 \text{s}^{-1}$ N_{cr} ~ 10^5 cm^{-3}

Naïve Escape Probability

I in Ie^{- τ} out \Rightarrow probability to escape from τ is e^{- τ}

Mean escape probability:

Large Velocity Gradients (LVG)

Back to the radiative rate terms:

$$\frac{dN_2}{dt} = -\beta A_{21}N_2 \\
\beta \propto 1/\tau$$

$$\Rightarrow \frac{dN/dt \text{ independent of } A!!!}{\beta \propto 1/\tau}$$

two-sided line flux:	$\mathbf{j} = \mathbf{h} \mathbf{v} \beta \mathbf{A}_{21} \mathbf{N}_2 \mathbf{d}$
optically thin:	$j = hv A_{21}N_2 d$
optically thick:	$j = 4\pi \Delta v_D S(T_x)$

HEATING

kinetic energy redistribution; T

 \downarrow

line excitations; internal energy redistribution ↓

line emission

COOLING

Interstellar Shocks

- Generated by supersonic motions
- Effects heating, compression and velocity structure

SHOCK ENVIRONMENTS

- cloud collisions
- outflows from YSOs
- OB stars winds and HII region expansion
- PN ejection
- Wolf-Rayet winds
- supernovae

Hydrodynamics — mean free path << system dimensions

Basic "macro" equations:

$$\frac{1}{\rho} \frac{d\rho}{dt} = -\nabla \vec{u}$$
$$\rho \frac{d\vec{u}}{dt} = -\nabla p$$

Basic "micro" equations:

$$p = p(\rho,T);$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \equiv \frac{\partial}{\partial t} + \vec{u} \cdot \nabla$$

1-d, small adiabatic perturbation:

$$\begin{split} \rho &= \rho_0 \implies \rho_0 + \delta \rho; & \delta \rho << \rho_0 \\ p &= \rho_0 \implies \rho_0 + \delta p; & \delta p = c^2 \delta \rho << \rho_0 \\ u &= 0 \implies \delta u; & \delta u << ? \end{split}$$

Supersonic disturbance \Rightarrow Shock!

Steady-state ($\partial/\partial t = 0$), shock frame:

$$\rho_0 u_0 = \rho_1 u_1$$
$$p_0 + \rho_0 u_0^2 = p_1 + \rho_1 u_1^2$$

$$t_{elastic} \ll t \ll t_{cool} = t_{inelastic}$$

Adiabatic phase:

$$U_0 + \frac{p_0}{\rho_0} + \frac{1}{2}u_0^2 = U_1 + \frac{p_1}{\rho_1} + \frac{1}{2}u_1^2$$

Strong shocks (M = u₀/c₀ >> 1):

$$\frac{\rho_1}{\rho_0} = \frac{\gamma + 1}{\gamma - 1} = 4 \quad (\gamma = \frac{5}{3})$$

Not much of a compression!

Ordered \Rightarrow Thermal motions $U_{th,1} = \sqrt{\frac{3}{8}} U_s$

Overall pressure:
$$\Pi = p + \rho u^2 = p + \frac{1}{\rho}(\rho u)^2$$

pre-shock: $c_0 \ll u_0 \Rightarrow p \ll \rho u^2$ $\Pi \approx \rho_0 u_s^2$

post-shock:
$$\rho_1 u_1^2 = \frac{1}{4\rho_0} (\rho_0 u_0)^2 = \frac{1}{4} \rho_0 u_s^2 = \frac{1}{4} \Pi \qquad \Pi \approx p_1$$

 $\begin{array}{ll} \text{pre-shock}\\ \text{ram pressure} \end{array} = \rho_0 u_s^2 \quad \approx \quad \frac{1}{2} \rho_1 u_{\text{th},1}^2 = \frac{\text{post-shock}}{\text{thermal pressure}} \end{array}$

Shocks — High Temperatures: $T \approx 10^{5} \left(\frac{u_{s}}{100 \text{ km s}^{-1}}\right)^{2} \text{ K}$ \downarrow Dissociation, ionization \downarrow Cooling at constant pressure \downarrow isothermal compression

$$\rho_1 c_0^2 = \rho_0 u_s^2 \qquad \qquad \frac{\rho_1}{\rho_0} = M^2$$

Magnetic Fields

$$= p + \frac{1}{\rho} (\rho u)^2 + \frac{\rho^2}{8\pi} \left(\frac{B}{\rho}\right)^2$$

Magnetic cushioning: $B_1 = u_s (8\pi\rho_0)^{\frac{1}{2}}$

Low ionization — ion-neutral drifts; C shocks

Shock Diagnostics

- High-excitation molecular lines:
 - H_2 : vib-rot ($\lambda \sim 2-5 \ \mu m$, 12 μm)
 - CO: high J (λ > 100 µm), v = 1 \rightarrow 0 (4.7 µm)
 - OH: low J (λ ~ 50–160 μ m)
- Atomic fine structure & forbidden:
 - Fell(1.64 μm)
 - Sill(35 μm)
 - OI(63 μm)
- Hydrogen $Br\alpha$, $Br\gamma$

n-T profiles: $T = T_a f(t)$ $n = n_a T_a/T$

Probing the ISM cooling function!

Enhanced Abundances

High temperatures — overcome endothermicity & energy barriers:

 $C^+ + H_2 + 0.4 \text{ eV} \rightarrow CH^+ + H$

Similarly, can channel all O not in CO into OH, H₂O

Photon Dominated Regions PhotoDissociation Regions

- Radiation induced
 - Ionization
 - Dissociation
 - Heating

Ionization Heating

Ionization equilibrium:

Ionization heating:

 $N_{+}N_{e}\alpha(T) = N_{0}\int_{v_{0}}^{\infty} 4\pi \mathcal{N}_{v}\sigma_{v}dv$ $H = N_{0}\int_{v_{0}}^{\infty} 4\pi \mathcal{N}_{v}h(v-v_{0})\sigma_{v}dv$

$$\mathcal{N}_{v} = J_{v}/hv$$

 $H = N_+ N_e \alpha(T) kT_i$

$$kT_{i} = \frac{\int_{v_{0}}^{\infty} h(v - v_{0}) \mathcal{N}_{v} \sigma_{v} dv}{\int_{v_{0}}^{\infty} \mathcal{N}_{v} \sigma_{v} dv}$$

Characteristic T_i determined from <u>spectral shape</u> <u>independent of intensity!</u>

Recombination Cooling

$$\begin{split} C &= N_{+}N_{e}\sum_{0}^{\infty}v\sigma_{r}(v)\frac{1}{2}mv^{2}f(v)dv\\ \\ C &= N_{+}N_{e}\beta(T)kT\\ \beta(T) &= \sum_{0}\frac{1}{kT}\int_{0}^{\infty}\frac{1}{2}mv^{2}\cdot v\sigma_{r}(v)f(v)dv \approx \alpha(T) \end{split}$$

Thermal Equilibrium:

 $T = T_i \alpha / \beta$

T depends only on shape of ionizing spectrum

HII regions: T ~ 8,000 – 10,000 K AGN clouds: T ~ 8,000 – 20,000 K

- Radiation (6–13.6 eV) dominated heating and/or composition
- All molecular clouds are PDRs to a depth $A_v \sim 4$ from surface!
- Main heating:
 - grain photoelectric: FUV (~ 6–10 eV) electron ejection from grain; ekinetic energy ~ 1 eV
 - H₂ pumping: FUV (11–13.6 eV) electronic excitation of H₂

Shocks vs PDRs

- Most line & IR cont. emission of a galaxy is from PDRs
- shocks only specific regions or lines
- PDRs have larger:
 - linewidths
 - line-to-continuum ratios
 - OI(63 μm):CII(158 μm)

The FUV flux in PDRs may regulate low- and high-mass star formation in galaxies, and the column density of gravitationally-bound, star-forming molecular clouds