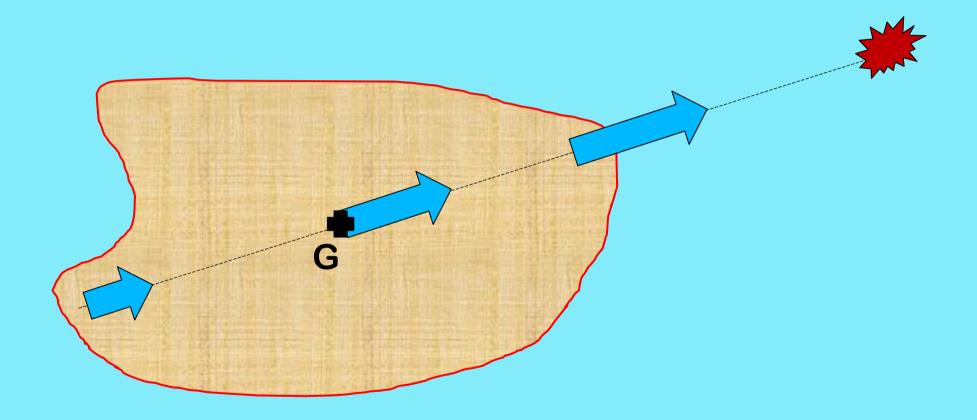
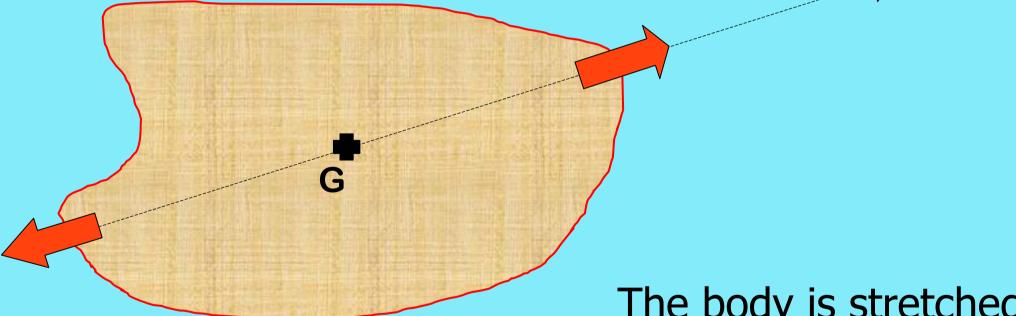
TIDES AND EXOPLANETS

Sylvio Ferraz Mello

Lectures CELTA Inverness/Skye 2022 TIDE = Variation in the surface level of one celestial body caused by the gravitational attraction of other celestial bodies.



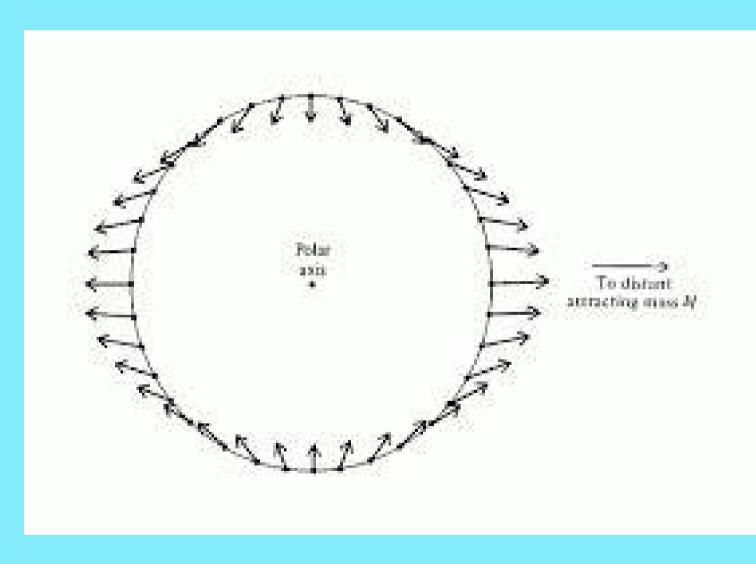
In a frame fixed in the body:

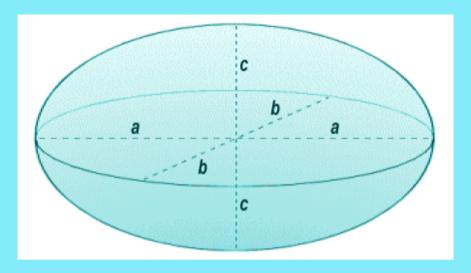


The body is stretched along the direction of the disturbing forces

Tidal deformation of a spherical body

Approximation: ellipsoid





FLATTENINGS

Equatorial

$$\varepsilon_{\rho} = \frac{a-b}{R_e}$$

Polar
$$\varepsilon_z = 1 - \frac{c}{R_e}$$

Eqn. Ellipsoid

$$\rho = R_e (1 + \frac{1}{2} \varepsilon_\rho \sin^2 \theta \cos 2\varphi - \varepsilon_z \cos^2 \theta)$$

N.B.

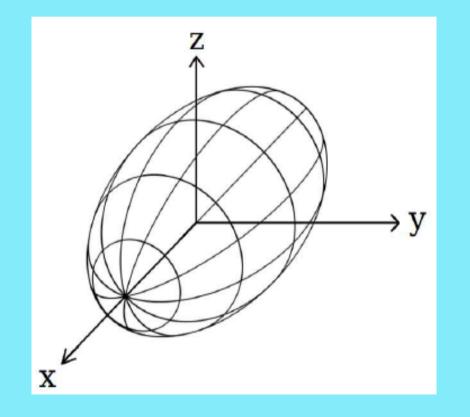
$$R_e = \sqrt{ab}$$

$$R=R_{e}(1-rac{1}{3}arepsilon_{s})$$

$$a = R_e (1 + \varepsilon_{\rho}/2)$$
$$b = R_e (1 - \varepsilon_{\rho}/2)$$
$$c = R_e (1 - \varepsilon_z)$$

SKYE-2022

In case of a perfect fluid (inviscid homogeneous) **Jeans spheroid** (b=c) $(\Omega = 0)$



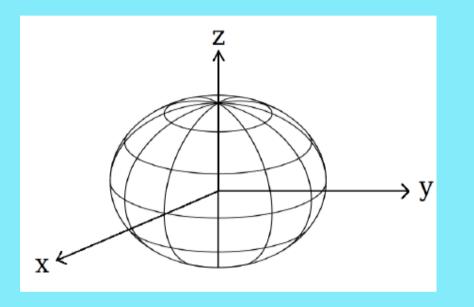
$$\epsilon_J = \frac{15}{4} \frac{M}{m} \left(\frac{R}{r}\right)^3$$

m planet massM star massR planet radiusr mutual distance

$$\varepsilon_{\rho} = \frac{a-b}{R_{e}}$$

Primary	Companion	ϵ_J	a – b
Earth	Moon	2.1×10^{-7}	1.34 m
Earth	Sun	9.6×10^{-8}	$0.6 \mathrm{m}$
Mercury	Sun	1.7×10^{-6}	4.1 m
Venus	Sun	2.6×10^{-7}	1.5 m
Jupiter	Sun	3.0×10^{-9}	0.2 m
Jupiter	Io	8.5×10^{-7}	61 m
Moon	Earth	2.8×10^{-3}	50 m
Io	Jupiter	4.9×10^{-3}	8.2 km
Titan	Saturn	1.5×10^{-4}	0.38 km
planet CoRoT 7b	star CoRoT 7	8×10^{-3}	85 km

if free rotating body



MacLaurin spheroids

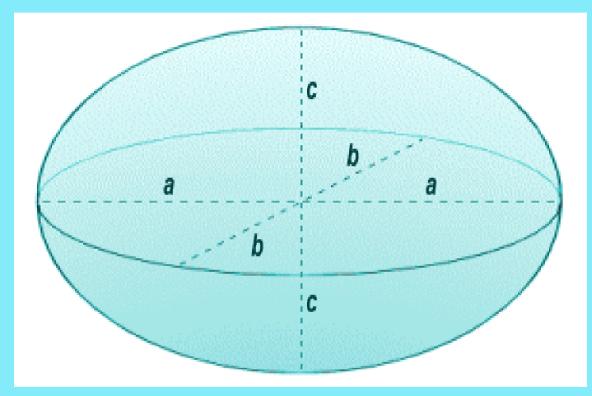
$$\epsilon_{\rm M} = \frac{5R^3\Omega^2}{4mG}$$

m planet massR planet radiusΩ planet rotation vel.

$$\varepsilon_z = 1 - \frac{c}{R_e}$$

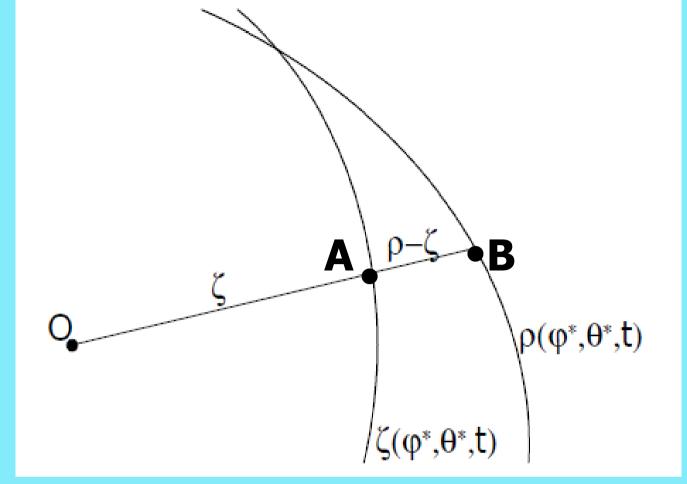
c=polar radius

General case • tide + $\Omega \neq 0$ (any)



$$\varepsilon_{z} = \varepsilon_{M} + \frac{1}{2}\varepsilon_{J}$$
$$\varepsilon_{\rho} = \varepsilon_{J}$$

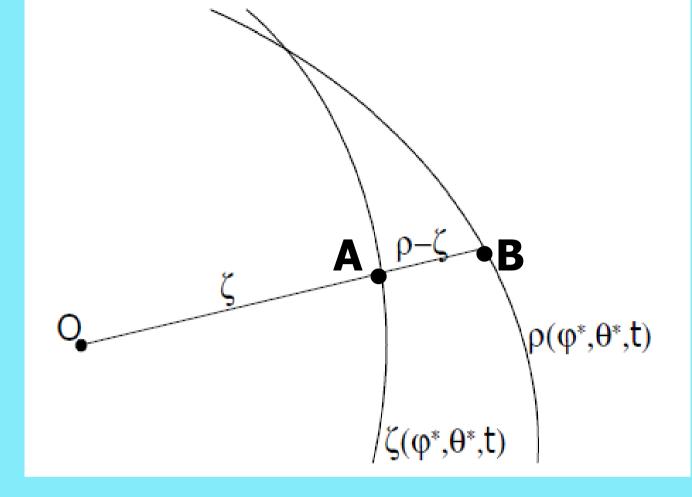




ζ Actual Surface of the body at time
 ρ Surface of instantaneous equilibrium
 (VIRTUAL)

Newtonian CREEP

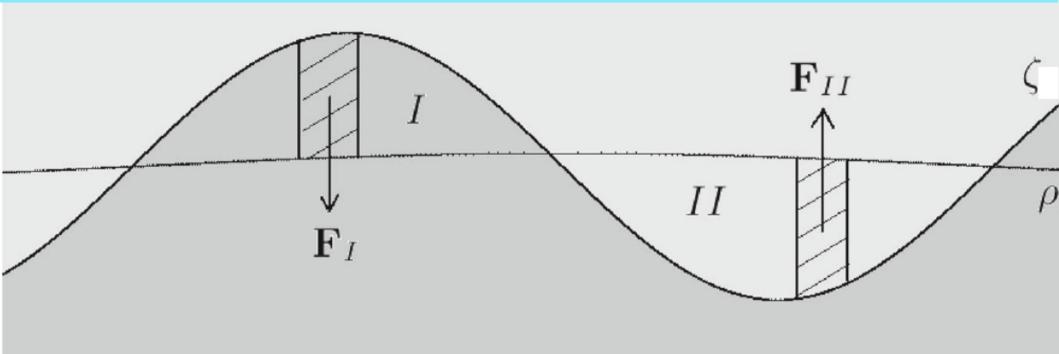
Relaxation factor γ



$$\dot{\zeta} = \gamma(\rho - \zeta).$$

AB decreases exponentially

e¯γt



 ζ Actual surface of the body ρ Equilibrum surface (static tide) F_i ... Forces ("weight") $|P_i|=h_i w \dots$ Pressure

Navier-Stokes equation Stokes approximation without Inertia and external forces

grad p = η **Δu**

where $\Delta u = (\Delta u_x \Delta u_y \Delta u_z)'$ $\eta = viscosity$

Consider only the radial displacement:

$$\Delta \mathbf{u}_{\mathsf{r}} = \frac{\partial^2 V_r}{\partial \zeta^2} + \frac{2}{\zeta} \frac{\partial V_r}{\partial \zeta} - \frac{2V_r}{\zeta^2} = \frac{w}{\eta}$$

Solution:

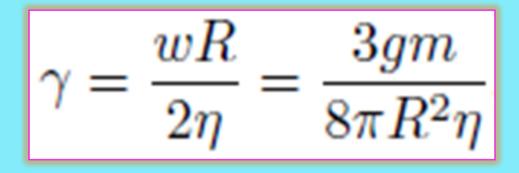
$$V_r(\zeta) = C_1\zeta + \frac{C_2}{\zeta^2} - \frac{w}{4\eta}\zeta^2$$

Boundary conditions: $V_r(\rho) = 0$ $r=\rho$ is the equilibrium $V_r''(\rho) = 0$ = linear approximation (i.e. Newtonian **creep**)

$$C_1 = \rho W/6\eta$$

 $C_2 = \rho^4 W/12\eta$

$$V_r(\zeta) = -\gamma (\zeta - \rho)$$



NB. In Darwin's theory (1879,1880) the relaxation factor is different:

Ref:

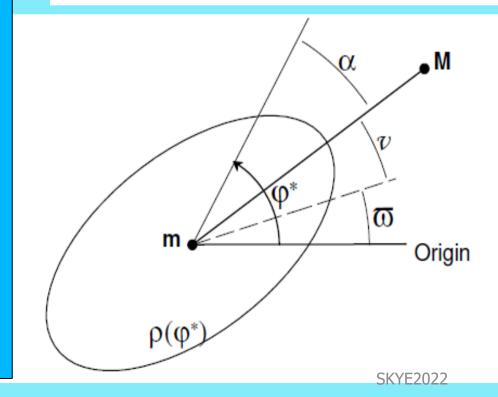
Happel and Brener, Low Reynolds number Hydrodynamics, Kluwer, 1973 **Darwin**, 1879 Folonier & FM, CMDA, 129(4), 2017 S.F.M. Cel.Mech.Dyn.Ast.116,109,2013;

S.F.M. Cel.Mech.Dyn.Ast. **116**,109,2013; **122**,359,2015 (astro-ph 1204.3957 and 1505.05384) S.F.M. et al. (astro-ph 1707-09229)

Table 1 Typical values of the relaxation factor adopted in applications.

Body	$\gamma (s^{-1})$	$2\pi/\gamma$	η (Pa s)
Moon	$2.0 \pm 0.3 imes 10^{-9}$	36,000 d	$2.3 \pm 0.3 imes 10^{18}$
Titan	$2.9 \pm 0.2 imes 10^{-8}$	2500 d	$1.1 \pm 0.1 imes 10^{17}$
Solid Earth	$0.9 - 3.6 imes 10^{-7}$	200-800 d	$4.5 - 18 \times 10^{17}$
Io	$4.9 \pm 1.0 imes 10^{-7}$	730 d	$1.2 \pm 0.3 imes 10^{16}$
Europa	$1.8 - 8.0 imes 10^{-7}$	90–400 d	$4 - 18 \times 10^{15}$
Neptune	2.7 - 19	< 2 s	$1.2 - 4.8 \times 10^{10}$
Saturn	> 7.2	$< 0.9 \ s$	$< 15 \times 10^{10}$
Jupiter	23 ± 4	$\sim 0.3~{ m s}$	$4.7 \pm 0.9 imes 10^{10}$
hot Jupiters	8-50	0.1 - 0.8 s	$5 \times 10^{10} - 10^{12}$
solar-type stars	> 30	< 0.2 s	$< 2 \times 10^{12}$

The CREEP TIDE theory $\dot{\zeta} + \gamma \zeta = \gamma \rho$ O.D.E. for $\zeta(t)$ $= \gamma R (1 + \frac{1}{2} \epsilon_{\rho} \sin^2 \hat{\theta} \cos(2\hat{\varphi} + 2\omega - 2v) - \epsilon_z (\cos^2 \hat{\theta} - \frac{1}{3}))$



 $\hat{\phi} \approx \Omega t$

$$\epsilon_{\rho} = \frac{a_e - b_e}{R_e} = \frac{15}{4} \left(\frac{M}{m}\right) \left(\frac{R_e}{r}\right)^3$$

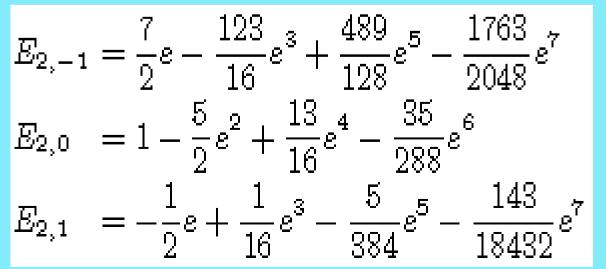
$$\epsilon_z = \frac{\epsilon_\rho}{2} + \frac{5}{4} \frac{\Omega^2 R^3}{Gm}$$

Expand r.h.s. using for r(t) and v(t) their Keplerian expressions.

Introduce the Cayley functions (a.k.a. Hansen)

$$E_{q,p}(e) = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{a}{r}\right)^3 \cos\left(qv + (p-q)\ell\right) d\ell$$

Examples



& cttes.

$$\overline{\overline{\epsilon}}_{\rho} = \frac{15}{4} \left(\frac{M}{m}\right) \left(\frac{R_e}{a}\right)^2$$

 $\varepsilon_{\rm Z} = \varepsilon_{\rm M}$

$$\dot{\zeta} + \gamma \zeta = \gamma R \Big(1 + \frac{1}{2} \overline{\epsilon}_{\rho} \sin^2 \widehat{\theta} \sum_{k \in \mathbb{Z}} E_{2,k} \cos \left(2\widehat{\varphi} + (k-2)\ell - 2\omega \right) \\ - \overline{\epsilon}_z (\cos^2 \widehat{\theta} - \frac{1}{3}) - \frac{1}{2} \overline{\epsilon}_{\rho} (\cos^2 \widehat{\theta} - \frac{1}{3}) \sum_{k \in \mathbb{Z}} E_{0,k} \cos k\ell \Big)$$

Hypotheses (restrictive) homogeneous bodies orthogonal case $\theta^* = \pi/2$ (equator = orbital plane)

$$\dot{\zeta} + \gamma \zeta = \gamma R \Big(1 + \frac{1}{2} \overline{\epsilon}_{\rho} \sin^2 \widehat{\theta} \sum_{k \in \mathbb{Z}} E_{2,k} \cos \left(2\widehat{\varphi} + (k-2)\ell - 2\omega \right) \\ - \overline{\epsilon}_z (\cos^2 \widehat{\theta} - \frac{1}{3}) - \frac{1}{2} \overline{\epsilon}_{\rho} (\cos^2 \widehat{\theta} - \frac{1}{3}) \sum_{k \in \mathbb{Z}} E_{0,k} \cos k\ell \Big)$$

 $\hat{\phi} \approx \Omega t$ $\ell = nt + cte$ Working hypothesis: $d\Omega/dt \approx 0$ (SFM, 2013-2015; Darwin theories)
Nonhomogeneous 1st order EDO
with constant coefficients

Solution
$$\zeta = C\left(\widehat{\varphi}, \widehat{\theta}\right) \cdot e^{-\gamma t} + R + \delta\zeta$$
$$\delta\zeta = R \sum_{k \in \mathbb{Z}} \left(C_k \sin^2 \widehat{\theta} \cos \overline{\sigma}_k \cos(\Theta_k - \overline{\sigma}_k) + C_k'' (\cos^2 \widehat{\theta} - \frac{1}{3}) \cos \overline{\sigma}_k'' \cos(k\ell - \overline{\sigma}_k'') \right)$$
where
$$C_k = \frac{1}{2} \overline{\epsilon}_{\rho} E_{2,k}$$
$$C_k'' = -\frac{1}{2} \overline{\epsilon}_{\rho} E_{0,k} - \delta_{0,k} \overline{\epsilon}_{z}$$
and
$$\Theta_k = 2 \widehat{\varphi} + (k - 2)\ell - 2\omega$$
$$\Theta_k'' = k\ell.$$
$$\sigma_k = \arctan\left(\frac{kn + \nu}{\gamma}\right)$$
phases of the forced terms

$$\delta \zeta = R_e \sum_{k \in \mathbb{Z}} \left(\mathcal{C}_k \sin^2 \widehat{\theta} \cos \overline{\sigma}_k \cos(\Theta_k - \overline{\sigma}_k) + \mathcal{C}_k'' \cos^2 \widehat{\theta} \cos \overline{\sigma}_k'' \cos(\Theta_k'' - \overline{\sigma}_k'') \right)$$

Superposition of tidal bulges

ellipsoids with prolatenesses:

$$\epsilon_k = \frac{15}{4} E_k(e) \cos \sigma_k \left(\frac{M}{m}\right) \left(\frac{R}{a}\right)^3$$

 $\sigma_k = \arctan$

 $kn + \nu$

$$\mathcal{C}_{k} = \frac{1}{2} \overline{\epsilon}_{\rho} E_{2,k}$$
$$\mathcal{C}_{k}^{\prime\prime} = -\frac{1}{2} \overline{\epsilon}_{\rho} E_{0,k} - \delta_{0,k} \overline{\epsilon}_{z}$$
SKYE-2022

N.B

$$\delta U_k = -\frac{3GmR^2}{5r^3} \, \mathcal{C}_k \cos \overline{\sigma}_k \sin^2 \theta \cos(2\varphi - \beta_k) \\ -\frac{GmR^2}{5r^3} \mathcal{C}_k'' \cos \overline{\sigma}_k'' (3\cos^2 \theta - 1) \cos \beta_k''$$

where

$$\beta_k = (2 - k)\ell + 2\omega + \overline{\sigma}_k$$

$$\beta_k'' = k\ell - \overline{\sigma}_k''.$$

 ℓ = mean anomaly

Finally, $\delta {\bf f} = -M.{\rm grad}_{\bf r} \delta U \quad '$

We obtain (sums over k)

$$F_{1k} = -\frac{3GMmR^2}{5r^4} \left(3C_k \cos \overline{\sigma}_k \cos(2v - (2 - k)\ell - \overline{\sigma}_k) - C_k'' \cos \overline{\sigma}_k'' \cos(k\ell - \overline{\sigma}_k'') \right)$$

$$F_{2k} = 0$$

$$F_{3k} = -\frac{6GMmR^2}{5r^4} C_k \cos \overline{\sigma}_k \sin(2v - (2 - k)\ell - \overline{\sigma}_k)$$
and
Torque

$$M_{1k} = 0$$

$$M_{1k} = 0$$

$$M_{2k} = \frac{6GMmR_{\perp}^2}{5r^3} C_k \cos \overline{\sigma}_k \sin(2v - (2 - k)\ell - \overline{\sigma}_k)$$

$$M_{3k} = 0$$
(sum over k)

Tidal Evolution - 1

Rotation of the Primary:

 $C\dot{\Omega}=M_{2}$

Important: $M_z = -M_2$

N.B. neglect variation of C

From: $C\dot{\Omega} = M_2$

$$\dot{arOmega} = -rac{3GM\overline{\epsilon}_{
ho}}{2a^3}\sum_{k\in\mathbb{Z}}E_{2,k}\cos\overline{\sigma}_k\sum_{j+k\in\mathbb{Z}}E_{2,k+j}\sin(j\ell+\overline{\sigma}_k),$$

where
$$\sin 2\sigma_k = \frac{2\gamma(\nu + kn)}{\gamma^2 + (\nu + kn)^2}$$

v is the semi-diurnal frequency =
$$2\Omega - 2\dot{\lambda}$$

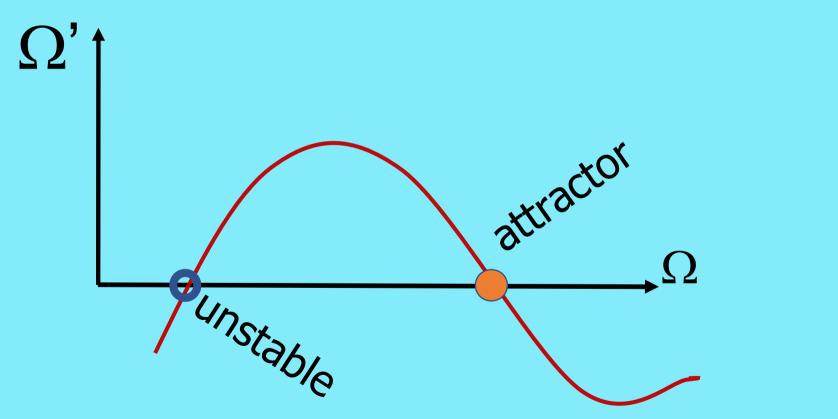
FIRST-order non-linear o.d.e.

SKYE-2022

Instead of the analytical study,

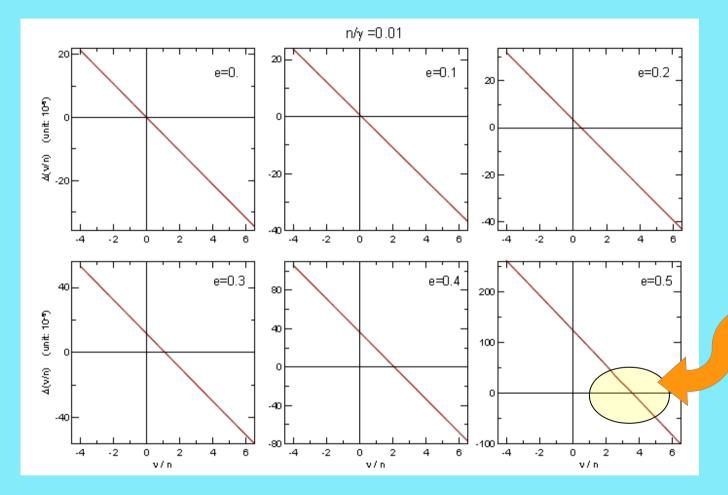
We use here the map

$$\Omega(\boldsymbol{\ell}) \longrightarrow \Omega(\boldsymbol{\ell} + 2\pi) - \Omega(\boldsymbol{\ell})$$



The intersections with the axis Ω '=0are stationary solutions

Case γ >> n (ex: hot Jupiters)



The intersections with the axis Ω '=0 are attractors

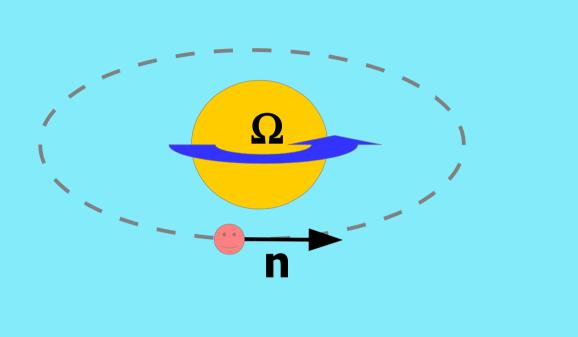
<u>N.B.</u>

These attractors are **supersynchronous** $\Omega = n + 6ne^{2}$

Ref: SFM, DDA 2014 (astro-ph 1204.3957) & CMDA (2015); Correia et al. A&A 2013.

SKYE-2022

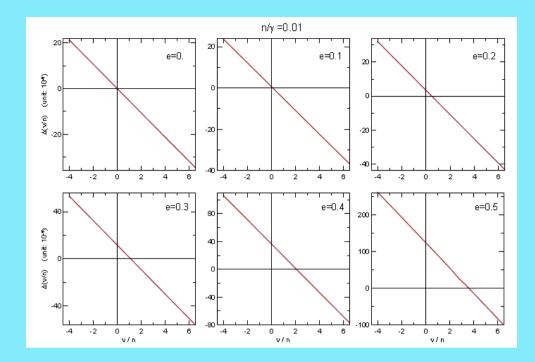
• Synchronous (1:1 resonance) $\Omega = n$ (v=0) • Supersynchronous rotation $\Omega > n$ (v>0)



n = mean motion (mean angular orbital velocity) $v=2\Omega-2n$ =frequency of the semi-diurnal tide

Application: HOST STARS

(high γ)



Examples:

CoRoT 15b BD (m=63.3 Jup) around a F7V star Orbital period: 3.06 d Star rotation: 2.9 – 3.1 d

KELT 1bBD (=27.4 Jup) around a F5 starOrbital period:1.217 dStar rotation: $(1.348 \pm 0.4) sin I (d)$

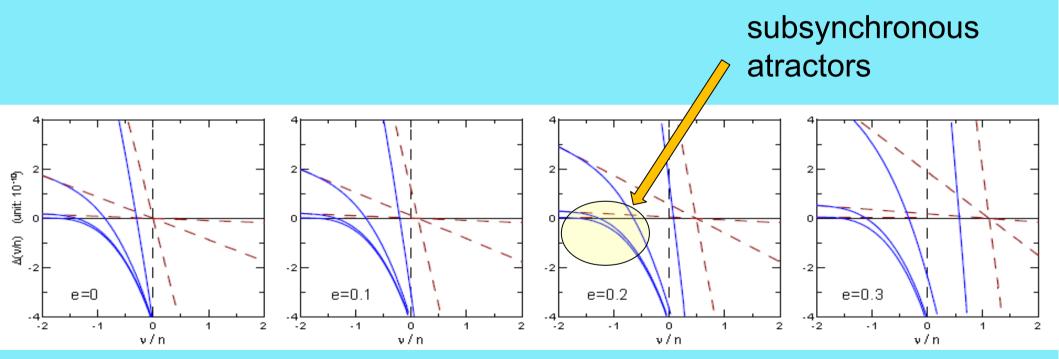
Solar-type stars are affected by wind braking

$$\dot{\Omega} = -f_P B_W \Omega^3$$

Ref: Bouvier et al. 1997 Skumanich, 1972

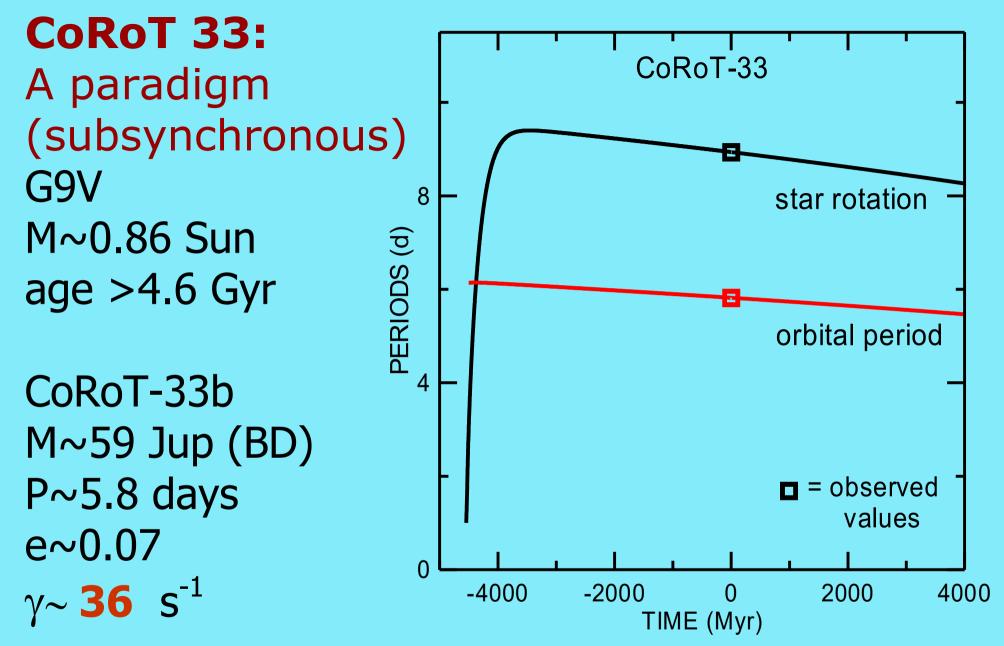
where

$$B_W = 2.7 \times 10^{47} \frac{1}{C} \sqrt{\left(\frac{R}{R_{\odot}} \frac{M_{\odot}}{m}\right)} \qquad (\text{cgs units})$$



[brown: no brake; blue: with brake]

 $n/\gamma = 10^{-6}$ to 10^{-3}



After ~1 Gyr the tidal interaction is stronger than the wind braking

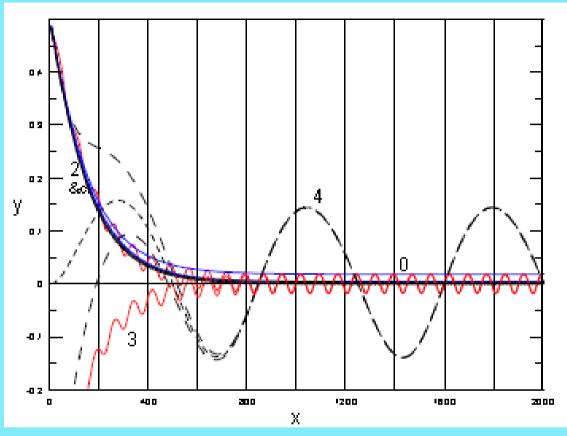
- and the stellar rotation accelerates.
- Ref:SFM et al. Astrophys. J. (2015) and Corot Legacy Book (2016).

SYNCHRONIZATION OF STIFF BODIES

Simulations near v=0

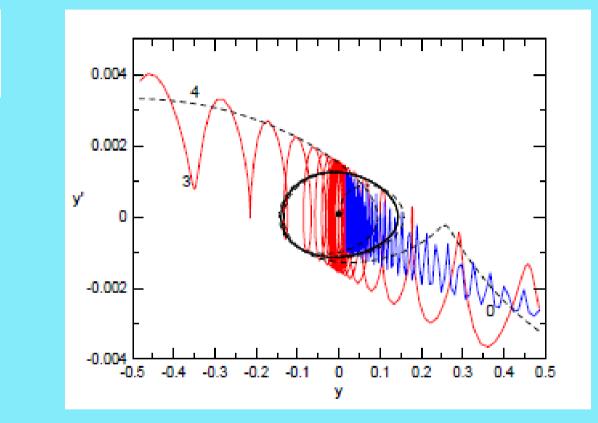
(normalized variables)

$$y = \nu / \gamma$$
$$x = (n/\gamma)(t - t_0)$$



Parameter $\log_{10} n/\gamma$

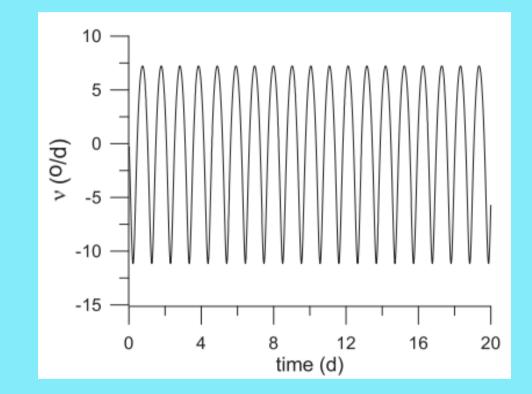
The attractor (plane $\Omega - \Omega'$)



Parameter:
$$\log_{10} n/\gamma$$

 $y = \nu / \gamma$

Forced oscillation about synchronism Example: Semi-diurnal frequency of an Earth-like exoplanet in stationary rotation (a=0.02 AU, e=0.2)



Ferraz-Mello et al. 2020

Working hypothesis $d\Omega/dt \sim 0$ not satisfied. In this case a different theory is necessary.

Parametric version of the creep tide theory (Folonier et al. 2018, Ferraz-Mello et al, 2020) The variable $\zeta(\phi, \theta)$ is substituted by a set of 3 parameters defining the orientation and the shape of the tidally deformed ellipsoid.

The equations can be integrated together with the equation for $d\Omega/dt$ without the need of a working hypotheses for Ω .

Tidal Evolution - 2
Variation of the semi-major axis $a = \frac{2}{na} \frac{\partial \mathcal{R}}{\partial \ell}$ $\mathcal{R} = -(1+M/m)\delta U$

Compare to the work done by the disturbing force:

$$\dot{W} = \delta \mathbf{f} \cdot \mathbf{V} = -M \operatorname{grad}_{\mathbf{r}} \delta U \cdot \mathbf{V} = -M n \frac{\partial \delta U}{\partial \ell}.$$

$$\dot{a} = \frac{2a^2}{GmM}\dot{W}.$$

N.B. In the 2-body problem: W = -GmM/2a

Variation of the semi-major axis

$$\dot{a} = \frac{2}{na} \frac{\partial \mathcal{R}}{\partial \ell} \qquad \qquad \mathcal{R} = -(1 + M/m)\delta U$$

Compare to the work done by the disturbing force:

$$\dot{W} = \delta \mathbf{f} \cdot \mathbf{V} = -M. ext{grad}_{\mathbf{r}} \delta U \cdot \mathbf{V} = -Mn rac{\partial \delta U}{\partial \ell}.$$

$$\dot{a} = \frac{2a^2}{GmM}\dot{W}.$$

N.B. In the 2-body problem: W = -GmM/2a

Variation of the eccentricity

$$\dot{e} = -\frac{\sqrt{1-e^2}}{na^2e}\frac{\partial \mathcal{R}}{\partial \omega} + \frac{1-e^2}{na^2e}\frac{\partial \mathcal{R}}{\partial \ell}$$

or

$$\dot{e} = \frac{1-e^2}{e} \left(\frac{\dot{a}}{2a} - \frac{\dot{\mathcal{L}}}{\mathcal{L}} \right)$$

where
$$\mathcal{L} = rac{GMm}{na} \sqrt{1-e^2}$$
, $\dot{\mathcal{L}} = M_z$

LOW-ECCENTRICITY FORMULAS

$$\begin{split} [\langle \dot{a} \rangle]_i &= \frac{3k_{2i}nm_j R_i^5}{m_i a^4} \left((1 - 5e^2) \frac{\gamma_i \nu_i}{\gamma_i^2 + \nu_i^2} - \frac{3e^2}{4} \frac{\gamma_i n}{\gamma_i^2 + n^2} \right. \\ &+ \frac{e^2}{8} \frac{\gamma_i (\nu_i + n)}{\gamma_i^2 + (\nu_i + n)^2} + \frac{147e^2}{8} \frac{\gamma_i (\nu_i - n)}{\gamma_i^2 + (\nu_i - n)^2} \right) + \mathcal{O}(e^4). \end{split}$$

$$\begin{split} [\langle \dot{e} \rangle]_i &= -\frac{3k_{2i}nem_j R_i^5}{4m_i a^5} \left(\frac{\gamma_i \nu_i}{\gamma_i^2 + \nu_i^2} + \frac{3}{2} \frac{\gamma_i n}{\gamma_i^2 + n^2} \right. \\ &+ \frac{1}{4} \frac{\gamma_i (\nu_i + n)}{\gamma_i^2 + (\nu_i + n)^2} - \frac{49}{4} \frac{\gamma_i (\nu_i - n)}{\gamma_i^2 + (\nu_i - n)^2} \right) + \mathcal{O}(e^3). \end{split}$$

see SFM 2022 (IAU Symp. 364)

 $\mathbf{v} = 2\Omega - 2\lambda$

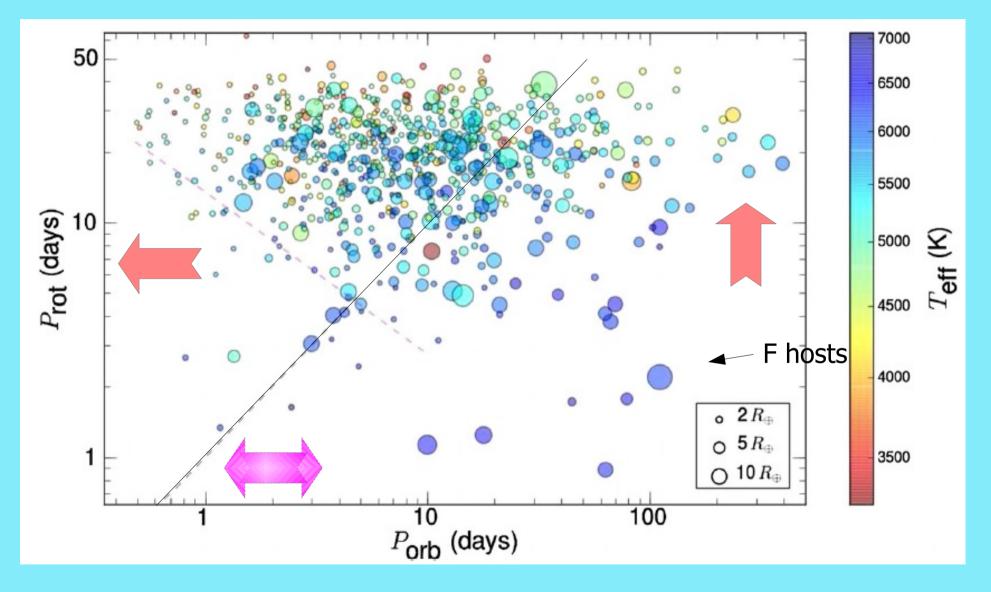
Role of
$$v = 2\Omega - 2\dot{\lambda}$$

$$[\langle \dot{a} \rangle]_{i} = \frac{3k_{2i}nm_{j}R_{i}^{5}}{m_{i}a^{4}} \left[(1-5e^{2}) \frac{\gamma_{i}\nu_{i}}{\gamma_{i}^{2}+\nu_{i}^{2}} + \mathcal{O}(e^{2}) \right]$$

Planetary satellites $n>0 \rightarrow da/dt > 0$

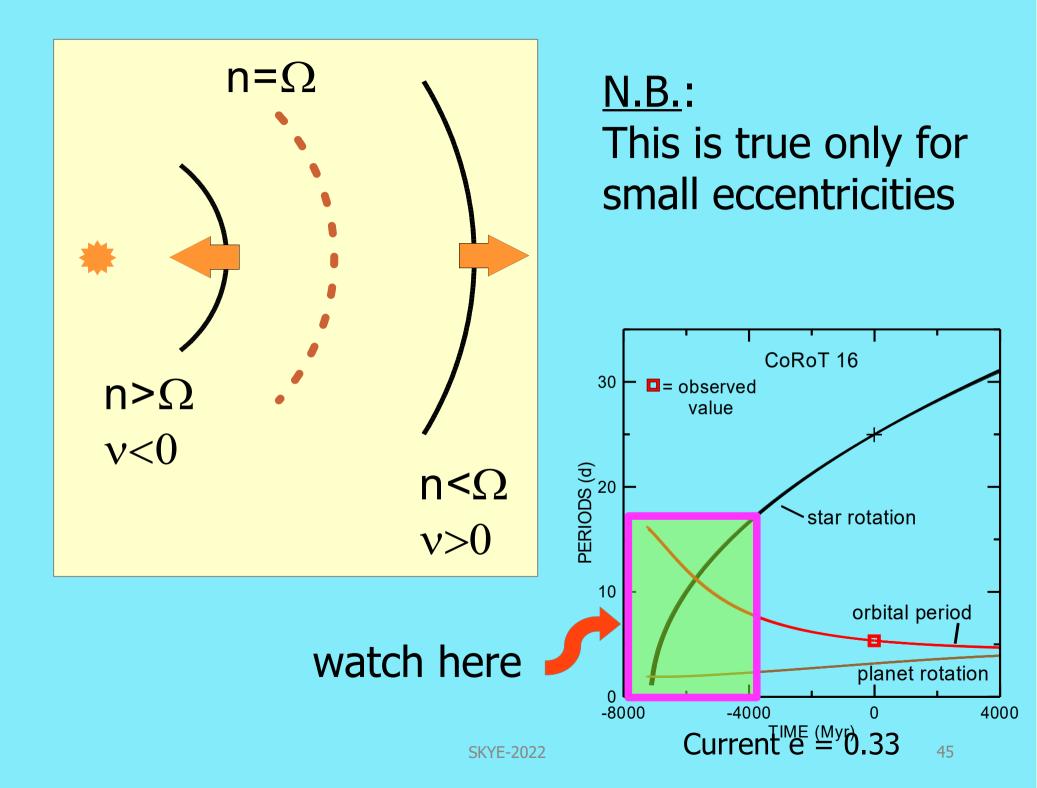
Exoplanets both signs are possible (example > close-in resonant chains)

Kepler KOI population (2013)



Ref: McQuillan et al. ApJL 2013

SKYE-2022

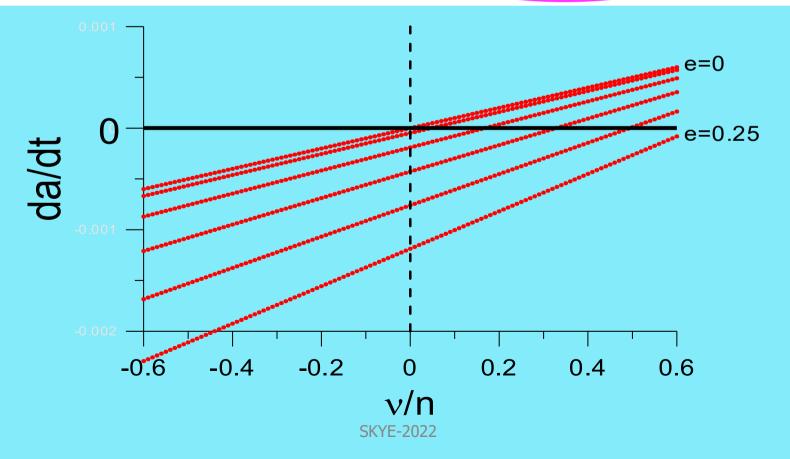


$$\begin{split} [\langle \dot{a} \rangle]_i &= \frac{3k_{2i}nm_j R_i^5}{m_i a^4} \left((1 - 5e^2) \frac{\gamma_i \nu_i}{\gamma_i^2 + \nu_i^2} - \frac{3e^2}{4} \frac{\gamma_i n}{\gamma_i^2 + n^2} \right. \\ &+ \frac{e^2}{8} \frac{\gamma_i (\nu_i + n)}{\gamma_i^2 + (\nu_i + n)^2} + \frac{147e^2}{8} \frac{\gamma_i (\nu_i - n)}{\gamma_i^2 + (\nu_i - n)^2} \right) + \mathcal{O}(e^4). \end{split}$$

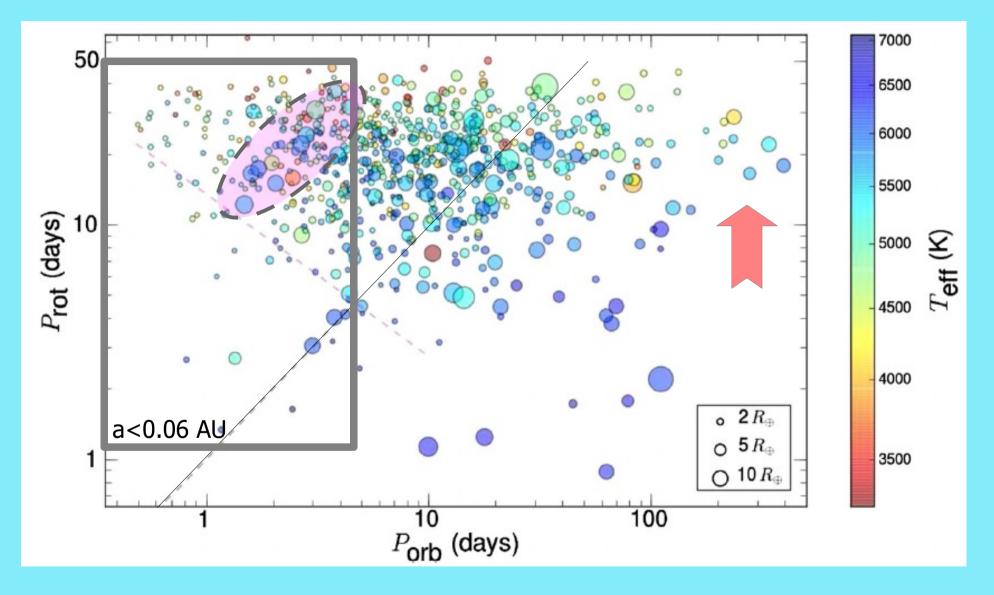
i=star (<u>tide in the star</u>) j=planet

$v = 2\Omega - 2n$

$$\begin{split} [\langle \dot{a} \rangle]_i &= \frac{3k_{2i}nm_j R_i^5}{m_i a^4} \left((1 - 5e^2) \frac{\gamma_i \nu_i}{\gamma_i^2 + \nu_i^2} - \frac{3e^2}{4} \frac{\gamma_i n}{\gamma_i^2 + n^2} \right. \\ &+ \frac{e^2}{8} \frac{\gamma_i (\nu_i + n)}{\gamma_i^2 + (\nu_i + n)^2} \left(+ \frac{147e^2}{8} \frac{\gamma_i (\nu_i - n)}{\gamma_i^2 + (\nu_i - n)^2} \right) + \mathcal{O}(e^4). \end{split}$$

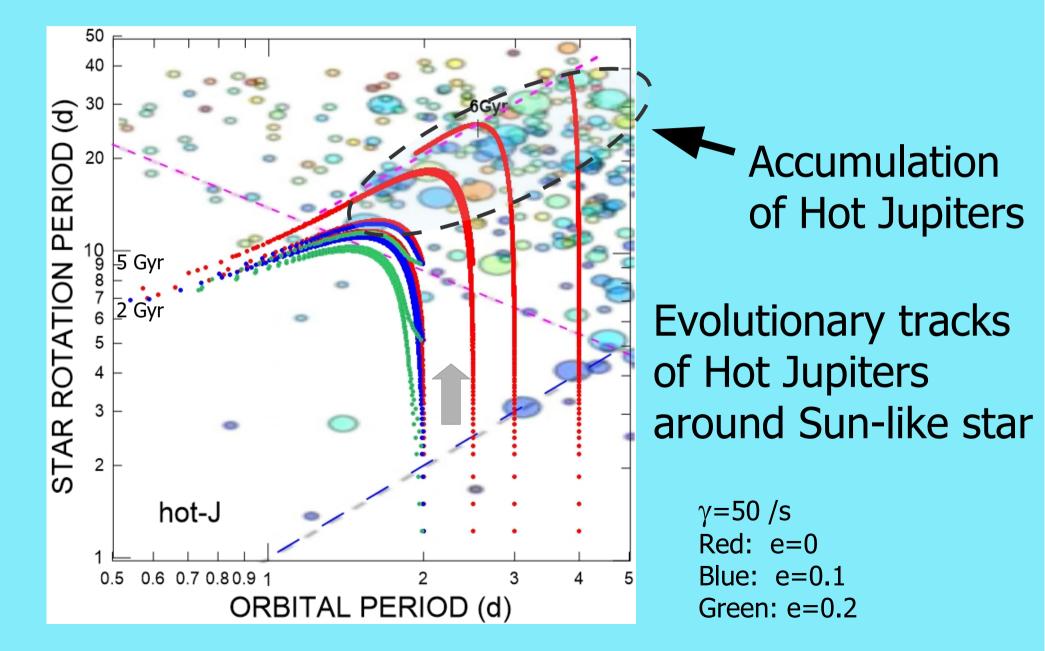


Accumulation of close-in hot Jupiters

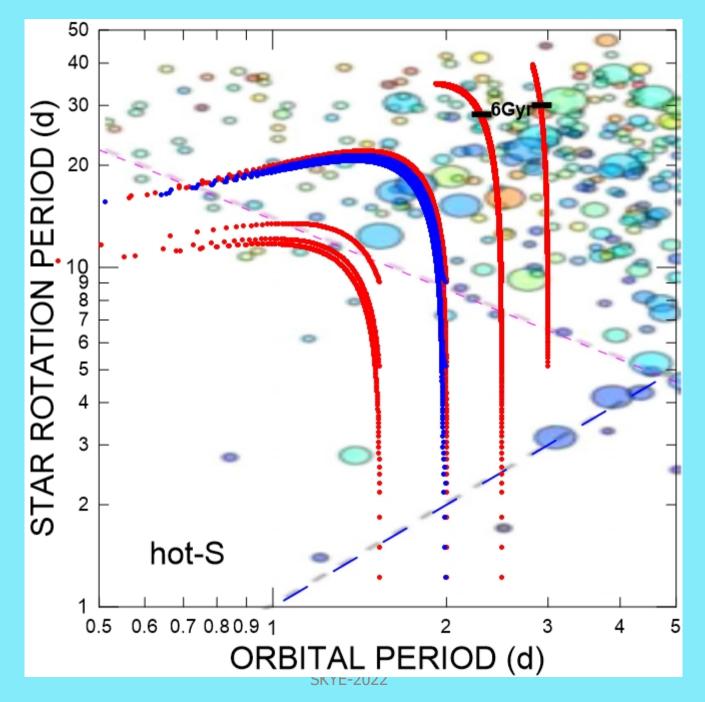


N.B. Rjup ~ 11 R_{\oplus}

Validation of the Tidal Model and the Wind Braking of host G-stars via Evolutionary Tracks in P-P diagram



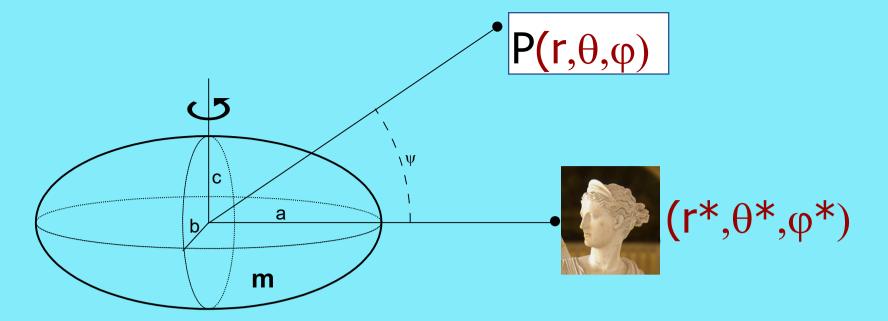
Evolutonary tracks of Hot Saturns



50

MIGNARD's theory The Moon and the Planets, **30**, 301 (1979)

> Reproduces Darwin CTL theories Weak Friction Approximation constant time lag checked to 3rd. order in e,i



Potential of the Jeans ellipsoid of prolateness ε_{ρ} (U=U₀+U₂+...) $U_2(r) = -k_2 \frac{GmR_E^2}{15r^3} \varepsilon_{\rho}(1+3\cos 2\Psi)$

or

$$U_{2}(\mathbf{r}) = -k_{2} \frac{Gm^{*}R_{E}^{5}}{2r^{*5} \cdot r^{5}} [3(\mathbf{r} \cdot \mathbf{r}^{*})^{2} - r^{2} \cdot r^{*2}] \quad \text{where} \quad k_{2} = 3/2$$

Mignard's modification

$$\mathbf{r^*} \longrightarrow \mathbf{r_1^*} = \mathbf{r^*}(t - \Delta t) + \boldsymbol{\omega} \Delta t \times \mathbf{r^*}$$

N.B.
$$r^*(t-\Delta t) = r^*-v^*\Delta t$$

e.g. Earth $\Delta t \sim 10 \text{ min}$

$$V(\mathbf{r}, \mathbf{r}^*) = 3 \frac{k_2 G m^* R_{\rm E}^5}{r^5 r^{*5}} \cdot \Delta t \left\{ (\mathbf{r} \cdot \mathbf{r}^*) [\mathbf{r}^* \cdot (\boldsymbol{\omega} \times \mathbf{r}) + \mathbf{r} \cdot \mathbf{v}^*] - \frac{(\mathbf{r}^* \cdot \mathbf{v}^*)}{2r^{*2}} [5(\mathbf{r} \cdot \mathbf{r}^*)^2 - r^2 r^{*2}] \right\}.$$

SKYE-2022

$$\mathbf{F} = -\operatorname{grad}_{r} V,$$

53

$$\mathbf{F} = 3 \frac{k_2 Gm^* R_E^5}{r^5 r^{*5}} \Delta t \left\{ 5 \frac{\mathbf{r}}{r^2} \left| (\mathbf{r} \cdot \mathbf{r}^*) [\mathbf{r}^* \cdot (\boldsymbol{\omega} \times \mathbf{r}) + \mathbf{r} \cdot \mathbf{v}^*] \right. \\ \left. - \frac{(\mathbf{r}^* \cdot \mathbf{v}^*)}{2r^{*2}} \cdot [5(\mathbf{r} \cdot \mathbf{r}^*)^2 - r^2 r^{*2}] \right] - [\mathbf{r}^* \cdot [\mathbf{r}^* \cdot (\boldsymbol{\omega} \times \mathbf{r}) + \mathbf{r} \cdot \mathbf{v}^*] \\ \left. + (\mathbf{r}^* \times \boldsymbol{\omega} + \mathbf{v}^*)(\mathbf{r} \cdot \mathbf{r}^*)] + \frac{(\mathbf{r}^* \cdot \mathbf{v}^*)}{r^{*2}} [5\mathbf{r}^*(\mathbf{r} \cdot \mathbf{r}^*) - \mathbf{r}r^{*2}] \right\},$$

Or, after identification of **r** and **r***:

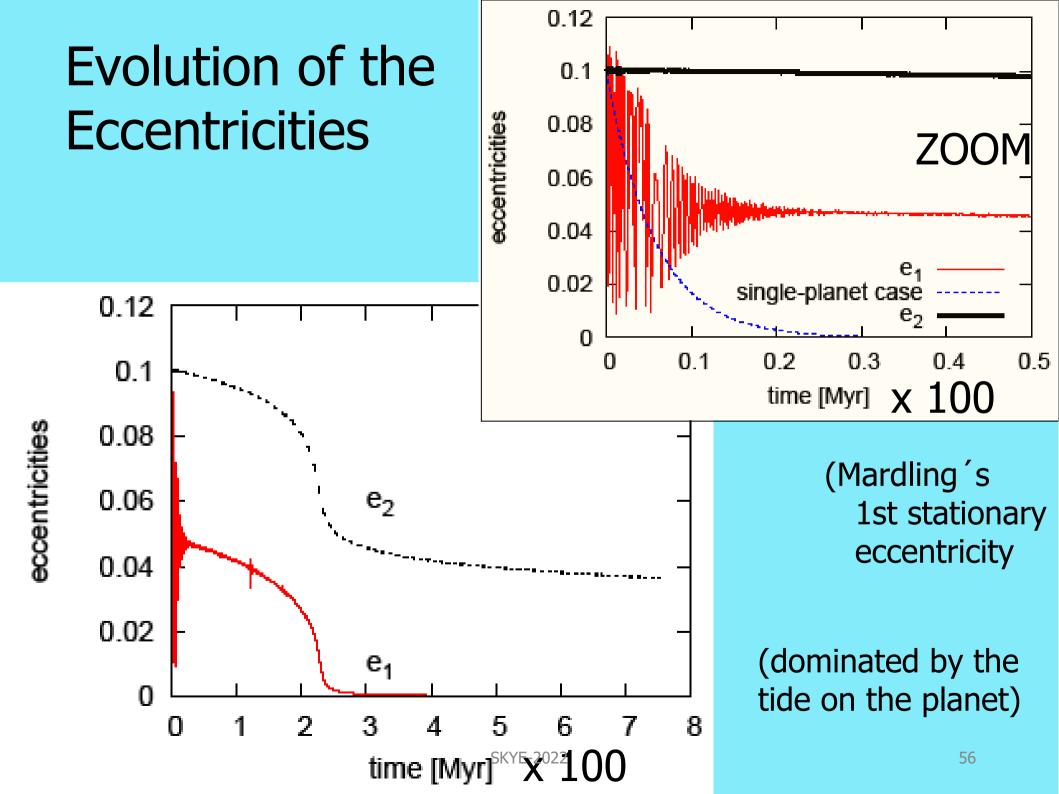
$$\mathbf{F} = -\frac{3kGM^2R^5}{r^{10}} \Big[2\mathbf{r}(\mathbf{r}\cdot\mathbf{v}) + r^2 \big(\mathbf{r}\times\mathbf{\Omega}+\mathbf{v}\big) \Big] \,\tau$$

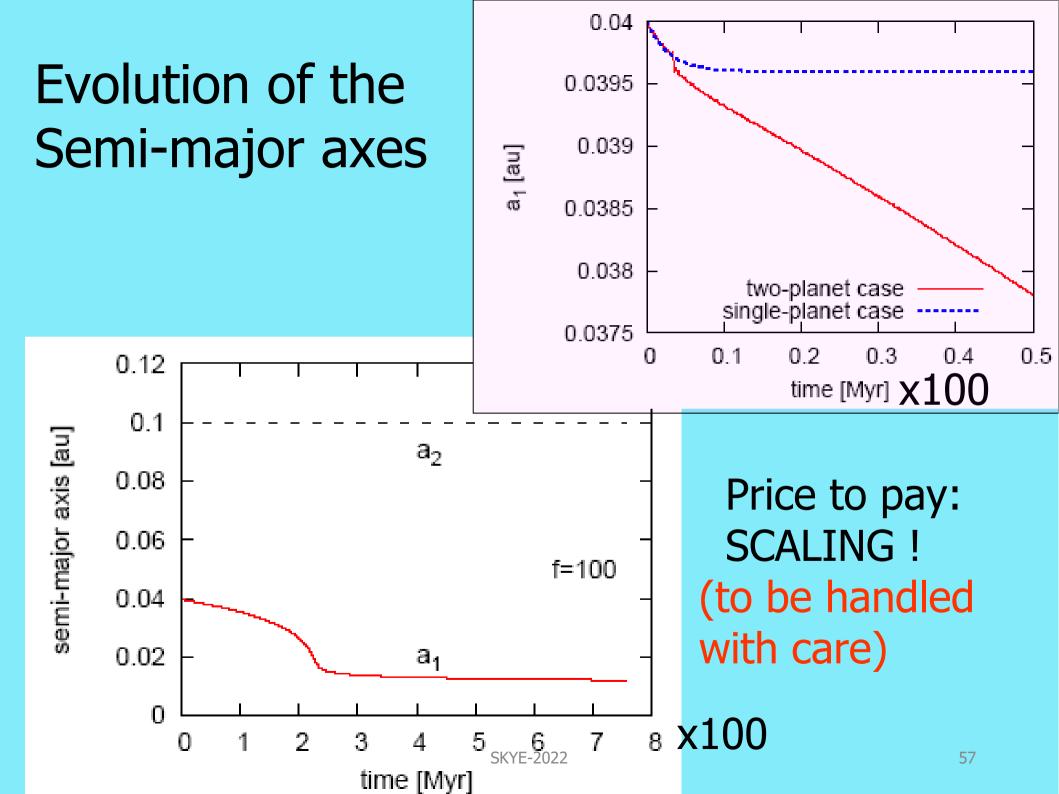
This expression was also obtained, later, by a completely different approach, by Hut et al. (1998). See also, Eggleton, 2004_{EKYE-2022} 54

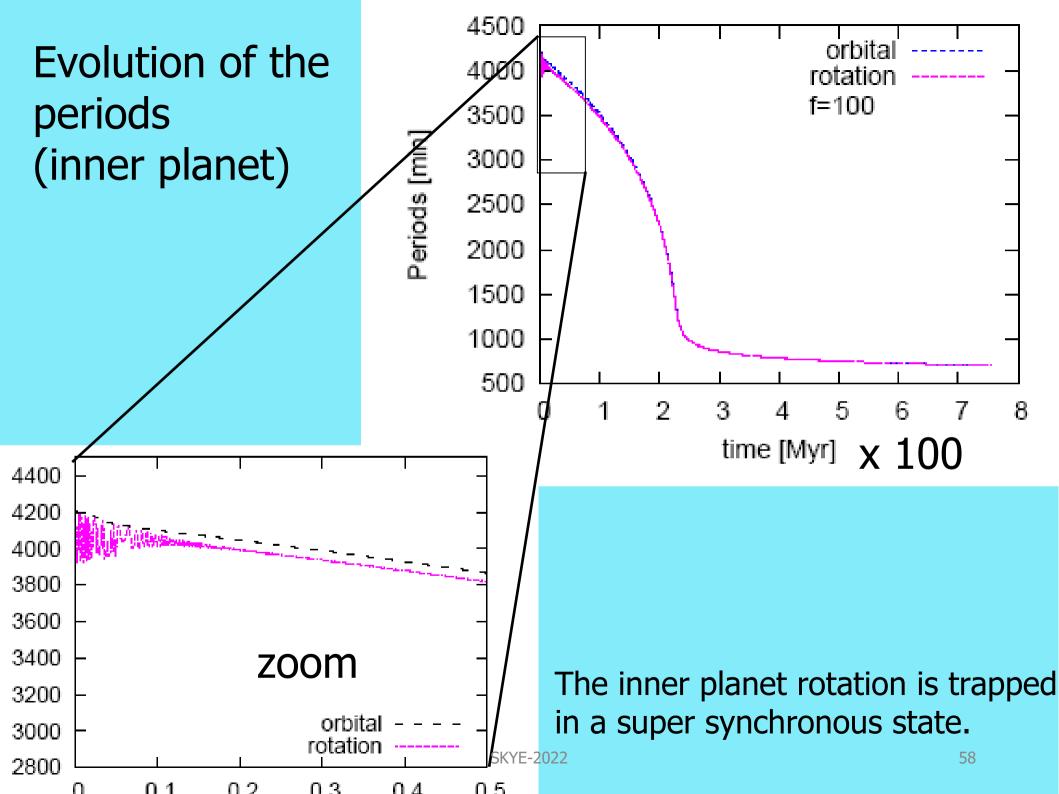
Application:

TWO hot exoplanets with masses **5 m_Earth** & **1 m_Jupiter** semi-axes **0.04** and **0.1 AU** resp. Tides only in the star—inner planet system.

Rodríguez et al. MNRAS **415**, 2349-2358 (2011)







Happel and Brener, Low Reynolds number Hydrodynamics, 1973. **Darwin, 1879**

S.F.M. Cel.Mech.Dyn.Ast.**116**,109,2013; **122**,359,2015 (astro-ph 1204.3957 and 1505.05384) S.F.M. et al. (astro-ph 1707-09229) Folonier et al. CMDA 2018, Ferraz-Mello et al, EJPST, 2020 SFM 2022 (IAU Symp. 364)

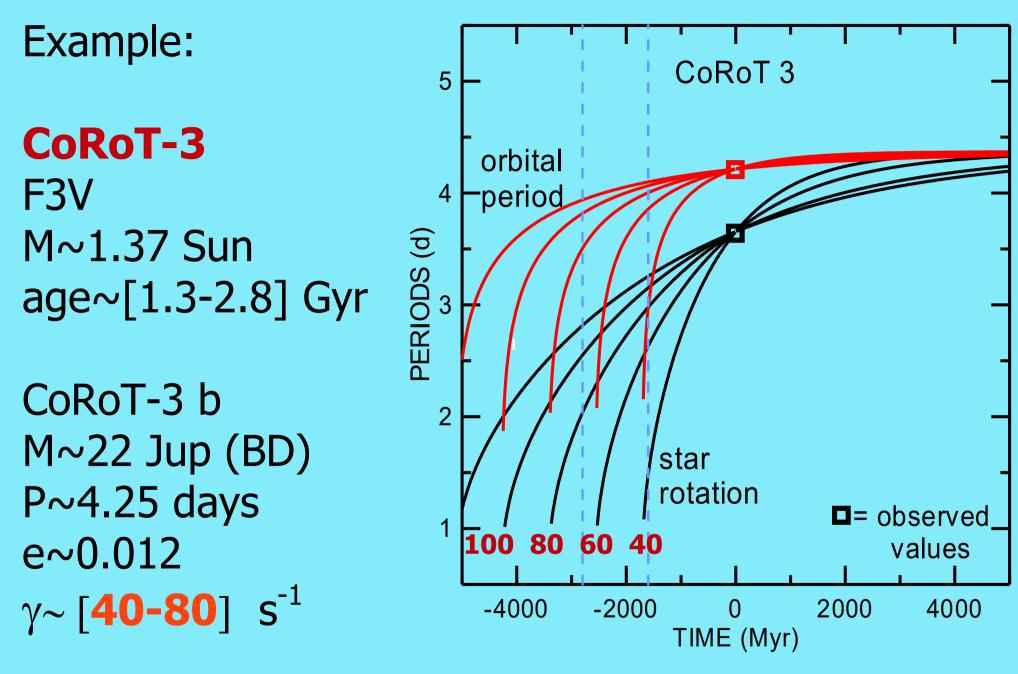
Mignard, Moon and Planets, **30**, 301 (1979) *Rodríguez et al. MNRAS* **415**, 2349-2358 (2011)

Bouvier et al. A&A, 1997. SFM et al. Astrophys. J. (2015) and Corot Legacy Book (2016).

http://www.astro.iag.usp.br/~sylvio/

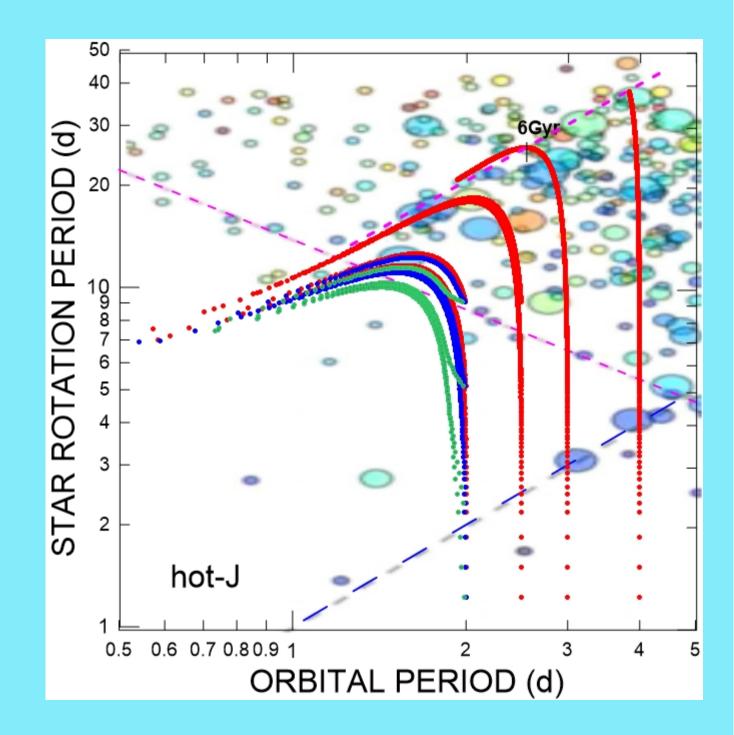
End of Lecture

N.B. Magnetic braking insignificant (if any)



61

Evolutionary Tracks in P-P plot



SKYE-2022