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INTRODUCTION

Recent work by one of the authors (Ferraz-Mello, 1989, 1990 a,b) and by Mor-
bidelli and Giorgilli (1990) has shown the existence of very-high-eccentricity stable
and unstable equilibrium solutions (corotation centers) in the averaged Sun-J upiter-
asteroid plauar problem, when a secular resonance and a resonance of periods oce.ur
simultaneously. They correspond to stationary motions in which the orbits of the
asteroid and Jupiter share the same apsidalline. In the case of a 3:1 resonance of
periods, two of these corotation centers form a stable-unstable pair at e = 0.812 and
e = 0.788, respectively. The stable corotation center corresponds to a maximum of
the energy (Es = -1.775728 in astronomical units). For values close to this maximum

the motions are regular oscillations in the neighbourhood of the corotation center (as
those shown in the left-hand side of fig. 2).

The study of the phase portrait of such dynamical system may be done by means
of purely numerical techniques, but, generally, the CPU times involved are large and
limit. the possible exploration of the phase space. More extended analyses become
possible if an analytical averaging of the equations is made before the numerical in-
t.egration. However, the classical technique for the expansion of the potential of the
disturbing forces due to Jupiter, in terms of Keplerian elements, may be used only for
small eccentricities; indeed, as shown by Sundmann (Silva, 1909; Hagihara, 1971), the
convergence of the series is limited to e ;::;j0.33 in the resonance 3 : 1, to e ;::;j0.18 in
the resonance 2 : 1 and only to e ;::;j0.09 in the resonance 3 : 2, values which are less
than the observed ones (the original proof by Sundmann was restricted to orbits with
circ.ulating perihelia - but this is generally the case). In order to circumvent this diffi-
culty, we may use asymmetric expansions (Ferraz-Mello, 1987; Ferraz-Mello and Sato,
1989); they are Taylor series about generic points i11the phase space (with eo # 0)
and may represent the disturbing potential for large values of e. However, there is
no reason for which these series may have a better convergence than the classical,
symmetric one - on the contrary, the convergence must become poor when eo --+ 1.
Thus, analytically, the asymmetric series can only be used for the study of librations
and corotations of small amplitude, when the motion remains in the neighbourhood
of the point about which the expansion is done.
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THE MODEL

In the planar model presented in this paper, in order to cope with this difficulty,
the phase space is divided into a given number of cells and the analytical averaging
of the disturbing potential is done locally, in the center of each cell. The averaged
equations are, then, integrated numerically and, at. every point in the integ~'ation,
the coefficients of the series representation of the disturbing function are taken as
computed in the center of the corresponding cell.

The adopted equations are non-canonical. The reason for this choice is that

the asymmetric expansion of Ferraz-Mello and Sato is done using Keplerian elements.
These equations are obtained straightforwardly from Lagrange's equations for the
variation of the elements:

da = 2r [hof - k 'oF - of]
dt na ok oh OUI (1)

dUl 2r of r;3 of of

d1 = (r + 1)nl - 1"11+ na oa - na2(1+ ;3)[kok + hoh ]. (2)

dk ;3 of dUl k;3 dah--
dt - na2 oh . dt 2a(1 + ;3) dt

(3)

dh ;3 of dUl h;3 da
-=---+k-- .
dt na2 ok dt 2a(1 + ;3) dt

(4)

The variables are the semi~major axis a and the parameters k, h, Ul defined through'
the equations

k = e cos U

h = e sin U

u=4Y-w
Ul = 4Y- WI
t/J=(r+1)Al-rA.

(5)

4Yis the critical angle associated with the qth-order resonance (p + q) : p (or (r + 1) : r
with r = pi q). e, el are the eccentricities, A, Al the mean longitudes, W, WI the
longitudes of the perihelia, n, nl the mean motions and ;3 = ~; the subscript 1
refers to Jupiter. The fifth equation, in the derivative of the mean synodic longitude
Q = A - AI, is not considered, since the function F is averaged over q times the mean
synodic period and ~~ = O. The orbital elements of Jupiter are assumed constant.

The function F is the averaged disturbing function:

/-1 1 2 1 2
F = -[Ao + A1bk + A2bh+ -A3bk + ~A4bh + A5bkbh

al 2 2

+(A6 + Asbk + A10bh)el COSUI+ (A7 + AHbk + Allbh)el sinul

1 21 2 1 2.
+ - A12el + - A13el cos 2Ul + - A14el sm 2Ul]2 2 2

t

.~

l
(6)

expanded about one center ko, ho up to the second power of the differences bk =
k - k:o,bh = h - ho (see Ferraz-Mello and Sato, 1989). The coefficients Aj are functions
of the semi- major axis a and of the chosen center ko, ho.
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The Lagrangian equations for a., k, 11.,0"1have the energy-like first integral

It p -+ q 2
- E = - -+ -nlna. -+ F.

2a. p
(7)

The value of the coefficients Aj and their derivatives with respect to (/. are cal-
culated previously in a set of points ko,ho. These coefficients are assumed to allow a
good representation of the function F in a small domain around ko, 11.0,in the neigh-
bourhood of the value of the semi-major axis a. characteristic of the given resonance.

The plane k, 11.is then divided into a finite number of square cells. During the numer-
ical integration of the equations, at each point, the expansion about the center of the
cell where the point is found, is selected. The dependence of the coefficients with a. is
given by a linear approximation.
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Fig. 1 - Level curves Ao = const. in the plane k, h. (a)
Resonance 3:1. (b) Resonance 3:2. The dots are the centers
used for the local expansions.

Figure 1 shows the level curves Ao = canst. in the plane k,h, in two cases:
t.he resonances 3:1 and 3:2. Some results for the resonance 3:1 are discussed in this

paper. The level curves for the resonance 3:2 show some difficulties we face in this
resonance, but not in the resonance 3:1. In the case 3:2 we may see a I"eel along the
line corresponding to averages over orbits going through a collision with Jupiter. The
infinite values of Ao on this line, in fact, are not seen in the figure, since the function
is sampled only in the points of a finite grid. In both cases the calculations were done
in the center of a net of squares sized 0.05 X 0.05.

THE RESON ANCE 3:1

In this section, some preliminary results concerning the resonance 3:1, obtained
with t.his method, are given. Figures 2 and 3 shO"w surfaces of section definecl by
0" = 7r/2 (with Cr< 0) and the energies(referred to the maximum) b.E = -4.3 X10-5 Es
and b.E = -4.7 X 10-5 Es, respectively. These figures extend to high eccentricities re-
sults previously found by Wisdom (1983,1985) and by Henrard and Caranicolas (1990)
(They are somewhat larger than those obtained using the classical Laplacian expan-
sion). In both figures there is a st,able periodic solution, near the origin, surrounded by
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Fig. 2 - Surface of section for b.E = -4.3 x 10-5 Es. The
axes are e. cos(w - -rod and e.sin( w - -rod.
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Fig. 3 - Surface of section for b.E = -4.7 x 10-5Es. Axes
as in fig. 2.
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Fig. 4 - Surface of section for b,.E = -5.05 x 10-5Es. Axes
as in fig. 2.
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Fig. 5 - Detail of fig. 4. The chaotic solution making the
communication between the inner and outer part of the plane
of section.

181



regula.r motions. The boundary of this region (called zone of uncertainty, by Wisdom)
is the inner limit of the chaotic region emanating from the saddle in the horizontal
axis, at k ;:::::-0.1 (fig. 2) and k ;:::::-0.2 (fig. 3). In fig. 3 another center is seen, at
k ;:::::0.35, as well as some seemingly regular curves around it. In fig. 2 a similar center
has not been found. In both cases, the whole inner region is enveloped by a bun2h of
regular curves. In the outer part of the phase space the topology is governed by the
center at k = -0.7 and the saddle near k = +0.8. The motions about the center are

regular. Some irregularities are seen starting from the saddle, but the precision of the
calculations is not good enough to allow us to say that they mean chaos. Anyway,
chaotic motion is expected there and the results obtained serve to say that the diffusion
in such region must be very slow (every integration in the outer region covers 300,000
years ).
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Fig. 6 - Solution corresponding to the present orbital ele-
ments of (887) Alinda for 300,000 years.

In the inner region of these figures we may see orbits allowing the eccentricity to
vary between 0.1 - 0.2 and 0.4 - 0.5; in the outer one the allowed variation is between
0.3 aud 0.9. However, these two region~, for these energies, do not communicate.

Figure 4 shows a similar surface of section for !:lE = -.5.05 x 10-5Es. Now,
the inner and outer regions communicate; the outer 8table and unstable manifolds of
the innermost saddle and the inner manifolds of the outermost one entangle. While
the chaotic regions of figures 2 and 3 are associated with the existence of homoclinic
points, the cOIllmunication between the two regions is associated with heteroclinic
points. One solution leading froIll e < 0.2 to e = 0.9 is, now, possible. The evolution
shown in fig. 5 corresponds to 7 x 105 years. One asteroid (or meteoroid), in such
a. motion, would keep its eccentricity higher than 0.6 for periods of ;:::::i05 years, one

1B2 .J



>-'?
"0"'-..
i1i
.i"'?

0x..

0 10' 2xl0' 3x10' 4xl0' 5X10' 6xl0' 7X10'

e- ~ 0.19

'"
ci

~~
~O
~~<.)0..

..ci

0
0 10' 2x10' 3x10' 4Xl0' 5x10' - 6xl0' 7xl0'

"- -90

.~rl]~~
:! Ii!

i

Z-';":.h ' :W . :~-: \:~.
:Ij '.. "~"';::'\:'. ,'.,..: 'f ';. ..., :

i:ll~il, . ~
0 10' 2><10"

~1": '...];~}

~~
'r\ ~ ',"!,

~ :~

'":'b-.,,.1
~;
"'.

3x10"

TDIE (years)

Fig. 7 - Variations of the energy (in units of Es), the ec-
centricity and the critical angle (j, for 750,000 years, in the
solution whose section is shown in fig. 5.

time long enQugh to allow him to be strongly perturbed by the Earth or Mars and to
become, perhaps, a permanent Apollo.

It is worth mentioning that the asteroid (887) Alinda (b..E = -6.6 x 1O-5.Es)
is moving ill the chaotic zone and may pass from one region to the other, undergoing
variations of the eccentricity from 0.25 to 0.75 in 6 x 104 years. The secular evolution
of its eccentricity and perihelion for 3 x 105 years is shown in figure 6 (the numerical
integration of the exact equations of the motion shows variations in the range 0.35 -

0.76 sinee the eapture of this asteroid in the resonance 3:1; see Milani et al. 1969). We
emphasize the extreme sensitivity of this solution -with respeet to initial eonditions.
Very small changes are sufficient to give a crescent-like curve not in eluding the origin.

The integrations were checked mainly by looking at the energy E. Inside a
c.ell,t.he precision obtained is very good - ten figures, or more, for instance - but in
the jump from one eell to the next, the results are impaired by the differenee of the
eomputed values of the funetion F in the two sides of the border. Figure 7 shows the
behaviour of the energy of the solution shown in fig. 5, over 750,000 years. This figure
also shows the evolution of the eccentric.it.y and the angle (j, in the same time. The
variation in the energy is clearly related to large eceentricities and large amplitudes
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of the libration of (j. When these factors occur, the regions of faster variation of Ao
are reached (see fig. 1(a)) and the border errors become larger. This result shows
that improvements are still necessary. However, the succession of similar sections
guarantees the results, at least under a qualitative point of view. The large variations
in the energy also serve to show the importance of having a good representatiOll '6£
f.lw Itvpragp.l potential of the disturbing forces -F ovpr the phase space. Integrations
with a continuous representation of F may give good internal accuracy hiding, in this
way, the large errors due to the poor representation of that function.

Other checks were done making the eccentricity of Jupiter equal to zero, iil
which case the dynamical system is completely integrable. The surfaces of section
thus obtained show only well marked-invariant curves, even at high eccentricities.
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