Astronomy & Asrophysics

Observing Accretion Disks II: Eclipse Mapping Disk Emission Lines Tomography

by Mike Eracleous

XIV IAG USP School On Astrophysics,

August 3–8, 2008

Águas de São Pedro - SP - Brazil

Organization of Lecture II

- Indirect Imaging via Eclipse Mapping
 - The method and its fundamental assumptions
 - Spatially resolved information
 - Application to the dwarf nova instability
- Emission Lines from Disks and Tomography
 - Signature of rotation
 - Tomographic imaging and results
- Outflows and Their Emisson Lines
 - Line profile models

Eclipse Mapping

Light curves vs wavelength

5

Reading the eclipse light curve 6

OY Car in quiescence

7 Clues from eclipse light curves

Dwarf-novae in quiescence

- Clear signature of bright spot and white dwarf
 - between them they contribute most of the light
- Very shallow disk eclipse
 - small contribution from disk to total light

Dwarf-novae in outburst and nova-likes

- Disk is the primary source of light, white dwarf and bright spot not clearly seen
- Very broad and deep disk eclipse

8 X-Ray eclipse of the boundary layer

Wheatley & West 2003, MNRAS, 345, 1009

A parenthesis on the boundary layer

9

• Observations of SS Cyg through a dwarf nova outburst

 Change in density of boundary layer
 opt. thin opt. thick

Wheatley et al. 2003, MNRAS, 345, 49

10 Eclipse mapping

- Recover 2-D surface brightness of the disk from the (1-D) eclipse light curve.
- Not enough constraints to solve the problem uniquely. Need help!
- Resort to maximum entropy method to incorporate expectations/prejudices, e.g.,
 - azimuthal symmetry
 - uniformity or smoothness

How is this done in practice?

- Synthesize eclipse light curve from assumed
 2-D image of the disk. Iteratively adjust its
 surface brightness to satisfy two constraints:
 - Good fit to the light curve (via χ^2 test)

$$\chi^2 = \sum_{i=1}^n \left(\frac{F_i - M_i}{\sigma_k}\right)^2$$

 Close resemblance to "default" image; maximum entropy constraint

$$S = -\sum_{k=1}^{N^2} I_k \ln\left(\frac{I_k}{D_k}\right)$$

12 Requirements and assumptions

- Need to know the parameters of the binary in order to reconstruct the geometry correctly
- Must assume that disk is static.
- Initial implementation assumed flat disk.
 Current versions allow for 3-D structure.
- Default map may influence the results. Need to carry out tests to verify results.
- Reconstruction of physical parameters (e.g., temperature) is only as good as the adopted model.

13 Early Applications of Eclipse Mapping

14 Radial brightness profile of the disk

Horne & Cook, 1985, MNRAS, 214, 307 Horne & Stiening, 1985, MNRAS,216, 933

15 Radial brightness profile of the disk

Radius (R_{L1})

Wood et al. 1992, ApJ, 385, 294

16 Spectral Mapping: V2051 Oph in quiescence

C IV and UV continuum

sections of the Hy line

17 Spectral Mapping: V2051 Oph in quiescence

Emissivity profiles of continuum and emission lines

from Saito & Baptista 2006, AJ, 131, 2185

Spectral Mapping: UX UMa in high state

18

19 Spectral Mapping: UX UMa in high state

Brightness temperature profile of the disk

20 Lessons from eclipse mapping

- CVs in high state $\rightarrow \alpha$ -disk models?
- Spatially-resolved disk spectra in qualitative agreement with theoretical expectations.
- Temperature profiles not in quantitative agreement with the predictions of disk models.
 - Irradiated disk models may be able to do better.
 (Orosz & Wade 2003, ApJ, 593, 1032)
 - We see emission lines! Optically thin gas? Where is the source of the emission lines?

Maps of flickering 21

Maps of flickering in UU Aqr

Baptista & Bortoletto 2008, Ap], 676, 1240

Emission Lines from Disks

23 Line Profiles from Rotation

figures from Horne & Marsh 1986, MNRAS, 218, 761

24 Examples of observed line profiles: I

A 0620-00 Nielsen et al. 2008, MNRAS, 384, 849

25 Examples of observed line profiles: II

from Young & Schneider 1980, ApJ, 238, 955

Hartley et al. 2005, MNRAS, 363, 286)

Hartley et al. 2005, MNRAS, 363, 286)

Hartley et al. 2005, MNRAS, 363, 286)

27 Examples of observed line profiles: II

from Young & Schneider 1980, ApJ, 238, 955

28 Examples of observed line profiles: II

29 Radiative transfer effects

MNRAS, 218, 761

30 Something changes in outburst!

31 Source of power for the lines

- Local Energy Dissipation
 - Emission from optically thin disk in LTE probably the case in low state Williams 1980, ApJ, 235, 939
 - Coronal loops over the disk, analogous to solar magnetic loops Horne & Saar 1991, ApJ, 374, L55
- Photoionization
 - CVs in high state: Horne & Marsh 1990, ApJ, 349, 593

32 Relativity matters in the hottest disks

- Lines originate at $\xi < 1000$
 - + if $\xi < 100$ need fully relativistic calculation
 - $\xi > 100$ weak-field approximation
- Special and General Relativistic effects:
 - Light bending
 - Doppler boosting
 - Transverse & gravitational redshift

33 Illustration of Relativistic Effects

Face-On Disk

Inclined Disk

Inclined Disk With Light Bending and Doppler Boosting

34 Simple, approximate approach

2-step transformation: (Mathews 1982, ApJ, 258, 425; but see critique in Chen & Halpern 1989, ApJ, 339, 742)

- disk frame → stationary observer above disk → stationary observer at infinity
- step 1: Lorentz transformation $I_{\nu} = I'_{\nu'} \gamma^2 (1 + \beta \cos i')^2$ $\gamma = (1 - 2/\xi)^{1/2} (1 - 3/\xi)^{-1/2}$
- step 2: Gravitational redshift $I''_{\nu''} = I_{\nu}$ $\nu'' = \nu(1 - 2/\xi)^{-1/2}$

35 Need a more general approach

figure from Chen & Eardley 1991, ApJ, 382, 125

36 Formalism

- Chen et al. 1989, Chen & Halpern 1989, Chen & Eardley 1990
 - Emission line profile in the frame of the observer
 (i.e., the image at ∞ in the plane of the sky):

$$F_{\nu} = \int \int d\Omega \ I_{\nu}(b,\varphi,\nu) ,$$

Where $d\Omega = b \, db \, d\varphi/d^2$ is the solid angle in the plane of the sky.

 We need to connect the coordinates frame of the image to the coordinate frame in the frame of the disk, i.e.

$$(b,\varphi,\nu) \longrightarrow (r,\varphi',\nu_{\rm e}).$$

37 Tricks

Chen et al. 1989, Chen & Halpern 1989, Chen & Eardley 1990

 Trace photon trajectories to connect image in disk frame to image at ∞

$$\frac{d\theta}{dr} = \frac{b/r^2}{\sqrt{1 - (b/r)(1 - 2M/r)}} \longrightarrow b = f(r, \varphi')$$

• Exploit invariance of I_v / v^3 to transform specific intensity to observer's frame

$$I_{\nu} = I'_{\nu_e} \left(\frac{\nu}{\nu_e}\right)^3 = I'_{\nu_e} D^3;$$

compute D from $p^{\alpha}u_{\alpha}$

38 The Bottom Line

Radial emissivity profile from central illumination. Broadening due to random motions, finite integration cells, and instrumental resolution.

39 Examples of other calculations

- General treatment of photon propagation from a disk around a black hole of arbitrary spin Cunningham 1975, ApJ, 202, 788 Cunningham 1976, ApJ, 208, 534
- Line profiles from the inner accretion disk around a non-rotating black hole Fabian et al 1989, MNRAS, 238, 729
- Line profiles from the inner disk in a rotating black hole Laor 1991, ApJ, 376, 90

40 **Optical Balmer line**

- Origin in outer disk at $\xi \sim 10^2 10^3$
- Approximate treatment of relativistic effects

41 Fe Kα X-Ray Lines from Inner Disk

42 Observed Fe Kα Lines in XRBs

• Examples from NS XRBs

- from Cackett et al. 2008, ApJ, 674, 415
- Can use such line profiles to infer BH spin or constrain NS radius

Caveats

- disk emission properties
- wind

variability

Doppler Tomography

44 **Principle of Doppler tomography**

from Marsh & Horne 1988, MNRAS, 235, 269

46 **Principle of Doppler tomography**

Velocity coordinates

Position coordinates

from Marsh & Horne 1988, MNRAS, 235, 269

47 **Computing Doppler maps**

• Observed line profile at binary phase ϕ in terms of parameters in binary frame

$$f(V, \phi) = \int \int \int \left[I(V_x, V_y, V_z) g(V - \gamma + V_x \cos \phi - V_y \sin \phi + V_z) dV_x dV_y dV_z, \right]$$

line intensity in disk frame local line profile projected velocities

Assume no vertical motions, replace local profile,
 g(V), by its Fourier transform, G(s), and invert

 $I(V_x, V_y) = \int_0^{2\pi} \int_0^\infty \frac{s}{G(s)} \int f(V, \phi) \exp\left[-i2\pi s (V - \gamma + V_x \cos \phi - V_y \sin \phi)\right] dV \, ds \, d\phi.$

Alternative: maximum entropy inversion

48 Early applications CV disks: IP Peg

Horne & Marsh 1990, ApJ, 349, 593

49 Early applications CV disks: IP Peg

Horne & Marsh 1990, ApJ, 349, 593

50 Early applications CV disks: IP Peg

51 Recall spectral eclipse mapping

V2051 Oph in quiescence

from Saito & Baptista 2006, AJ, 131, 2185

Recent applications: spiral arms 52

53 Confirmation from eclipse mapping

Eclipse maps in selected emission lines of IP Peg in outburst

Detection of spiral structure

from Baptista et al. 2005, A&A, 444, 201

54 What's the big deal with spiral arms?

- Predicted by theory (Sawada et al. 1986; Savonije et al. 1994)
- Angular momentum transport mechanism.
- Observed around peak of outburst: Puzzling...
 - IP Peg (DN) Harlaftis et al. 1999
 WZ Sge (DN) Kuulkers et al. 2002
 SS Cyg (DN) Steeghs et al. 2001
 U Gem (DN) Groot et al. 2001

V 3885 Sgr (NL) — found by Hartley et al. 2005 but not found by Ribeiro & Diaz 2007.

55 Disk eccentricity

- Tidal perturbation of the disk by the secondary star at q < 0.25
- Proposed to explain "superhumps" in CVs Whitehurst 1988 Lubow 1991

figure from Nielsen et al. 2008, MNRAS, 384, 849

56 Single Peaked Lines?

- Why do the lines change from double-peaked to single-peaked during outburst?
- Do single-peaked lines still come from the disk?
- Close connection with the emission lines of AGNs and far-reaching implications.

56 Single Peaked Lines?

- Why do the lines change from double-peaked to single-peaked during outburst?
- Do single-peaked lines still come from the disk?
- Close connection with the emission lines of AGNs and far-reaching implications.

"The answer is blowin' in the wind"

– Dylan, B.1962, Special Rider Music

57 How do we know there are outflows?

- Blueshifted absorption lines in
 - the UV spectra of CVs and AGNs (P-Cygni profiles)
 - + the X-ray spectra of XRBs and AGNs
- Residual flux during eclipse (vertically extended gas)
 - X-Ray continuum
 - UV emission lines

58 The Wind of UX UMa

figures from Mason et al. 1995, MNRAS, 274, 271

59 Resonance scattering in wind

Simulated C IV line profiles for different outer radii at a fixed inclination.

Knigge & Drew 1996, MNRAS, 281, 1352

60 Emission lines from winds

- Dense layer at the base emits the lines.
- Powered by photoionization
- $\bullet v_r \ll v_{\varphi}$
 - but $dv_r/dr \gg dv_{\varphi}/dr$

61 Non-axisymmetric emissivity pattern

formalism by Rybicki & Hummer 1978, ApJ, 219, 654 see also Shlosman et al. 1985, ApJ, 294, 96 and Hamann et al. 1993, ApJ, 415 541

62 Effect of optical depth at base of wind

figure from Flohic, 2008, PhD Thesis, Penn State

63 More examples of line profiles

figures from Flohic, 2008, PhD Thesis, Penn State University

End of Lecture II