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Preface (1979)

The launching of space probes to the outer Solar System started in the 1970
decade and the planning for Jupiter orbiter missions in the 1980 decade cre-
ated a wide range of interest towards the motion of the Galilean satellites. In
fact, current Jupiter mission planning includes extensive use of the Galilean
satellites for dynamic orbit shaping to enhance scientific observation and mis-
sion performance.

Modern theoretical efforts involve both the revitalization of earlier theo-
ries and the proposal of completely new ones. In both cases, to obtain high
precision, the theories deal particularly with the Galilean satellites and the
understanding of the results requires a thorough study of their mathematical
formulations. Nevertheless, a theory which uses the basic Lagrange’s equa-
tions, is sufficient to explain and understand a lot of recent investigations on
the motion of the Galilean satellites. The purpose of writing this book is to
develop this suggestion. The theory is reconstructed following a classical pre-
sentation written by Tisserand in 1880 and the early theory of Laplace. Most
of the materials presented in this book are based on the courses that I gave
since 1972 to graduate students at the Aeronautics Institute of Technology
and at the University of Sao Paulo. Little previous knowledge is expected of
the reader.

Galilean satellites are very appropriate to introduce problems in Celestial
Mechanics. If we disregard the effects of the Sun, of the oblateness of Jupiter
and the libration, the Galilean satellites form a well-behaved planetary system.
When the action of the Sun over one satellite is considered we have the lunar
problem. When the oblateness of the planet is considered the satellites show
the main features of the motion of artificial satellites while Jupiter displays
free nutation, precession and nutation. At last, there is the libration produced
by the resonance between the mean motions of the three inner satellites.

It is worthwhile to mention that the objective of the present book is neither
to give all inequalities important to compute ephemerides nor to give accurate
values for the main inequalities. For complete and precise results the reader
is referred to the publications indicated at the end of the Chapters.

1 am indebted to Dr. P. D. Singh, Mr. M. Tsuchida and Miss S. M. Mar-
colino for help in the preparation of this book. The publication was supported
by CNPq-Brazilian Council for Scientific and Technological Development.



VI

Preface to this re-publication (2022)

Because of the discovery of several extra-solar planetary systems with plan-
ets forming resonant chains similar to the resonances between the Galilean
satellites of Jupiter, the study of Laplace resonance is again among the top
subjects of Celestial Mechanics. Laplace’s theory of the motion of the satel-
lites is thoroughly described in this book in several chapters culminating with
one specific on the libration. However, the original version of this book (1979)
was produced from typewritten camera-ready forms. The available scanned
copies are yet impaired by a large number of corrections introduced by hand
(1981). Given the rising interest in the subject and in order to allow a more
comfortable reading, we decided to republish the book using new files pro-
duced with a LATEX editor. This new edition is an unabridged reproduction
of the revised 1981 version found in several repositories, with additionally the
correction of some omissions and remaining misprints found when preparing
the Russian edition (1983). This new edition is a contribution of the Brazil-
ian section of the PLATO mission team and was done under the auspices of
FAPESP (Proc.2016/13750-6) and CNPq (Proc. 303540/2020-6).
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This book is dedicated to late Professor Carlos Alberto

Buarque Borges in recognition of his open mind and spirit.

He promoted the creation of the first graduate course in

Astronomy in Brazil and provided support for a lot of aca-

demic work and research.
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Introduction

1.1 The Discovery

On the seventh day of January 1610, at one o’clock in the morning, when I
was exploring the heavens with the telescope, Jupiter presented itself before
my eyes, and because I had built an instrument of high precision I saw three
small Stars close to it. Though I believed them to be Stars, they were ceaseless
astonishing me because they seemed to lie exactly over one straight line par-
allel to the ecliptic and they were more splendid than other Stars of the same
magnitude. Their positions were the following

that is, there were two on the eastern side and one on the west. The eastern-
most and the western one seemed to be slightly greater than the third one. I
paid no attention to their distances from Jupiter for, as I have already told, I
believed them to be fixed Stars. When, on the eight, led by what, I do not know,
I returned to the same observation, I saw a completely different arrangement:
the three Stars were now all in the western side, and they were closer to each
other than in the day before, and at equal intervals from one another, as shown
in the following drawing

Facing this phenomenon and unable to conceive that Stars could change
relative positions, I began to hesitate and wonder how Jupiter could be east of
these Stars when it had been west of two of them the day before. Would not its
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motion be direct, at variance with the astronomical calculations, and would it
by its own motion went beyond these Stars?

I waited for the next night with impatience but I was disappointed in my
hopes for the sky was cloudy everywhere.

On the tenth, however, the Stars appeared in the following positions with
respect to Jupiter

They were just two Stars and both in the eastern side of Jupiter; the third
was, I assumed, hidden behind the planet. They were, as before, in the same
straight line with the planet and precisely along the Zodiac. Facing this fact
and having understood that such mutations could not be attributed to Jupiter;
yet convinced that the Stars were still the same, my hesitation was trans-
formed into amazement. I understood that the apparent changes belonged not
to Jupiter but to the Stars. For that reason, I decided to continue the obser-
vations with greater care and attention.

On the eleventh of the month, I saw this arrangement;

just two Stars east of Jupiter, the central one being three times as distant from
Jupiter as from the other Star; the easternmost was two times greater than
the central one whereas in the night before they appeared equal. I admitted
since them that there existed in the heavens, without any doubt, Stars turning
around Jupiter in the same way in which Mercury and Venus turn around the
Sun. . .

In these words, Galileo told the discovery of the four great satellites of
Jupiter. The deep significance of this discovery has not been paralleled many
times in the history of Astronomy. It would be nowadays comparable, for
example, to a discovery of life on Mars or the detection by radioastronomers
of signals arising from some extra-terrestrial civilization. The discovery of the
four satellites served to remove what was a great objection to the motion of
the Earth. The objection was that though all the planets turn around the
Sun, the Earth alone is not solitary but goes together in the company of the
Moon around the Sun in one year while at the same time the Moon moves
around the Earth every month. The discovery of satellites of Jupiter removed
this apparent anomaly of the theory of Copernicus, for Jupiter, like another
Earth, goes around the Sun, in twelve years accompanied not by one but by
four moons.
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1.2 Jupiter’s Satellites

Today, thirteen satellites of Jupiter are known. The last satellite discovered is
Jupiter XIII (Leda) found by C.T.Kowal on plates taken on September 1974,
with the 1.2-meter Schmidt telescope of the Palomar Observatory. The visual
magnitude of Leda is approximately 20 and it is estimated to be less than 8
kilometers in diameter.

The main characteristics of the Satellites of Jupiter are shown in Table
1.1.

Table 1.1. Jupiter’s Satellites

Number Name Semi-major Eccen- Inclination Period Visual
Axis (105 km) tricity (degrees) (days) Magnitude

V Amalthea 1.81 0.0028 0.5 0.50 13 .0

I Io 4.22 0.0042* 0.04 1.77 5.0
II Europa 6.71 0.0094* 0.47 3.55 5.3
III Ganymede 10.7 variable* 0.19 7.16 4.6
IV Callisto 18.8 0.0073 0.25 16.7 5.6

XIII Leda 111 0.148 27.8 239 20
VI Himalia 115 0.158 27.6 251 14.8
X Lisythea 117 0.130 29.0 260 18.4

VII Elara 117 0.207 24.8 260 16.4

XII Ananke 207 0.169 147 (-33) 617 18.9
XI Carme 224 0.207 164 (-16) 692 18.0

VIII Pasiphaë 233 0.378 145 (-35) 735 17,7
IX Sinope 237 0.275 153 (-27) 758 18.3

* See Section 6.4

For the Galilean satellites and Jupiter V (Amalthea), the inclination is
referred to the equatorial plane of Jupiter. For the distant satellites, the orbital
plane of the planet is more relevant. The osculating eccentricities of Jupiter I
(Io), Jupiter II (Europa) and Jupiter III (Ganymede) are discussed in Section
6.4.

Satellites VI to XII were named in 1975 by the Working Group for Plan-
etary System Nomenclature of the International Astronomical Union. The
names follow the traditions established by the existing names in the system.
The name Leda was proposed by the discoverer of Jupiter XIII. The outer
satellites with direct orbits have names ending in a. The outer satellites with
retrograde orbits have names ending in e.

If we classify the satellites by their physical and orbital parameters, we
find that almost all of them belong to one of three groups:
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(a) Galilean satellites. Massive satellites orbiting very close to the planet
in very regular equatorial orbits.

(b) Himalia group. Small satellites with direct orbits at an average distance
of about 11 million kilometers from the planet with very similar inclinations
and eccentricities. The similarity of orbital elements has indicated to some
that the members of this group result from the same event. Capture has been
suggested but the apparent lack of large brightness variations for any satellite
and the unusual color of Jupiter VI (Himalia) argue that these satellites may
not be simply captured asteroids.

(c) Pasiphaë group. Very irregular group of satellites with retrograde orbits
at an average distance of 22 million kilometers from the planet, eccentric,
and inclined 18◦ to 35◦ over the orbital plane of the planet. Jupiter VIII
(Pasiphaë) has the distinction of attaining a greater distance from its primary
than other known satellites in the Solar System: 33 million kilometers. Jupiter
IX (Sinope) completes its revolution in 2.07 years and has the longest period
of revolution among the known planetary satellites. There is almost general
agreement that all of them must have been captured, but so far there is no
detailed theory which explains the capture of them. It seems reasonable that
there is a connection between these satellites and the Trojans and it is possible
that the satellites are captured asteroids; perhaps shortly following the Solar
System’s origin, when the space density of asteroids in the vicinity of Jupiter’s
orbit was considerably higher than it is today.

Jupiter V (Amalthea) is very small and too far away from the first group
to be a member. It is the only observed member of another group of less
massive Jovian satellites.

Analytical theories of the motion of outer satellites are difficult to derive
since the eccentricities and the ratio of the mean motions of the satellite and
Jupiter are large. The most current and efficient tool is numerical integration
which gives an accuracy of a few arcseconds. Some noticed near commensu-
rabilities of the satellites mean motions and the jovicentric mean motion of
the Sun. In fact, the only noticeable near-commensurability from Table 1.1
happens for Jupiter XII (Ananke) n12 − 7n0 = 0.0018 deg/day. This value is
very sensitive to improvements in the period of the satellite and, after all, the
given determination lays over no more than a dozen revolutions (Ananke was
discovered in 1951).

A probable fourteenth satellite, of photovisual magnitude 21, was picked
up by Kowal with the Schmidt telescope on September-October, 1975. Not
enough observations were obtained to allow the determination of an orbit for
this object, but a heliocentric orbit has been ruled out. It was hoped that
more observations could be obtained at the following oppositions of Jupiter,
but no additional observations have been reported. Presumably, this object
will be rediscovered at some opposition in the future.
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1.3 The Galilean Satellites

The Galilean satellites form with the Moon, Saturn VI (Titan) and Neptune
I (Triton), a family of giant satellites with masses ranging from 5 × 1025g
(Europa) to 15×1025g (Triton, Titan and Ganymede). The remaining satellites
in the Solar System have masses at least 10 times smaller. Ganymede would
be comparatively an easy naked-eye object, were it not for the proximity of
the bright planet; the other Galileans would be near the limit. A very modest
pair of binoculars will reveal them all.

The most interesting and easily observed phenomena of these bodies are
their eclipses, their occultations and their transits across the disk of the planet.
Also, when one satellite is in transit across the disk, the shadow it projects
on the face of the planet can generally be seen.

The inner satellites pass through the shadow of Jupiter at superior con-
junction, and across his disk at every inferior conjunction. Callisto is the only
one that is far enough away from the planet ever to pass above or below the
shadow and the disk when the conjunctions are distant of the line of nodes of
the satellite orbit.

The distances of Ganymede and Callisto are large enough to allow both
disappearance and reappearance at a single eclipse to be observed on the same
side of the planet when the angle between the Earth and the Sun, as seen from
Jupiter, is sufficiently large.

Twice each Jovian year (which is 11.86 Earth years long) the plane con-
taining the satellite orbits passes through the Sun and for some three to six
months both the Sun and the Earth remain close to that plane. Then, mutual
occultations and mutual eclipses may happen. Mutual phenomena are very
important since their observation provides us with the most precise data for
the study of the motion of satellites.

The theory of the Galilean satellites is one of the most interesting in Ce-
lestial Mechanics. There is a conspicuous relation between the mean motion
of the three inner Galilean satellites:

n1 − 3n2 + 2n3 = 0

It was treated with profound skill by Laplace (see Chapter VII). Emendations
to this theory were given by Souillart, Tisserand and Sampson. Modern im-
provements and results are due to Marsden and Brown. Laplace showed that
if the mean longitudes and mean motions are such that the angle λ1−3λ2+2λ3
differed a little from 180◦, there was a minute restoring force arising from the
mutual actions of the satellites, tending to bring this angle toward the value
180◦. Thus, oscillations will be produced in virtue of which the angle will os-
cillate very slowly on each side of the central value. This is the phenomenon
called Libration of the Galilean satellites.

Sampson’s tables of the four great satellites, published in 1910, have for
many years been the only available source for the prediction of the phenomena
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and of satellite positions. They are now 70 years old. New theories are now
under study in Brazil, France and United States. Sampson’s theory and tables
have been rejuvenated by J. Lieske at the Jet Propulsion Laboratory; Lieske’s
subroutines package for the computation of ephemeris is the best available
today.

Current Jupiter orbiter mission planning includes extensive use of gravita-
tional fields of the Galilean satellites for dynamic orbit shaping to enhance sci-
entific observation and mission performance. During the course of the nominal
operational lifetime of such orbiters (l-2 years), some degree of active control
based on real-time adaptive orbit design must be in effect so to avoid prema-
ture collision with the satellites. Accuracy requirements in the positions of the
Galilean satellites are 400 km in the case of Voyager 1 and Voyager 2 missions.
In these missions, the probes are catapulted by the powerful Jovian gravity
toward Saturn, Uranus and even Neptune, after close-up photographic surveys
of Jupiter. Accuracy requirements for the Jupiter Orbiter Probe (Galileo) are
still tighter (50-100 km).

The evolution of the system is an open question. Some claim that the
observed resonances among the mean motions are due to dissipative forces like
drag, efficient in the early stages of the formation of the Solar System, and
tides. Some, however, following ideas first exposed by Roy and Ovenden on the
occurrence of commensurable mean motions in the Solar System, argue that
conservative evolution is sufficient to explain the present situation. Recent
calculations show that the time of gravitational evolution necessary to get
the system close to the present configuration, in which the time-mean of the
action associated with the mutual interaction of the satellites is a minimum,
is closely comparable with the age of the Solar System.

References and Notes

• 1.1
The description of the discovery of the satellites is a translation of some
parts of Galileos’s Siderius Nuncius (The Starry Messenger) published in
Venice in 1610.

• 1.2
Data in Table 1.1 are mostly from

J.A.Burns (ed.): 1977, Planetary Satelites. Univ. Arizona Press,
Tucson.

Data relative to the Galilean satellites are those discussed in this book.
See also

H.Alfvén and G.Arrhenius: 1976, Evolution of the Solar System.
NASA SP-345, Washington.
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R.A.Sampson: 1921, “Theory of the Four Great Satellites of Jupiter”,
Memoirs Royal Astron. Soc. Vol. LXIII.

and its revitalization
J.Lieske: 1977, “Theory of Motion of Jupiter’s Galilean Satellites”.
Astron. Astrophys. 56, 333-352.

The construction of new theories, in progress, is founded on
S.Ferraz-Mello, 1966, “Recherches sur le Mouvement des Satellites
Galiléens de Jupiter”, Bull. Astronomique, série 3, vol.1, 287-330.

J.L.Sagnier: 1973, ”Contribution à l’étude dynamique du Système
Galiléen de Jupiter”, Astron. Astrophys 25, 113-124.

S.Ferraz-Mello: 1974, “On the Theory of the Galilean Satellites of
Jupiter”. In Y. Kozai (ed.), The Stability of the Solar System and
of Small Stelar Systems, D. Reidel, Dordrecht, pp. 167-184.

S.Ferraz-Mello: 1978, “A Second-order Theory of the Galilean Satel-
lites of Jupiter”. In V.Szebehely (ed.), Dynamics of Planets and
Satellites and Theories of their Motion, D. Reidel, Dordrecht, pp.
209-236.

J.L.Sagnier: 1981, Le Mouvement des Satellites Galiléens de Jupiter
Thèse de Doctorat, Univ. Pierre et Marie Curie, Paris.

Theories using other techniques are
W.de Sitter: 1925, “New Mathematical Theory of Jupiter’s Satel-
lites” Annalen Sterrewacht Leiden, vol. XII.

B.Marsden: 1966, The Motions of the Galilean Satellites of Jupiter,
Ph.D. Dissertation, Yale University, New Haven.

A complete study of the free oscillations and long-period inequalities is
B.C. Brown: 1977, “The Long Period Behavior of the Orbits of the
Galilean Satellites of Jupiter”, Celestial Mechanics, 16, 229-259.

Brown’s numerical results are extensively used in Chapters V to X for sake
of comparison.
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The Equations

2.1 Mutual Interactions

Before deriving the equations of variation of the Keplerian elements, we shall
describe the equations of the motion of a system of satellites in its more
general vector form. Let the central body and surrounding satellites be con-
sidered as a set of n+1 point massesm0,m1, · · · ,mn at the positions (vectors)
r0, r1, · · · , rn and the distance between the two masses, mi and mj , given by
rij . The force arising from mj and acting on mi is

f ij = Gmimj
rj − ri

r3ij
; (2.1)

the value of G depends on the chosen units of mass, time and distance (6670±
5 × 10−11 cgs units). The force f ij is radial and its absolute value depends
only on the distance rij and on extrinsic physical quantities (the masses), In
this case, we have curlf ij = 0 and the force f ij arises from a force field whose
potential is

ωij =

∫
f ij · d(ri − rj)

i.e.

ωij = −Gmimj

∫
(ri − rj) · d(ri − rj)

|ri − rj |3
.

The above integral is equal to −|ri − rj |−1 and then

ωij =
Gmimj

rij
+ const.

The integration constant is determined by the normalizing condition lim
rij→∞

ωij =

0, which makes the integration constant equal to zero. Thus

ωij =
Gmimj

rij
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and
f ij = grad

ri
ωij .

The operator gradri
has a very precise meaning; it is not intrinsic since

it depends upon the origin which shall be precisely defined. In this case, the
origin is at rj . Then

grad
ri

= ∇irij
∂

∂rij

where

∇irij =
ri − rj

rij

(unit vector). Introducing a new operator

∇ij = ∇irij
∂

∂rij
,

we get
f ij = ∇ij ωij . (2.2)

2.2 Equations of Motion

The total force acting on mi is

f i =
∑∗

f ij =
∑∗

Gmimj
rj − ri

r3ij
; (2.3)

where
∑∗

represents a sum over the subscript j for all j from 0 to n excepted
j = i. Using distributive properties of ∇-operators, we get curlf i = 0, which
shows that the field in ri arising from the superposition of the individual fields
is also potential. If

Ω∗ =

n∑

i=0

∑

j>i

ωij ,

equations (2.2) and (2.3) can be written as, respectively,

f ij = ∇ijΩ
∗

and

f i =

n∑

j=0

∇ijΩ
∗

If the system of reference is an inertial Galilean frame, the Newton’s laws of
motion are applicable and the equations of the motion are

mir̈i =

n∑

j=0

∇ijΩ
∗ (2.4)

These equations form a differential system of 6(n+ 1)th order possessing ten
known first integrals.
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2.3 Planetocentric Equations

In the case of a system of satellites (or a system of planets) whose individual
masses are m1,m2, · · · ,mn, orbiting around a central massive body of mass
m0 where mi ≪ m0 (i = 1, · · · , n), it is a wise step to introduce a new
reference frame whose origin is kept fixed in the central mass and the axes
are kept parallel to those of the Galilean frame. In this Copernican frame, the
accelerations are

(ri − r0 )̈ = r̈i − r̈0

and the equations of the motion are

mi(ri − r0)̈ =

n∑

j=0

(
∇ij −

mi

m0

∇0j

)
Ω∗ (2.5)

These equations form a differential system of the 6nth order. If the so-
lutions of equation (2.5) are known, the law of conservation of momentum
and the reduction to the centre of mass allow us to have the solution of the
equations (2.4). In astronomy, this step is often unnecessary since in gen-
eral only relative motions are considered. The Copernican equations possess
four first integrals, which are not as simple as in the Galilean frame, and,
in practice, their use does not lead to a simpler problem. Also, if they are
used, the symmetrical and simple shape of equations (2.5) disappear. The
only exception is the case of three bodies for which Lagrange succeeded to
maintain the symmetrical shape of the equations by means of a set of very
subtle transformations.

Introducing Ω0 and Ω defined by

Ω0 =

n∑

j=1

ω 0j Ω =

n∑

i=1

∑

j>i

ωij

we have

∇ijΩ
∗ = ∇ijΩ0 +∇ijΩ

∇0jΩ
∗ = −∇j0Ω0

and the equations of motion of the satellites in the Copernican planetocentric
frame are

mi(ri − r0 )̈ =

(
1 +

mi

m0

)
∇i0Ω0 +

∑

j 6=i

(
∇ijΩ +

mi

m0

∇j0Ω0

)
(2.6)

The forces in the right-hand side are well known. We have the central Keple-
rian attraction (

1 +
mi

m0

)
∇i0Ω0
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and the disturbing force

∑

j 6=i

(
∇ijΩ +

mi

m0

∇j0Ω0

)
. (2.7)

In the disturbing force, the first term, referred as direct disturbing force,
accounts for the direct action of all other satellites over the ith satellite; the
second term, referred as indirect disturbing force, accounts for the counterpart
over the ith satellite, of the action of the other satellites on the motion of the
central body.

2.4 Rotating Frame

Let us consider a new frame which is rotating with a constant angular velocity
with respect to the Copernican frame. The Coriolis theorem writes

ai + 2ω × vi = (ri − r0)̈ − ω ×
(
ω × (ri − r0)

)
.

We may notice that curl
[
ω×

(
ω× (ri− r0)

)]
= 0. Indeed, because of the

rules of the vector triple product,

curl
[
ω ×

(
ω × (ri − r0)

)]
= ω · div

(
ω × (ri − r0)

)
−
(
ω × (ri − r0)

)
· div ω.

Since ω is constant, the last term on the right hand side of this equation is
zero, and using the invariance property of the scalar triple product, we have

div
(
ω × (ri − r0)

)
= (ri − r0) · curl ω = 0.

Thus, the curl of the centrifugal acceleration of the ith satellite is zero. The
centrifugal acceleration arises from the potential

σi = −
∫ [

ω ×
(
ω × (ri − r0)

)]
· d(ri − r0),

i.e.

σi =
1

2
ω2|ri − r0|2 −

1

2

(
ω · (ri − r0)

)2
;

the integration constant is zero, which means that the centrifugal potential is
normalized and is zero at the origin. We can still write:

σi =
1

2

(
ω × (ri − r0)

)2

and the equations of the motion of the ith satellite in the new frame are

ai + 2ω × vi = ∇i0σi +
m0 +mi

m0mi
∇i0σ0 +

∑

j 6=i

(
∇ij

Ω

mi
+∇j0

Ω0

m0

)
.
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In this equation, several∇-operators have been used. To have a more homoge-
neous equation, the direct and indirect disturbing forces are to be modified..
By using the definitions of these operators, we have

∑

j 6=i

∇j0
Ω0

m0

= −∇i

∑

j 6=i

Gmj
ri · rj

r3j0

and ∑

j 6=i

∇ij
Ω

mi
= ∇i

Ω

mi
.

The equations of the motion become

ai + 2ω × vi = ∇i


σi +

m0 +mi

m0mi
Ω0 +

Ω

mi
−
∑

j 6=i

Gmj
ri · rj
r3j0




or

ai + 2ω × vi = ∇i



1

2

(
ω × ri

)2
+
G(m0 +mi)

ri0
+
∑

j 6=i

Gmj

( 1

rij
− ri · rj

r3j0

)


 .

(2.8)

2.5 Equations in Rotating Coordinates

Depending on the kind of study, the rotating frame should be emphasized. We
may take ω perpendicular to the fundamental plane of the reference system
and positively oriented.

In rectangular coordinates, the ∇-operator is

∇i =

(
∂

∂xi
,
∂

∂yi
,
∂

∂zi

)
;

also ω = (0, 0, N) and the Eulerian equations of the motion are

ẍi − 2Nẏi =
∂Wi

∂xi

ÿi + 2Nẋi =
∂Wi

∂yi

z̈i =
∂Wi

∂zi

where

Wi =
1

2
N2(x2i + y2i ) +G

m0 +mi

ri0
+
∑

j 6=i

Gmj

(
1

rij
− ri · rj

r3j0

)
.
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Similarly, in cylindrical coordinates, the Eulerian equations of the motion
are

ρ̈i − ρiφ̇
2
i − 2Nρiφ̇i =

∂Wi

∂ρi

ρiφ̈i + 2ρ̇iφ̇i − 2Nρ̇i =
1

ρi

∂Wi

∂φi

z̈i =
∂Wi

∂zi
.

2.6 Application to the Galilean Satellites

All these ways of describing the motion of a system of satellites have been used
on several occasions. In modern theoretical studies of the Galilean satellites,
the equations referred to the Eulerian frame have been preferred. The choice
of the rotation velocity of the frame is made on the grounds of one special
feature of the problem:

The mean motions of the three
inner satellites are such that
n1 − 2n2 = n2 − 2n3 (2.9)

and the rotation is chosen in such a way that the mean motions referred to
the Eulerian frame

νi = ni −N

are such that
4ν3 = 2ν2 = ν1

The Eulerian equations of motion have played important role in several
classical studies of the motion of the Moon. Euler, in his pioneer work, referred
the motion to a rotating frame whose rotation velocity was the sidereal mean
motion of the Moon. G. W. Hill, in his celebrated work, considers the same
equations, but the frame rotates following the mean motion of the Sun.

In the Laplacian theory of the Galilean satellites, the equations are La-
grange’s equations of variation of the elements. We will derive these equations,
starting from the planetocentric equations of the motion of the satellites.
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2.7 Keplerian Elements

If we neglect the mutually disturbing action of the satellites, the forces acting
on each satellite are reduced to (1 +mi/m0)∇iΩ0 and the resulting motion
is described by an ellipse, the centre of the planet being at its one focus. This
is a two-body problem and we assume that its solution is known:

x = r
(
cosΩ cos(f + ω)− cos I sinΩ sin(f + ω)

)

y = r
(
sinΩ cos(f + ω) + cos I cosΩ sin(f + ω)

)

z = r sin I sin(f + ω) (2.10)

r =
a(1− e2)

1 + e cos f

f = ℓ+ 2e sin ℓ+
5

4
e2 sin 2ℓ+ · · ·

ℓ = nt+ σ.

Through these equations the coordinates x, y, z of one satellite are related
to the elements of its osculating orbit: the semi-major axis a, the eccentricity
e, the inclination I, the longitude of the ascending node Ω, the argument of
the perijove ω and the mean anomaly of the epoch σ. As auxiliary quantities
are the true anomaly f , the mean anomaly ℓ and the mean motion n.

2.8 Variation of the Elements

We shall also consider the inverse problem, namely, the determination of the
six elements of a satellite orbit when the position vector r and the correspond-
ing velocity v are known. The calculation of the elements leads for every orbital
element Ci to a relation

Ci = Ci(r,v)

(i = 1, · · · , 6) and for its variation

Ċi = ṙ ·∇rCi + v̇ ·∇vCi

or
Ċi = v ·∇rCi + r̈ ·∇vCi. (2.11)

The subscripts r and v in the ∇-operators indicate whether the gradient
is taken with respect to the coordinates or to the components of the velocity.

Like Eulerian equations, the planetocentric equations (2.6) can also be
transformed and the result would be the same if ω was made equal to zero
in equations (2.8). If for sake of simplicity we write ri instead of ri − r0, the
equations for the planetocentric motion are
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r̈ = ∇i


Gm0 +mi

ri0
+
∑

j 6=i

Gmj

(
1

rij
− ri · rj

r3j0

)
 . (2.12)

In order to obtain the equations of variation of the elements of one satellite,
let the p1anetocentric equation of its motion be written as

r̈ = ∇rF0 +∇rR

where F0 represents the central Kep1erian attraction and R the disturbing
force-function per unit mass. Equation (2.11) then becomes

Ċi = v ·∇rCi + (∇rF0 +∇rR) ·∇vCi.

In case of undisturbed motion of the satellite, the elements Ci do not vary
(Ċi = 0), and the following relation must hold

0 = v ·∇rCi +∇rF0 ·∇vCi.

The variation of the elements then results

Ċi = ∇rR ·∇vCi.

i.e.

Ċi =
∑

j

∂Ci

∂vj

∂R

∂xj
.

Also ∑

i

∂vk
∂Ci

Ċi =
∑

j

∑

i

∂vk
∂Ci

∂Ci

∂vj

∂R

∂xj
=

∂R

∂xk

and ∑

k

∑

i

∂vk
∂Ci

∂xk
∂Cj

Ċi =
∑

k

∂R

∂xk

∂xk
∂Cj

=
∂R

∂Cj
.

In an analogous way, considering that R does not depend on the velocities,
we have ∑

k

∑

i

∂vk
∂Cj

∂xk
∂Ci

Ċi = 0

and we obtain the symmetrical equations

∑

i

[Cj , Ci]Ċi =
∂R

∂Cj
(2.13)

where [Cj , Ci] are Lagrange’s brackets defined by

[Cj , Ci] =
∑

k

(
∂xk
∂Cj

∂vk
∂Ci

− ∂xk
∂Ci

∂vk
∂Cj

)
. (2.14)
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2.9 Invariance of the Brackets

The calculus of the brackets offers a great deal of simplification on account of
the property

d

dt
[Cj , Ci] = 0; (2.15)

Indeed, we have

d

dt
[Cj , Ci] =

∑

k

(
∂xk
∂Cj

∂ak
∂Ci

− ∂xk
∂Ci

∂ak
∂Cj

)

where the radius vector r and the acceleration a are related to the osculating
elements Ci through the solution of the problem of two bodies:

a = ∇rF0

so that
∂ak
∂Ci

=
∑

j

∂ak
∂xj

∂xj
∂Ci

=
∑

j

∂2F0

∂xj∂xk

∂xj
∂Ci

,

and ∑

k

∂xk
∂Cj

∂ak
∂Ci

=
∑

k

∑

j

∂2F0

∂xl∂xk

∂xl
∂Ci

∂xk
∂Cj

.

The invariance of the brackets stated in equation (2.15) follows from the in-
variance of the above formulae to the exchange of the subscripts i and j.

2.10 Lagrange’s Variational Equations

Lagrange’s brackets may be calculated at a fixed point of the orbit and the
periapsis offers the best point at which they should be considered. Computing
all the derivatives we have

[Ω, a] = − [a,Ω] =
1

2
na
√
1− e2 cos I

[ω, a] = − [a, ω] =
1

2
na
√
1− e2

[σ, a] = − [a, σ] =
1

2
na

[Ω, e] = − [e,Ω] = − na2e√
1− e2

cos I

[ω, e] = − [e, ω] = − na2e√
1− e2

[Ω, I] = − [I,Ω] = −na2
√
1− e2 sin I.
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All other brackets are equal to zero. In obtaining the derivatives, Kepler’s law
of areas may be used for calculating the time derivative of the true anomaly:

ḟ =
na2

√
1− e2

r2
.

Also, it must be kept in mind that the positions and velocities depend on
the semi-major axis not only explicitly through the radius vector, but also
through the mean motion, which is implicitly contained in the anomalies.

Equations (2.13) can be solved. The resulting set is that of Lagrange’s
equations for the variation of the osculating elements:.

ȧ =
2

na

∂R

∂σ

ė = −
√
1− e2

na2e

∂R

∂ω
+

1− e2

na2e

∂R

∂σ

İ = − 1

na2 sin I
√
1− e2

(
∂R

∂Ω
− cos I

∂R

∂ω

)

σ̇ = − 2

na

∂R

∂a
− 1− e2

na2e

∂R

∂e
(2.16)

ω̇ =

√
1− e2

na2e

∂R

∂e
− 1

na2 tan I
√
1− e2

∂R

∂I

Ω̇ =
1

na2 sin I
√
1− e2

∂R

∂I
.

These equations are the first-order equations of the motion in the phases
representation space a, e, I, σ, ω,Ω. The variations of the elements are very
slow and, in the first approximation, the motion may be obtained by keeping
them as constants in the right-hand side of the equations. Nevertheless, before
integrating, some modifications must be made in order to avoid Poisson terms,
whose coefficients are monotonic functions of time. Indeed, in the Fourier
expansion of R the angle σ appears always through the mean anomaly nt+σ,
among the arguments. Hence R will depend on the semi-major axis a through
the coefficients and also through the arguments since n is a function of a. The
series ∂R/∂a will have Poisson terms and they will give rise to unbounded
perturbations in σ.

2.11 Tisserand’s Transformation

In order to avoid this difficulty, a new parameter σI defined as

dσI

dt
=
dσ

dt
+ t

dn

dt
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is introduced to σ. The new equations for a and σI are

ȧ =
2

na

∂R

∂σI

σ̇I = − 2

na

(
∂R

∂a

)

n
− 1− e2

na2e

∂R

∂e

where
(
∂/∂a

)
n
means that the derivative with respect to a is made without

including the dependence through n in the arguments: only the coefficients
are differentiated. Also

ȧ =
2

na

∂R

∂ℓ

ℓ̇ = n− 2

na

∂R

∂a
− 1− e2

na2e

∂R

∂e
(2.17)

with R = R(a, e, I, ℓ, ω,Ω). These new equations demonstrate the need of a
supplementary second-order equation when one uses the method of successive
approximations for the integration. Indeed, to obtain an accurate solution up
to the first power of the disturbing masses, it is not sufficient to introduce for
n in equation (2.17) the undisturbed approximation; it will not give account
of the part of nt due to the variation of the mean motion n. While using the
method of successive approximations, in order to keep homogeneity in the
quantities involved in equation (2.17), the improved quantity

n =
dρ

dt

must be substituted for the mean motion. It then follows

d2ρ

dt2
=
dn

dt
= −3n

2a

da

dt

or
d2ρ

dt2
= − 3

a2
∂R

∂ℓ
. (2.18)

2.12 Small Eccentricities and Inclinations

In the motion of the Galilean satellites, two important features must be con-
sidered:

The orbits of the Galilean satellites
are very close to circles.

and
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The orbits of the Galilean satellites
and the equator of Jupiter lie very
closely in the same plane

In fact, the eccentricities are smaller than 0.01 and the inclination of the
individual orbital planes over the planet’s equator is not greater than 25 arc
minutes (sin I < 0.01).

These features eliminate the possibility of use of the anomalies as they
depend, in their definitions, of the position of the perijoves and, for nearly
circular orbits, these positions are poorly determined. We introduce the lon-
gitudes

λ = ℓ+̟

εI = σI +̟

where
̟ = ω +Ω

is the longitude of the perijove of the orbit considered. The two features de-
scribed above also allow us to use simplified equations in which all quantities
involving squares of the eccentricities or inclinations are neglected. These sim-
plified equations are

da

dt
=

2

na

∂R

∂λ

dεI

dt
= − 2

na

∂R

∂a

de

dt
= − 1

na2e

∂R

∂̟

d̟

dt
=

1

na2e

∂R

∂e

dI

dt
= − 1

na2I

∂R

∂Ω

dΩ

dt
=

1

na2I

∂R

∂I

(2.19)

and
λ = ρ+ εI

where ρ is determined from

d2ρ

dt2
= − 3

a2
∂R

∂λ
. (2.20)

In equations (2.19) and (2.20), R is a function of a, e, I, λ,̟,Ω. The appear-
ance of e and I in the denominator of some equations is inconvenient since in
the dealt problem the orbits have very small eccentricities and inclinations. It
is then desirable to use different equations. Introducing non-singular variables
defined by

h = e sin̟ k = e cos̟
p = I sinΩ q = I cosΩ
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in the last two pairs of equations in (2.19), we have

dh

dt
=

1

na2
∂R

∂k

dk

dt
= − 1

na2
∂R

∂h

dp

dt
=

1

na2
∂R

∂q

dq

dt
= − 1

na2
∂R

∂p

(2.21)

Practically, we will prefer to combine these variables in order to have
the complex variables k + ih and q + ip (where i =

√
−1). The corresponding

equations are given in Sections 4.2 (eqn. 4.4) and 10.1 (eqn. 10.3), respectively.
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an equivalent set of Lagrange’s variational equations is also included:

ȧ =
2

na

∂R

∂λ

ė = − β

na2e

(
(1− β)

∂R

∂λ
+
∂R

∂̟

)

İ = − tan I
2

na2β

(
∂R

∂λ
+
∂R

∂̟

)
− 1

na2β sin I

∂R

∂Ω

ε̇I = − 2

na

∂R

∂a
+
β(1 − β)

na2e

∂R

∂e
+

tan I
2

na2β

∂R

∂I
(2.22)
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˙̟ =
β

na2e

∂R

∂e
+

tan I
2

na2β

∂R

∂I

Ω̇ =
1

na2β sin I

∂R

∂I

where R = R(a, e, I, λ,̟,Ω) and β =
√
1− e2.

The corresponding Tisserand equation is

d2ρ

dt2
= − 3

a2
∂R

∂λ
(2.23)

where ρ = λ− εI.



3

The Disturbing Functions

3.1 Forces acting on the Satellites

When satellites move around a central point-mass, the disturbing function of
the satellite mi has been shown to be

∑

j 6=i

Gmj

(
1

rij
− ri · rj

r3j

)
. (3.1)

For the four Galilean satellites of Jupiter, other disturbing actions must be
considered: the action of the Sun and the actions due to the great oblateness
(1/15) of Jupiter. The disturbing function that corresponds to the solar action,
like (3.1), may be written as

Ri0 = Gm0

(
1

ri0
− ri · r0

r30

)
.

where m0 is the mass of the Sun, ri0 is the distance of the satellite from the
Sun and r0 is the jovicentric position of the Sun.

The disturbing function corresponding to the oblateness of the planet may
be written as

RiJ = −GMJ2
b2

r3i
P2(sinφi)−GMJ4

b4

r5i
P4(sinφi) + · · · (3.2)

whereM represents the mass of Jupiter, b its equatorial radius, J2 and J4 two
numerical coefficients related to the shape of the equipotentials of Jupiter’s
gravitational field and φi the latitude of the satellite over Jupiter’s equator.
P2 and P4 are Legendre polynomials

P2(x) =
1

2
(3x2 − 1)

P4(x) =
1

8
(35x4 − 30x2 + 3).
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In this book, we consider mainly the effects due to the second harmonic.
The fourth harmonic may be considered exactly in the same way and it only
modifies the results quantitatively. On account of |J4| ≪ |J2|, these modifica-
tions are very small.

Other disturbing effects that may be taken into account come from other
planets, Saturn in particular. The planets disturb the orbital motion of Jupiter
and they make its orbital plane to oscillate. The oscillations of Jupiter’s orbital
plane result in inertial forces that affect the motion of the satellite since this
plane is taken as reference plane. In addition, Saturn produces other strong ef-
fects in Jupiter’s orbit: the Jupiter-Sun distance does not follow closely Kepler
laws and thus Saturn acts on the Galilean satellite orbits through a modula-
tion of the solar effects. This indirect action is increased by the near-resonant
motion of planets Jupiter and Saturn.

The disturbing action of other satellites of Jupiter may be neglected: the
greatest is Jupiter V (Amalthea), which moves inside the orbit of Jupiter I
(Io), and which is some ten thousand times smaller than the Galilean satellites.

Effects due to an eventual oblateness of the gravitational fields of the
Galilean satellites are very small compared to other effects and hence may be
neglected.

The only relativistic effect which would be worth of consideration is the
advance of the perijoves of the innermost satellites. However, the inner satel-
lites move in near-circular orbits and their perijoves are poorly defined. The
relativistic modification of Kepler’s third law may not be detected because of
the low precision involved in direct measurements of the mean distances of
the satellite from the planet.

3.2 Expansion of the Solar Force-Function

To introduce the disturbing functions in Lagrange’s equations they must be
written as functions of the orbital elements of the satellites. This task, usually
called expansion of the disturbing function, is performed in several ways:
For solar action the force-function which gives the disturbing action may be
written as

Ri0 =
Gm0

r0

((
1 +

r2i
r20

− 2
ri
r0

cosS
)− 1

2 − ri
r0

cosS

)

where S is the angle between the jovicentric directions of the Sun and the
satellite. Using jovicentric coordinates,

cosS =
xix0 + yiy0 + ziz0

rir0
. (3.3)

Ri0 may be expanded in the form of a Taylor series in the powers of ri/r0,
which is fast convergent since ri/r0 is very small: it has a value less than 1/400
for the fourth satellite for which ri has the maximum value. So we have
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Ri0 =
∞∑

p=2

Rp
i0; Rp

i0 =
Gm0

r0

(
ri
r0

)p

Pp(cosS)

where Pp are Legendre polynomials. The term cosS given by equation (3.3)
is easily calculated by substituting the values of the coordinates in the elliptic
motion (equations 2.10).

It should be emphasized that the introduction of the co-ordinates as de-
fined in the elliptic motion does not mean that we are using an approximation.
Indeed, in Section 2.8, the transformation of R into a function of the orbital
elements is made by using the solutions of the undisturbed problem, that is,
equations (2.10). Then

cosS =
(
1− sin2

I0
2

− sin2
Ii
2
+ sin2

I0
2
sin2

Ii
2

)
cos(θi − θ0)

+
1

2
sin I0 sin Ii

(
cos(θi − θ0 −Ωi +Ω0)− cos(θi + θ0 −Ωi −Ω0)

)

+sin2
I0
2
cos2

Ii
2
cos(θi + θ0 − 2Ω0)

+ sin2
Ii
2
cos2

I0
2
cos(θi + θ0 − 2Ωi)

+ sin2
I0
2
sin2

Ii
2
cos(θi − θ0 − 2Ωi + 2Ω0)

where we have introduced the true longitudes

θi = fi +̟i.

It is worthwhile to note that when the orbit of Jupiter is taken as reference
plane (I0 = 0), we get the simplified expression

cosS = cos2
Ii
2
cos(θi − θ0) + sin2

Ii
2
cos(θi + θ0 − 2Ωi).

For the Sun and the Galilean satellites, the eccentricities and inclinations are
small and hence we may use the approximate relations

θi = λi + 2ei sin(λi −̟i) +
5

4
e2i sin 2(λi −̟i)

ri = ai

(
1 +

1

2
e2i − ei cos(λi −̟i)−

1

2
e2i cos 2(λi −̟i)

)

xi = ri
(
cos θi +

1

2
I2i sinΩi sin(λi −Ωi)

)
(3.4)

yi = ri
(
sin θi −

1

2
I2i cosΩi sin(λi −Ωi)

)

zi = riIi sin(λi −Ωi).

Limiting ourselves to R2
i0 (since ri/r0 is very small), it follows
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Ri0 =
Gm0

a0
(
ai
a0

)2
(
1

4
+

3

8
(e2i + e20) +

3

4
cos(2λi − 2λ0)

−1

2
ei cos(λi −̟i) +

3

4
e0 cos(λ0 −̟0) (3.5)

+
3

4
ei cos(2λ0 − 3λi +̟i)−

9

4
ei cos(2λ0 − λi −̟i)

+
15

8
e2i cos(2λ0 − 2̟i)−

3

8
(I2i + I20 )

+
3

4
IiI0 cos(Ωi −Ω0) +

3

8
I2i cos(2λ0 − 2Ωi)

+
3

8
I20 cos(2λ0 − 2Ω0) −

3

4
IiI0 cos(2λ0 −Ωi −Ω0)

)
.

3.3 Expansion of Jupiter’s Force-Function

To develop the force-function RiJ , let the equator of Jupiter be considered.
Let φi and φ′i be the latitude of the satellites with respect to the planet’s
equator and the reference plane respectively (see Figure 3.1).

Fig. 3.1.

A and B are the ascending nodes of the equatorial and orbital planes in the
reference plane, respectively, and Ω̃ and Ωi are their longitudes reckoned from
a fixed origin O. We have

BC ≃ BD ≃ θi −Ωi AE ≃ θi − Ω̃

Except for quantities that are proportional to the third power of the inclina-
tions,

φ′i = Ii sin(θi −Ωi) (3.6)

φ′i − φi = Ĩ sin(θi − Ω̃).

Thus,
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φi = Ii sin(θi −Ωi)− Ĩ sin(θi − Ω̃)

and the second harmonic of Jupiter’s force-function is

RiJ = −3

2
GMJ2

b2

r3i

(
Ii sin(θi − Ωi)− Ĩ sin(θi − Ω̃)

)2
+

1

2
GMJ2

b2

r3i
.

In view of equation (3.4),

a3i
r3i

= 1 + 3ei cos(λi −̟i) +
3

2
e2i
(
1 + 3 cos 2(λi −̟i)

)
+ · · ·

Thus

RiJ =
1

2
GMJ2

b2

a3i

(
1 +

3

2
e2i + 3ei cos(λi −̟i) +

9

2
e2i cos(2λi − 2̟i)

−3

2
(I2i + Ĩ2) +

3

2
I2i cos(2λi − 2Ωi) +

3

2
Ĩ2 cos(2λi − 2Ω̃)

+ 3IiĨ cos(Ωi − Ω̃)− 3IiĨ cos(2λi −Ωi − Ω̃)

)
.

3.4 Laplace Coefficients

In planetary theories, the expansion of Rij involves some classical procedures.
The procedure described in Section 3.2 to develop Ri0 cannot be used because
the ratio of distances ri/rj is a large quantity and the expansion in Legendre
polynomials for such case converges very slowly; this results in a large amount
of terms to be considered in order to get a good approximation.

We have

Rij = Gmj

(
(
r2j + r2i − 2rirj cosSij

)− 1

2 − ri
r2j

cosSij

)
(3.7)

where Sij is the angle between the jovicentric directions of the two satellites
involved. To expand it, we need the classical coefficients Ak

ij and Bk
ij defined

by the expressions:

(
a2i + a2j − 2aiaj cosS

)− 1

2 =
1

2

+∞∑

−∞

Ak
ij cos kS

aiaj
(
a2i + a2j − 2aiaj cosS

)− 3

2 =
1

2

+∞∑

−∞

Bk
ij cos kS (3.8)

and related to the Laplace coefficients. In general, for a given α (0 < α < 1),
we define

(
1 + α2 − 2α cosS

)−s
=

1

2

+∞∑

−∞

bks cos kS (3.9)
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where the bks are the Laplace coefficients. They are the coefficients of the
expansion of (1 + α2 − 2α cosS)−s in a Fourier series:

b0s =
1

π

∫ 2π

0

(
1 + α2 − 2α cosS

)−s
dS

bks =
1

π

∫ 2π

0

(
1 + α2 − 2α cosS

)−s
cos kS dS. (3.10)

To study some analytical properties of the Laplace coefficients, we introduce
a new parameter z defined by

z = exp iS.

Thus, (
1 + α2 − 2α cosS

)−s
= (1 − αz)−s(1− αz−1)−s.

Since |z| = 1 and α < 1, the Taylor expansions of the terms (1 − αz)−s and
(1− αz−1)−s are convergent:

(1− αz)−s = 1 + αsz +
s(s+ 1)

2!
α2z2

+ · · ·+ s(s+ 1) · · · (s+ k − 1)

k!
αkzk + · · · ,

(1− αz−1)−s = 1 + αsz−1 +
s(s+ 1)

2!
α2z−2

+ · · ·+ s(s+ 1) · · · (s+ k − 1)

k!
αkz−k + · · · ,

and the Laplace coefficients are

1

2
b0s = 1 + s2α2 +

(
s(s+ 1)

2!

)2

α4 + · · ·+
(
s(s+ 1) · · · (s+ k − 1)

k!

)2

α2k + · · · ,

and (3.11)

1

2
bks =

s(s+ 1) · · · (s+ k − 1)

k!
αk

(
1 +

s(s+ k)

k + 1
α2

+
s(s+ 1)

2!

(s+ k)(s+ k + 1)

(k + 1)(k + 2)
α4 + · · ·

)
.

Some useful recurrence formulae can be derived from

(
1 + α2 − α(z +

1

z
)
)−s

=
1

2

+∞∑

−∞

bksz
k. (3.12)

Indeed, we have

sα
(
1 + α2 − α(z +

1

z
)
)−s−1(

1− 1

z2
)
=

1

2

+∞∑

−∞

bkskz
k−1 (3.13)
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or

sα

+∞∑

−∞

bksz
k
(
1− 1

z2
)
=
(
1 + α2 − α(z +

1

z
)
)+∞∑

−∞

bkskz
k−1.

Equating the coefficients of powers of z on both sides (and shifting the sub-
scripts inside each summation), we obtain

bks =
k − 1

k − s

(
α+

1

α

)
bk−1
s − k + s− 2

k − s
bk−2
s ; (3.14)

Equation (3.13) can also be written as

sα

+∞∑

−∞

bks+1z
k
(
1− 1

z2
)
=

+∞∑

−∞

bkskz
k−1,

which gives

bks =
sα

k

(
bk−1
s+1 − bk+1

s+1

)
. (3.15)

The derivatives of bks can be obtained from equation (3.12), which gives

−s
(
1 + α2 − α(z +

1

z
)
)−s−1(

2α− z − 1

z

)
=

1

2

+∞∑

−∞

dbks
dα

zk;

equating the coefficients of powers of z on both sides we obtain

dbks
dα

= s
(
bk−1
s+1 − 2αbks+1 + bk+1

s+1

)
. (3.16)

3.5 Numerical Values for the Galilean Satellites

To get the values of the numerical coefficients that correspond to the Galilean
satellites, we have to fix some constants of the motion. Adopting the values
established in Section 4.6 for the osculating semi-major axes, we obtain the
numerical values tabulated in Tables 3.1 to 3.9.

Table 3.1. Values of α

i-j 1-2 2-3 3-4 1-3 2-4 1-4

α 0.62844 0.62688 0.56855 0.39396 0.35642 0.22399
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Table 3.2. Values of bk
1/2

k 1-2 2-3 3-4 1-3 2-4 1-4

0 2.2588 2.2570 2.1998 2.0852 2.0685 2.0258
1 0.7542 0.7515 0.6558 0.4194 0.3749 0.2283
2 0.3631 0.3608 0.2843 0.1248 0.1008 0.0384
3 0.1923 0.1906 0.1358 0.0411 0.0300 0.0072
4 0.1064 0.1053 0.0679 0.0142 0.0094 0.0014
5 0.0605 0.0597 0.0349 0.0050 0.0030 0.0003
6 0.0350 0.0344 0.0182 0.0018 0.0010 0.0001

Table 3.3. Values of bk
3/2

k 1-2 2-3 3-4 1-3 2-4 1-4

0 6.0172 5.9757 4.7276 2.9122 2.7085 2.2448
1 4.8810 4.8390 3.5670 1.6232 1.3804 0.7401
2 3.6170 3.5783 2.4206 0.7830 0.6048 0.2059
3 2.5699 2.5366 1.5668 0.3561 0.2494 0.0536
4 1.7814 1.7541 0.9870 0.1568 0.0995 0.0135
5 1.2148 1.1934 0.6109 0.0677 0.0389 0.0033
6 0.8189 0.8025 0.3734 0.0288 0.0150 0.0008

Table 3.4. Values of
dbk

1/2

dα

k 1-2 2-3 3-4 1-3 2-4 1-4

0 1.0996 1.0930 0.8791 0.4760 0.4151 0.2373
1 1.7497 1.7435 1.5461 1.2081 1.1646 1.0595
2 1.4524 1.4446 1.1906 0.6812 0.5993 0.3508
3 1.0842 1.0761 0.8130 0.3296 0.2633 0.0977
4 0.7729 0.7653 0.5277 0.1501 0.1087 0.0255
5 0.5367 0.5302 0.3329 0.0661 0.0434 0.0064
6 0.3664 0.3611 0.2062 0.0286 0.0169 0.0016

Table 3.5. Values of
d2bk

1/2

dα2

k 1-2 2-3 3-4 1-3 2-4 1-4

0 4.2675 4.2322 3.1815 1.7041 1.5438 1.1852
1 4.0064 3.9700 2.8764 1.2588 1.0639 0.5610
2 4.9835 4.9467 3.8445 2.2703 2.0967 1.7048
3 5.2262 5.1848 3.9191 1.9038 1.6375 0.9061
4 4.8641 4.8185 3.4215 1.2402 0.9758 0.3491
5 4.1897 4.1428 2.7234 0.7122 0.5099 0.1163
6 3.4228 3.3774 2.0407 0.3792 0.2465 0.0356
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Table 3.6. Values of Ak
ij

k 1-2 2-3 3-4 1-3 2-4 1-4

0 0.24035 0.15056 0.08343 0.13909 0.07845 0.07683
1 0.08025 0.05013 0.02487 0.02798 0.01422 0.00866
2 0.03864 0.02407 0.01078 0.00832 0.00382 0.00146
3 0.02046 0.01271 0.00515 0.00274 0.00114 0.00027
4 0.01133 0.00702 0.00258 0.00095 0.00036 0.00005
5 0.00644 0.00398 0.00132 0.00034 0.00011 0.00001
6 0.00372 0.00229 0.00069 0.00012 0.00004

Table 3.7. Values of Bk
ij

k 1-2 2-3 3-4 1-3 2-4 1-4

0 0.40237 0.24988 0.10194 0.07653 0.03661 0.01907
1 0.32639 0.20235 0.07691 0.04266 0.01866 0.00629
2 0.24187 0.14963 0.05219 0.02058 0.00818 0.00175
3 0.17185 0.10607 0.03378 0.00936 0.00337 0.00046
4 0.11912 0.07335 0.02128 0.00412 0.00134 0.00012
5 0.08123 0.04990 0.01317 0.00178 0.00052 0.00003
6 0.05476 0.03356 0.00805 0.00076 0.00020 0.00001

Table 3.8. Values of ai
∂Ak

ij

∂ai
(ai < aj)

k 1-2 2-3 3-4 1-3 2-4 1-4

0 0.07353 0.04570 0.01895 0.01250 0.00561 0.00201
1 0.11700 0.07291 0.03335 0.03175 0.01574 0.00900
2 0.09712 0.06041 0.02567 0.01790 0.00810 0.00298
3 0.07250 0.04499 0.01753 0.00866 0.00356 0.00083
4 0.05168 0.03200 0.01138 0.00395 0.00147 0.00022
5 0.03589 0.02217 0.00718 0.00174 0.00058 0.00005
6 0.02450 0.01510 0.00445 0.00075 0.00023 0.00001

Table 3.9. Values of a2

i

∂2Ak
ij

∂a2

i

(ai < aj)

k 1-2 2-3 3-4 1-3 2-4 1-4

0 0.17932 0.11094 0.03900 0.01764 0.00744 0.00226
1 0.16836 0.10407 0.03526 0.01303 0.00512 0.00107
2 0.20942 0.12967 0.04713 0.02350 0.01010 0.00324
3 0.21962 0.13591 0.04804 0.01971 0.00789 0.00172
4 0.20441 0.12631 0.04194 0.01284 0.00470 0.00066
5 0.17607 0.10860 0.03338 0.00737 0.00246 0.00022
6 0.14383 0 08853 0.02502 0.00393 0.00119 0.00007
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3.6 The Force-Function of the Mutual Interactions

The disturbing function Rij defined by equation (3.7) consists of two parts,
which depend only on the coordinates of the two satellites. These parts are:

r−1
ij =

(
r2i + r2j − 2rirj cosSij

)− 1

2

Q =
ri
r2j

cosSij

and they can be expressed in power series of the eccentricities and inclinations;
the computations are confined up to first degree terms and to second-degree
longitude independent terms.

Following section 3.2 we have

cosSij =
(
1− sin2

Ij
2

− sin2
Ii
2
+ sin2

Ij
2
sin2

Ii
2

)
cos(θi − θj)

+
1

2
sin Ii sin Ij

(
cos(θi − θj −Ωi +Ωj)− cos(θi + θj −Ωi −Ωj)

)

+sin2
Ii
2
cos2

Ij
2
cos(θi + θj − 2Ωi)

+ sin2
Ij
2
cos2

Ii
2
cos(θi + θj − 2Ωj) (3.17)

+ sin2
Ij
2
sin2

Ii
2
cos(θi − θj − 2Ωi + 2Ωj)

It is worth noting that cosSij is equal to cos(θi − θj) except for quantities
that are at least proportional to the square of the inclinations. We can write

r−1
ij =

(
r2i + r2j − 2rirj cos(θi − θj)

)−1/2
(3.18)

+rirj
(
r2i + r2j − 2rirj cos(θi − θj)

)−3/2(
cosSij − cos(θi − θj)

)
.

In order to introduce the Laplace coefficients, we may consider the Taylor
expansions:

(
r2i + r2j − 2rirj cos(θi − θj)

)−1/2
= ρij +

∂ρij
∂ai

(ri − ai) +
∂ρij
∂aj

(rj − aj)

+
1

2

∂2ρij
∂a2i

(ri − ai)
2 +

1

2

∂2ρij
∂a2j

(rj − aj)
2 +

∂2ρij
∂ai∂aj

(ri − ai)(rj − aj)

where, for simplicity, we put

ρij =
(
a2i + a2j − 2aiaj cos(θi − θj)

)−1/2
.

We also consider the limited expansions
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ri − ai = −aiei cos(λi −̟i) +
1

2
aie

2
i −

1

2
aie

2
i cos 2(λi −̟i)

and

cos k(θi − θj) = cos k(λi − λj)− kei cos
(
(k − 1)λi − kλj +̟i

)

+ kei cos
(
(k + 1)λi − kλj −̟i

)
+ kej cos

(
kλi − (k + 1)λj +̟j

)

− kej cos
(
kλi − (k − 1)λj −̟j

)
+ Ikij (3.19)

where Ikij are longitude independent terms of second degree:

Ikij = eiej cos(̟i −̟j) if |k| = 1

Ikij = 0 if |k| 6= 1.

It then follows

(
r2i + r2j − 2rirj cos(θi − θj)

)−1/2
=

1

2

+∞∑

−∞

Ak
ij cos k(λi − λj)

+
1

2
ei

+∞∑

−∞

(
2kAk

ij − ai
∂Ak

ij

∂ai

)
cos
(
(k + 1)λi − kλj −̟i

)
(3.20)

+
1

2
ej

+∞∑

−∞

(
2kAk

ij − aj
∂Ak

ij

∂aj

)
cos
(
kλi − (k + 1)λj +̟j

)

+ eiej

(
A1

ij +
ai
2

∂A1
ij

∂ai
+
aj
2

∂A1
ij

∂aj
+
aiaj
4

∂2A1
ij

∂ai∂aj

)
cos(̟i −̟j)

+
1

4
aie

2
i

(
∂A0

ij

∂ai
+
ai
2

∂2A0
ij

∂a2i

)
+

1

4
aje

2
j

(
∂A0

ij

∂aj
+
aj
2

∂2A0
ij

∂a2j

)
.

In the calculations, the summations are applied to k from −∞ to +∞ and
when needed k was interchanged with −k. This technique allows us to identify
several terms and to have a more concise result. In the same way, the remaining
part of the equation (3.18) reduces to

−1

8
B1

ij

(
I2i + I2j − 2IiIj cos(Ωi −Ωj)

)
. (3.21)

The combination of equations (3.20) and (3.21) gives the expansion of r−1
ij .

We will now develop the other part of the disturbing function. From equa-
tions (3.4), (3.17) and (3.19), it is evident that

− ri
r2j

cosSij =
ai
a2j

(
− cos(λi − λj) +

3

2
ei cos(λj −̟i) (3.22)

− 1

2
ei cos(2λi − λj −̟i)− 2ej cos(2λj − λi −̟j)

)
.
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The final expansion is then given by

Rij = Gmj

(
eqn.(3.20) + eqn.(3.21) + eqn.(3.22)

)

Souillart in his study of the theory of Laplace has shown that because of
the small divisors n1 − 2n2 and n2 − 2n3, it is necessary to keep in equations
(3.20) and (3.21) the second-degree terms the arguments of which are 4λ2−2λ1
and 4λ3 − 2λ2. They are

1

8
e2i

(
44A4

ij + 14ai
∂A4

ij

∂ai
+ a2i

∂2A4
ij

∂a2i

)
cos(4λj − 2λi − 2̟i)

+
1

4
eiej

(
−36A3

ij − 6ai
∂A3

ij

∂ai
+ 6aj

∂A3
ij

∂aj
+ aiaj

∂2A3
ij

∂ai∂aj

)
cos(4λj − 2λi −̟i −̟j)

+
1

8
e2j

(
26A2

ij − 10aj
∂A2

ij

∂aj
+ a2j

∂2A2
ij

∂a2j

)
cos(4λj − 2λi − 2̟j)

+
1

8
I2i B

3
ij cos(4λj − 2λi − 2Ωi) +

1

8
I2jB

3
ij cos(4λj − 2λi − 2Ωj)

−1

4
IiIjB

3
ij cos(4λj − 2λi −Ωi −Ωj). (3.23)

On the other hand, the 3:7 commensurability of Jupiter III (Ganymede) and
Jupiter IV (Callisto) must also be considered. In 1892, von Haerdtl showed
that the mean motions of these satellites are such that 3n3 − 7n4 is a small
divisor (0.044676 degrees per day), which causes a significant increase in the
amplitudes of the corresponding inequalities. The main terms in the disturbing
function with this argument are:

Gmj

384
e44

(
12085A3

34 + 5884a3
∂A3

34

∂a3
+ 894a23

∂2A3
34

∂a23
+ 52a33

∂3A3
34

∂a33
+ a43

∂4A3
34

∂a43

)

· cos(7λ4 − 3λ3 − 4̟4)

−Gmj

96
e34e3

(
11768A4

34 + 5494a3
∂A4

34

∂a3
+ 837a23

∂2A4
34

∂a23
+ 50a33

∂3A4
34

∂a33
+ a43

∂4A4
34

∂a43

)

· cos(7λ4 − 3λ3 −̟3 − 3̟4)

+
Gmj

64
e24e

2
3

(
11175A5

34 + 5100a3
∂A5

34

∂a3
+ 782a23

∂2A5
34

∂a23
+ 48a33

∂3A5
34

∂a33
+ a43

∂4A5
34

∂a43

)

· cos(7λ4 − 3λ3 − 2̟3 − 2̟4)

(3.24)

3.7 Some Simplifications

The equations of Section 3.6 may be simplified if some classical results on
Laplace coefficients are used. We may exclude all derivatives with respect to
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aj ; we have

Ak
ij =

1

aj
bk1/2 Bk

ij =
α

aj
bk3/2 (ai < aj)

then
∂Ak

ij

∂ai
=

1

a2j

dbk
1/2

dα
(3.25)

and
∂Ak

ij

∂aj
= − 1

a2j

(
α
dbk

1/2

dα
+ bk1/2

)
;

Then

Ak
ij + aj

∂Ak
ij

∂aj
+ ai

∂Ak
ij

∂ai
= 0 (3.26)

and

aiaj
∂2Ak

ij

∂ai∂aj
= −2ai

∂Ak
ij

∂ai
− a2i

∂2Ak
ij

∂a2i
;

a2j
∂2Ak

ij

∂a2j
= 2Ak

ij + 4ai
∂Ak

ij

∂ai
+ a2i

∂2Ak
ij

∂a2i
.

The equation (3.16) allow us to write the formula

d2bk
1/2

dα2
= −bk3/2 +

3

4

(
bk−2

5/2 − 4αbk−1

5/2 + (2 + 4α2)bk5/2 − 4αbk+1

5/2 + bk+2

5/2

)
,

which has been used to get the values shown in Table 3.5. Combining equation
(3.15) with

bk3/2 =
3

2k − 3

(
2αbk−1

5/2 − (1 + α2)bk5/2
)

we obtain, for k=0 and k=1, the following important relation

α2
d2bk

1/2

dα2
+ 2α

dbk
1/2

dα
− k(k + 1)bk1/2 = αbk+1

3/2 ,

that is,

a2i
∂2Ak

ij

∂a2i
+ 2ai

∂Ak
ij

∂ai
− k(k + 1)Ak

ij = Bk+1
ij .

For k = 0 and k = 1, the left-hand side of this equation appears in equation
(3.20) that may be written as
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(
r2i + r2j − 2rirj cos(θi − θj)

)−1/2
=

1

2

+∞∑

−∞

Ak
ij cos k(λi − λj)

+
1

2
ei

+∞∑

−∞

(
2kAk

ij − ai
∂Ak

ij

∂ai

)
cos
(
(k + 1)λi − kλj −̟i

)

+
1

2
ej

+∞∑

−∞

(
(2k + 1)Ak

ij + ai
∂Ak

ij

∂ai

)
cos
(
kλi − (k + 1)λj +̟j

)

+
1

8
B1

ij(e
2
i + e2j)−

1

4
B2

ijeiej cos(̟i −̟j). (3.27)

The terms introduced by Souillart in equation (3.20) may be written as

1

8
e2i

(
44A4

ij + 14ai
∂A4

ij

∂ai
+ a2i

∂2A4
ij

∂a2i

)
cos(4λj − 2λi − 2̟i)

−1

4
eiej

(
42A3

ij + 14ai
∂A3

ij

∂ai
+ a2i

∂2A3
ij

∂a2i

)
cos(4λj − 2λi −̟i −̟j)

+
1

8
e2j

(
38A2

ij + 14ai
∂A2

ij

∂ai
+ a2i

∂2A2
ij

∂a2i

)
cos(4λj − 2λi − 2̟j). (3.28)

In equations (3.27) and (3.28), it must be kept in mind that i stands for the
inner satellite and j for the outer satellite· As rij is symmetrical with respect
to these indices, they are interchanged in such a way that the derivatives are
always made with respect to the semi-major axis of the inner satellite.

In a straightforward way, the main Laplace coefficients may be obtained
from tables of elliptic integrals and from the recurrence formula (3.14). From
equation (3.10) we have

b01/2 =
1

π

∫ 2π

0

(1 + α2 − 2α cosS)−1/2dS

b11/2 =
1

π

∫ 2π

0

(1 + α2 − 2α cosS)−1/2 cosSdS

A new variable defined by the transformation of Landen:

cosS = α sin2 x+ cosx
√

1− α2 sin2 x

leads to
sinS = −α sinx cosx+ sinx

√
1− α2 sin2 x

and
(1 + α2 − 2α cosS)1/2 = −α cosx+

√
1− α2 sin2 x

and, thus, b0
1/2 and b1

1/2 become
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b01/2 =
4

π

∫ π/2

0

dx√
1− α2 sin2 x

=
4

π
K(α)

b11/2 =
4

π

∫ π/2

0

α sin2 xdx√
1− α2 sin2 x

=
4

π

K(α)− E(α)

α

where K(α) and E(α) are complete elliptic integrals of the first and second
kind respectively. It is important to note that round-off errors propagates very
fast in the recurrence formulae and that where precision is required the series
(3.11) must be preferred.
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F.Tisserand: 1896, Traité de Mécanique Céleste, Gauthier, Paris,
Vol. I, p. 406.

Their validity for other values of k is not proved. They are also found in
D.Brouwer and G.M.Clemence: 1951, Methods of Celestial Mechan-
ics, Academic Press, New York, p. 509.



4

Inequalities of Planetary Type

4.1 Variations in Semi-major Axis and Mean Longitude

Short periodic inequalities of planetary type arise from the main part of the
mutual interactions force-function:

1

2
Gmj

∑
Ak

ij cos k(λi − λj) (4.1)

+
1

2
Gmjei

∑
(
2kAk

ij − ai
∂Ak

ij

∂ai

)
cos [(k + 1)λi − kλj −̟i)]

+
1

2
Gmjej

∑
(
(2k + 1)Ak

ij + ai
∂Ak

ij

∂ai

)
cos [kλi − (k + 1)λj +̟j ]

+ Gmj
ai
a2j

[
− cos(λi − λj) +

3

2
ei cos(λj −̟i)

−1

2
ei cos(2λi − λj −̟i)− 2ej cos(2λj − λi −̟j)

]
,

which may be written as
R0

ij +Ri
ij +Rj

ij

where R0
ij , R

i
ij and Rj

ij denote the eccentricity independent terms, the terms
that depend on ei and the terms that depend on ej , respectively. In the sum-
mations in (4.1), the constant term 1

2
GmjA

0
ij and the terms whose argument

comprises 2λ2 − λ1 or 2λ3 − λ2 are excluded. The term k = 0 in Ri
ij is also

excluded.
In a first-order theory the effect of each term may be considered sepa-

rately. R0
ij contributes only to the first pair of Lagrange equations and to the

complementary equation (2.20). We have

dai
dt

=
2

niai

∂R0
ij

∂λi

dεIi
dt

= − 2

niai

∂R0
ij

∂ai
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and
d2ρi
dt2

= − 3

a2i

∂R0
ij

∂λi
.

Then

dai
dt

= −Gmj

niai

∑
kAk

ij sin k(λi − λj) +
2Gmj

nia2j
sin(λi − λj)

dεIi
dt

= −Gmj

niai

∑ ∂Ak
ij

∂ai
cos k(λi − λj) +

2Gmj

niaia2j
cos(λi − λj)

d2ρi
dt2

=
3

2

Gmj

a2i

∑
kAk

ij sin k(λi − λj)−
3Gmj

aia2j
sin(λi − λj).

We assume, in the right-hand sides, a Keplerian approximation: all the
elements, except the longitudes, are constant, and the longitudes are linear
functions of the time (λ = nt+ ε). The result of the integration is

δai = −Gmj

niai

∑ Ak
ij cos k(λi − λj)

ni − nj
− 2Gmj

nia2j

cos(λi − λj)

ni − nj

δεIi = −Gmj

niai

∑ ∂Ak
ij

∂ai

sin k(λi − λj)

k(ni − nj)
+

2Gmj

niaia2j

sin(λi − λj)

ni − nj

δρi = −3

2

Gmj

a2i

∑ Ak
ij sin k(λi − λj)

k(ni − nj)2
+

3Gmj

aia2j

sin(λi − λj)

(ni − nj)2
.

4.2 Variations in Eccentricity and Perijove

Ri
ij contributes to the first two pairs of Lagrange equations. The contribu-

tion to the first pair of equations is very small and may be ignored; indeed,
the eccentricity of the disturbed satellite is a factor in all the results, and in
the Galilean system the eccentricities are very small. The only terms which
may be of interest in constructing a theory with the purpose of having good
ephemerides are those which include e4 (0.007). However, if they are consid-
ered, we have to consider also the perturbation in ei and̟i arising from terms
of second degree in the eccentricities.

Since the eccentricity of the Galilean satellites is extremely small, the
second pair of Lagrange equations will be considered in its modified form:

dhi
dt

=
1

nia2i

∂Ri
ij

∂ki

dki
dt

= − 1

nia2i

∂Ri
ij

∂hi
(4.2)

and
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Ri
ij =

1

2
Gmj

∑
(
2kAk

ij − ai
∂Ak

ij

∂ai

)
(4.3)

·
(
ki cos[(k + 1)λi − kλj ] + hi sin[(k + 1)λi − kλj ]

)

+
3

2
Gmj

ai
a2j

(ki cosλj + hi sinλj)

−1

2
Gmj

ai
a2j

[
ki cos(2λi − λj) + hi sin(2λi − λj)

]
.

The summation in equation (4.3) was written under the assumption that i
represents the inner satellite; otherwise, inside the summation, subscripts i
and j must permute.

For simplification, we introduce the complex parameter

ζj = kj + ihj i =
√
−1.

Equations (4.2) become

dζi
dt

= − 1

nia2i

(
∂Ri

ij

∂hi
− i

∂Ri
ij

∂ki

)

or
dζi
dt

=
i

nia2i

(
∂Ri

ij

∂ei
+

i

ei

∂Ri
ij

∂̟i

)
exp i̟i. (4.4)

Then we have

dζi
dt

=
1

2

Gmj

nia2i

∑
(
2kAk

ij − ai
∂Ak

ij

∂ai

)
i exp i[(k + 1)λi − kλj ]

+
1

2

Gmj

niaia2j

[
3i exp iλj − i exp i(2λi − λj)

]
.

On integration, we get

δζi =
1

2

Gmj

nia2i

∑
(
2kAk

ij − ai
∂Ak

ij

∂ai

)
exp i[(k + 1)λi − kλj ]

(k + 1)ni − knj

+
1

2

Gmj

niaia2j

[3 exp iλj
nj

− exp i(2λi − λj)

2ni − nj

]
.

Rj
ij will contribute only to the first pair of Lagrange equations and is

negligible; indeed the eccentricity of the disturbing satellite will be a factor in
all the results and it is very small.
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4.3 Inequalities in Longitude and Radius Vector

From the preceding results, we may calculate the short period inequalities of
planetary type, which will affect the radius vector and the longitude of the
satellites. Introducing h and k in the equations (3.4) for the longitude and
radius vector and limiting to first degree terms, we obtain

ri = ai − aiki cosλi − aihi sinλi

θi = ρi + εIi + 2ki sinλi − 2hi cosλi.

Their differentials, to the first degree in the eccentricities, are

δri = δai − aiδki cosλi − aiδhi sinλi

δθi = δρi + δεIi + 2δki sinλi − 2δhi cosλi.

If we introduce ζi, it follows

δri = δai − aiℜ[δζi exp(−iλi)] (4.5)

δθi = δρi + δεIi − 2ℑ[δζi exp(−iλi)]. (4.6)

The short period inequalities in the radius vector and longitudes follow
from the above set of results without difficulties. The numerical results are
shown in Tables 4.1 and 4.2 respectively.

Table 4.1. Coefficients of cos k(λi − λj) in δri (in units 10−7ai)

Satellite I Satellite II Satellite III Satellite IV

k 1-2 1-3 1-4 2-1 2-3 2-4 3-1 3-2 3-4 3-1 4-2 4-3

1 +209 +107 +14 +729 +633 +55 +192 +398 +291 +105 +93 +980
2 +211 −146 −9 +307 +638 −63 +6 +162 −1742 +2 +178
3 −184 −18 −1 +73 −548 −7 +1 +38 − 154 +42
4 −48 −4 +25 −144 −1 +13 −41 +13
5 −18 −1 +10 − 52 +5 −14 +5

Table 4.2. Coefficients of sin k(λi − λj) in δθi (in units 10−7)

Satellite I Satellite II Satellite III Satellite IV

k 1-2 1-3 1-4 2-1 2-3 2-4 3-1 3-2 3-4 3-1 4-2 4-3

1 −753 −269 −32 +237 −2271 −135 −179 +136 −934 −105 −90 +395
2 −684 +228 +14 +389 −2064 +97 +5 +205 +3188 +1 +197
3 +285 +23 +1 +78 +849 +10 +1 +41 +224 +41
4 +65 +4 +25 +194 +2 +13 +52 +13
5 +22 +1 +10 +65 +5 +17 +5

The orbit of the disturbed satellite lies inside or outside the orbit of the
disturbing satellite and this fact creates a practical problem in calculation. In
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Tables 3.8 and 3.9, the derivatives of Ak
ij are with respect to the semi-major

axis of the inner orbit. In many books the cases i < j and j < i are dealt
separately. Here we have preferred a single formulation and we use equation
(3.26) to calculate derivatives of Ak

ij with respect to the semi-major axis of
the outer orbit.

4.4 von Haerdtl’s Inequalities

The set of inequalities in the longitudes arising from (3.24), known since 1892,
was calculated correctly for the first time by Lieske in 1973. The only varia-
tional equation capable of giving significant results is equation (2.20); it is a
second-order equation, and, on integration, the disturbing term there has to
be divided twice by the small quantity 7n4 − 3n3. This may counterweigh the
smallness of the fourth degree of the eccentricities. Using the values given by
Lieske, we may calculate the brackets of (3.24), which become

0.5605 Gmje
4
4 cos(7λ4 − 3λ3 − 4̟4)

−1.4092 Gmje
3
4e3 cos(7λ4 − 3λ3 −̟3 − 3̟4)

+1.3221 Gmje
2
4e

2
3 cos(7λ4 − 3λ3 − 2̟3 − 2̟4).

The variational equations for satellites III and IV are then

d2ρ3
dt2

= −0.00326e44 sin(7λ4 − 3λ3 − 4̟4)

−0.00821e34e3 sin(7λ4 − 3λ3 −̟3 − 3̟4)

−0.00770e24e
2
3 sin(7λ4 − 3λ3 − 2̟3 − 2̟4)

and

d2ρ4
dt2

= +0.00345 e44 sin(7λ4 − 3λ3 − 4̟4)

−0.00867 e34e3 sin(7λ4 − 3λ3 −̟3 − 3̟4)

+0.00813 e24e
2
3 sin(7λ4 − 3λ3 − 2̟3 − 2̟4).

Before integrating these equations, we need to know the behavior of the os-
culating eccentricities and perijoves, which are discussed in Section 6.4. If we
adopt the results given in that section the integration of the first equation
gives:

δθ3 = δρ3 = 18.5× 10−6 sin(7λ4 − 3λ3 − 4g4t− 4β4)

−13.7× 10−6 sin(7λ4 − 3λ3 − 3g4t− 3β4 − g3t− β3)

+2.3× 10−6 sin(7λ4 − 3λ3 − 2g4t− 2β4 − 2g3t− 2β3)
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where gµt+ βµ are the proper perijoves (see Section 5.3). The periods of the
components of the inequalities in δρ3 are 26.4, 31.1 and 37.8 years, respec-
tively. There are other components but they are negligible. δρ4 is similar and
may be obtained from

δθ4 = δρ4 = −1.056 δρ3.

4.5 The Constant Perturbation

In Section 4.1, we neglected the case k = 0:

∑

j

1

2
Gmj

(
A0

ij − aiei
∂A0

ij

∂ai
cos(λi −̟i)

)

Similar terms exist in the force function which corresponds to the gravitational
fields of the planet and of the Sun. They are

1

2
GJ2

b2

a3i

(
1 + 3ei cos(λi −̟i)

)

and
Gm0

4a0
(
ai
a0

)2
(
1− 2ei cos(λi −̟i)

)
.

The corresponding part in the variational equations are

dai
dt

= 0
d2ρi
dt2

= 0

dεIi
dt

= −
∑ Gmj

niai

∂A0
ij

∂ai
+

3GJ2b
2

nia5i
− Gm0

nia30

except for terms of first degree in the eccentricities, and

dζi
dt

= −
(
∑ Gmj

2niai

∂A0
ij

∂ai
− 3GJ2b

2

2nia5i
+
Gm0

2nia30

)
i exp iλi.

On integration, we have

δεIi = σiniδt (4.7)

δζi =
1

2
σi exp iλi

where

σi = −
∑ Gmj

n2
i ai

∂A0
ij

∂ai
+

3GJ2b
2

n2
i a

5
i

− Gm0

n2
ia

3
0

. (4.8)
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Inclusion of perturbations in J4 leads to add

−15

4

GJ4b
4

n2
i a

7
i

to σi. For the Galilean satellites, we obtain the values:

σ1 = 0.00125

σ2 = 0.000603

σ3 = 0.000360

σ4 = 0.000415.

4.6 Osculating Mean Motion and Semi-major Axis.
Mean Distance

The perturbations due to equations (4.7) in the radius vector and longitude
are, respectively,

δri = −1

2
aiσi δθi = σiniδt.

They are called constant perturbations. The perturbation in radius vector is
a constant which shall be added to the osculating semi-major axis in order to
obtain the mean distance from the satellite to the planet, that is

ri = ai(1−
1

2
σi).

Similarly the perturbation in the longitude is proportional to time and the
non-periodic variation of the longitude is

ni(1 + σi)δt.

Thus, the observed mean motion ñi is related to the osculating mean motion
through the equation

ñi = ni(1 + σi). (4.9)

If the observed mean motion is used in the Kepler’s third law, we obtain a
wrong semi-major axis:

ãi =
3

√
G(1 +mi)

ñ2
i

.

However the correct value is obtained by using the osculating mean motion:

ai =
3

√
G(1 +mi)

n2
i

.
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To a first order approximation, it results

ai = ãi(1 +
2

3
σi)

ri = ãi(1 +
1

6
σi).

If these rules are applied to the actual values, we obtain the results shown
in Table 4.3. In that table, values listed in column ñi are Sampson’s values
for the observed sidereal mean motions of the satellites. Since Sampson’s unit
of time is wrong, the correction

E.T. = ts(1 − 1.14× 10−8) (4.10)

was used. This correction is based on the analysis of the observations and on
Sampson’s work to determine the mean motions from old observations (see
Section 11.3).

The other values are obtained by means of the first-order formulae given
in this section.

Table 4.3. Mean Distances and Osculating Values

i ñi ai ni ri
1 3.551 552 280 5.9060 3.547 10. 5.9023
2 1.769 322 721 9.3979 1.768 26 9.3951
3 0.878 207 942 14.992 0.877 891 14.989
4 0.376 486 223 26.368 0.376 330 26.362

It is worth noting that the observed mean motion is the coefficient of time
in the equation of the mean longitude when perturbations are considered.
Thus, precision is increased in computation (mainly when a small divisor
exists) when the observed mean motions are used instead of osculating mean
motions. However, the semi-major axes appearing in the equations should
not be confused with the meaningless value ãi or with the mean distance
from the planet ri. The osculating values ai are not affected by secular or
constant perturbations of the first order (and even of the second order), and
are considered as such in computations.

References and Notes

• 4.2
There are equations where i is used simultaneously as subscript (i) and
also to represent the imaginary unit (i). The meanings are different enough
and avoid confusion. On the other hand, we considered to be unnecessary
to recall at every moment that i is the imaginary unit.



4.6 Osculating Mean Motion and Semi-major Axis. Mean Distance 47

• 4.4
See

J.H.Lieske: 1973, ”On the 3-7 Commensurability between Jupiter’s
Outer Two Galilean Satellites”, Astron. Astrophys. 27, 59-65.

• 4.6
Equation (4.10) corresponds to a unit correction of 0.6 minutes per century.
This slope is shown by the dashed line in Figure 11.1.
In this book, we adopted the mass and the equatorial radius of Jupiter as
units of mass and length. The unit of time is the day. Thus

G = 2598.347 b30/MJd
2
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The Equations of the Centre - I

5.1 The Variational Equations

In the preceding chapter, the terms yielding small divisors have not been
included. We shall consider those terms along with the quadratic expression
in eccentricities of the force-function:

1

8
GmjB

1
ij(e

2
i + e2j)−

1

4
GmjB

2
ijeiej cos(̟i −̟j) (5.1)

+
3

8

Gm0

a0
(
ai
a0

)2(e2i + e20) +
3

4
GJ2

b2e2i
a3i

.

The terms of expression (4.1) which involve the critical arguments

u = 2λ2 − λ1 (5.2)

u′ = 2λ3 − λ2

are, for the three inner satellites, respectively,

F12n1a
2
1e1 cos(u−̟1) +

m2

m1

G′
12n2a

2
2e2 cos(u −̟2); (5.3)

F23n2a
2
2e2 cos(u

′ −̟2) +
m3

m2

G′
23n3a

2
3e3 cos(u

′ −̟3)

+G12n2a
2
2e2 cos(u −̟2) +

m1

m2

F12n1a
2
1e1 cos(u −̟1)

and

G23n3a
2
3e3 cos(u

′ −̟3) +
m2

m3

F23n2a
2
2e2 cos(u

′ −̟2),

where

Fij = −1

2

Gmj

nia2i

(
4A2

ij + ai
∂A2

ij

∂ai

)
(j = i+ 1)
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Gij =
1

2

Gmi

nja2j

(
2A1

ij − aj
∂A1

ij

∂aj

)
− 1

2

Gmi

njaja2i
(5.4)

G′
ij =

1

2

Gmi

nja2j

(
2A1

ij − aj
∂A1

ij

∂aj

)
− 2

Gmiai
nja4j

.

Note that Gij ≃ G′
ij since 4a3i ≃ a3j for j = i+ 1.

The differential equations for ζi arising from these parts of the disturbing
functions are

i
dζ1
dt

− {1, 1}ζ1 − {1, 2}ζ2 − {1, 3}ζ3 − {1, 4}ζ4 = −F12 exp iu

i
dζ2
dt

− {2, 1}ζ1 − {2, 2}ζ2 − {2, 3}ζ3 − {2, 4}ζ4 = −G12 exp iu− F23 exp iu
′

i
dζ3
dt

− {3, 1}ζ1 − {3, 2}ζ2 − {3, 3}ζ3 − {3, 4}ζ4 = −G23 exp iu
′ (5.5)

i
dζ4
dt

− {4, 1}ζ1 − {4, 2}ζ2 − {4, 3}ζ3 − {4, 4}ζ4 = 0

where i =
√
−1 and

{i, i} = − G

nia2i

∑

j 6=i

1

4
mjB

1
ij −

3Gm0

4nia30
− 3GJ2b

2

2nia5i

{i, j} =
GmjB

2
ij

4nia2i
(j 6= i).

The numerical values of the elements {i, j} are given in Table 5.1. In the
diagonal elements we considered also the second-order contributions

− 3G

8nia7i
(10J4 − 21J2

2 ).

Table 5.1. The matrix {i, j} (in units 10−7d−1)

j = 1 j = 2 j = 3 j = 4

i = 1 -23276 325 85 5
i = 2 473 -5790 488 19
i = 3 32 126 -1261 96
i = 4 2 5 102 -331

The coefficients Fij and Gij are

F12 = −6756× 10−8d−1 F23 = −10213× 10−8d−1

G12 = +3451 G23 = + 902
G′

12 = +3527 G′
23 = + 944
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5.2 The Free Oscillations

It is noteworthy that the figures in the main diagonal of matrix {i, j} are
not always much greater than those in the same row or column. Due to this
fact, we cannot accept approximated solutions obtained from the separated
equations

dζj
dt

+ i{j, j}ζj = 0

as it is done in some other problems. It is not possible to disconnect the
system’s free oscillations. The solution is to be obtained through integration of
the complete system formed by equations (5.5). The associated homogeneous
system is

dζj
dt

+

4∑

k=1

i{j, k}ζk = 0 (5.6)

whose fundamental solutions are

ζj = Cj exp igt

where g are the roots of the characteristic polynomial

det(gδjk + {j, k}) = 0. (5.7)

To have fundamental solutions like this, the roots of the characteristic polyno-
mial cannot be equal and, for bounded oscillations, they must be real. Laplace
showed that the roots are always real, but in general it is not possible to be
sure that they are all unequal. Tisserand and Seeliger showed the nonexis-
tence of multiple roots for systems formed by two or three orbiting bodies.
Darboux, using Kronecker’s theory of quadratic forms showed that there may
be equal roots in the case of more than three orbiting bodies.

In case of the Galilean satellites of Jupiter, the characteristic roots are
indeed not multiple and the general solution of differential equation (5.6) is

ζj =

4∑

µ=1

Cµ
j exp igµt

where integration constants Cµ
j are complex and may be written as

Cµ
j =Mµ

j exp iβµ.

It then follows:

ζj =

4∑

µ=1

Mµ
j exp i(gµt+ βµ). (5.8)

The real constants Mµ
j are not independent and must satisfy

4∑

k=1

(gµδjk + {j, k})Mµ
k = 0

for each value of µ.
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5.3 Proper Eccentricities and Perijoves

Either in the case where we have a single body orbiting around a primary
or in the case where only main diagonal elements of matrix {i, j} need to be
considered, the solution can be written as

ζ =M exp i(gt+ β)

which leads to

δr = −aM cos(λ− gt− β) (5.9)

δθ = 2M sin(λ− gt− β)

where M and β are real integration constants. These equations are the equa-
tions of the centre of Keplerian motion. By analogy, M j

j are called proper
eccentricities. Values of these integration constants adopted by Sampson and
values determined by de Sitter and by Lieske are given in Table 5.2.

Table 5.2. Proper Eccentricities (in units 10−6)

Sampson (1910) de Sitter (1931) Lieske (1978)

M1

1 46 11 ± 9 10±4
M2

2 82 131±19 92 ± 24
M3

3 1517 1390±34 1469 ± 28
M4

4 7373 7362±13 7333 ± 27

In equations (5.9), the angles gt+ β are the longitudes of the proper per-
ijoves and their motions are the roots of the characteristic equation. Assign-
ment of a characteristic root to a satellite is done without ambiguity. In non-
coupled case, we have gj = −{j, j}; whereas in coupled case, the result is
not exactly the same but the order of magnitude is maintained. The values
reported in Table 5.4 are not much different from the absolute values of the
main diagonal in Table 5.1.

There are discrepancies in the values obtained here as roots of equation
(5.7) and by Sampson as well as by de Sitter (see Table 5.4). This is due
to the fact that the Laplace-Lagrange theory of secular perturbations is not
sufficient to describe the phenomena when the mean motions are close to
resonance. Thus, we will consider the great long period inequalities in the
mean longitudes and equation (5.5) will accordingly be modified to get a
better solution for secular perturbations.
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5.4 Great Inequalities in the Mean Longitudes

The terms (5.3) of the disturbing function depend on the semi-major axes and
longitudes and contribute to other variational equations, viz. the equations for
ρi, εi and ai. These contributions are of first degree in eccentricities and they
do not affect much excepting when they contain the square of

m = n1 − 2n2 = n2 − 2n3 (5.10)

in denominator. Thus the only equations which should be considered are the
second-order equations (2.20) that give the mean longitudes:

d2ρ1
dt2

= −3n1F12e1 sin(u−̟1)− 3n2

m2

m1

a22
a21
G′

12e2 sin(u−̟2) (5.11)

d2ρ2
dt2

= −3n2F23e2 sin(u
′ −̟2)− 3n3

m3

m2

a23
a22
G′

23e3 sin(u
′ −̟3)

+6n2G12e2 sin(u−̟2) + 6n1

m1

m2

a21
a22
F12e1 sin(u−̟1)

d2ρ3
dt2

= 6n3G23e3 sin(u
′ −̟3) + 6n2

m2

m3

a22
a23
F23e2 sin(u

′ −̟2).

To include the results of Section 5.2, we introduce the formula

ei sin(Φ−̟i) =
∑

Mµ
i sin(Φ − gµt− βµ). (5.12)

Thus, we have

d2ρ1
dt2

=
∑

µ

H ′µ
12 sin(u− gµt− βµ)

d2ρ2
dt2

=
∑

µ

(Hµ
12 −H ′µ

23) sin(u− gµt− βµ) (5.13)

d2ρ3
dt2

=
∑

µ

−Hµ
23 sin(u− gµt− βµ)

where

Hµ
ij = 6njGijM

µ
j + 6ni

mi

mj

a2i
a2j
FijM

µ
i

H ′µ
ij = −3niFijM

µ
i − 3nj

mj

mi

a2j
a2i
G′

ijM
µ
j

and, to avoid lengthy formulae, the result of the theorem of Laplace, u = u′+π,
described in Section 7.5, has been used.



54 5 The Equations of the Centre - I

The direct integration leads to the great inequalities in the mean longi-
tudes:

δθ1 = δρ1 = −
∑

µ

H ′µ
12

(m+ gµ)2
sin(u− gµt− βµ)

δθ2 = δρ2 = −
∑

µ

Hµ
12 −H ′µ

23

(m+ gµ)2
sin(u − gµt− βµ) (5.14)

δθ3 = δρ3 =
∑

µ

Hµ
23

(m+ gµ)2
sin(u− gµt− βµ).

These inequalities have large periods, ranging from 400 to 486 days, and
their amplitudes are discussed in Section 7.6. Some of them are the most
important in satellite’s motion excepted the main equations of the centre and
the annual equation of Jupiter III(Ganymede).

5.5 New Equations of the Free Oscillations

The inequalities calculated in the preceding section affect angles u and u′:

δu = 2δρ2 − δρ1 =
∑

Aµ sin(u− gµt− βµ)

δu′ = 2δρ3 − δρ2 =
∑

A′µ sin(u− gµt− βµ)

where

Aµ =
2H ′µ

23 − 2Hµ
12 +H ′µ

12

(m+ gµ)2

A′µ =
2Hµ

23 +Hµ
12 −H ′µ

23

(m+ gµ)2
.

We will write equations (5.5) in a different form. Using Taylor’s theorem, we
have

exp iu = exp iu0 + iδu exp iu0

exp iu′ = exp iu′0 + iδu′ exp iu′0

where u0 and u′0 are the undisturbed values

u0 = −mt+ 2ε2 − ε1

u′0 = −mt+ 2ε3 − ε2.

By Laplace theorem (Section 7.5) we have exp iu′0 = − exp iu0. Thus, to a
first-order approximation:
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exp iu = exp iu0 −
1

2

∑
Aµ
[
exp i(gµt+ βµ)− exp i(2u0 − gµt− βµ)

]

exp iu′ = − exp iu0 +
1

2

∑
A′µ

[
exp i(gµt+ βµ)− exp i(2u0 − gµt− βµ)

]
.

The exponential terms involving u0 and 2u0 give forced oscillations, whereas
the terms not containing u0 are homogeneous with respect to the integration
constants and must be considered together with the homogeneous part of the
equations (5.5). Thus, instead of equations (5.6) we have

i
dζ1
dt

−
∑

k

{1, k}ζk =
1

2
F12

∑

µ

Aµ exp i(gµt+ βµ)

i
dζ2
dt

−
∑

k

{2, k}ζk =
1

2

∑

µ

(
G12Aµ − F23A′µ

)
exp i(gµt+ βµ)

i
dζ3
dt

−
∑

k

{3, k}ζk = −1

2
G23

∑

µ

A′µ exp i(gµt+ βµ) (5.15)

i
dζ4
dt

−
∑

k

{4, k}ζk = 0

and its fundamental solutions are

ζj =
∑

Mµ
j exp i(gµt+ βµ).

On substitution of the fundamental solutions and identification of coefficients
of equal arguments, we obtain

−gµMµ
1 −

∑
{1, k}Mµ

k =
1

2
F12Aµ

−gµMµ
2 −

∑
{2, k}Mµ

k =
1

2

(
G12Aµ − F23A′µ

)

−gµMµ
3 −

∑
{3, k}Mµ

k = −1

2
G23A′µ

−gµMµ
4 −

∑
{4, k}Mµ

k = 0

The right hand sides of these equations are linear combinations of the Mµ
k .

Thus we have the homogeneous system of linear equations:

4∑

k=1

(
gµδjk + {j, k}+ ajk

(m+ gµ)2

)
Mµ

k = 0 (5.16)

where the values of the ajk are given in Table 5.3.
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Table 5.3. The matrix (ajk) in units 10−11d−3

k = 1 k = 2 k = 3 k = 4

j = 1 −9485 −315 1309 0
j = 2 −486 −2157 806 0
j = 3 471 205 −130 0
j = 4 0 0 0 0

For non-trivial solutions of equation (5.16), the determinant of the matrix
of coefficients must vanish. The new values of the characteristic roots are
shown in Table 5.4 where in addition are shown the roots of the characteristic
polynomial (5.7).

Table 5.4. Characteristic Roots (in units 10−6d−1

µ Roots of Eqn. (5.16) Roots of Eqn. (5.7)

1 2717 2329
2 699 580
3 130 126
4 32.0 32.0

It is interesting to see how the characteristic roots are formed. The con-
tribution of every source is shown for the innermost and outermost satellites
in Table 5.5.

Table 5.5. Partial contributions to the characteristic roots

Source Jupiter I (Io) Jupiter IV (Callisto)

Other satellites 63.2 ×10−6d−1 16.89 ×10−6d−1

Sun 0.4 4.19
Oblateness–First Order 2252.7 11.97
Oblateness–Second Order 11.3 0.003
Forced Oscillations (ajk) 388.5 0.04
Coupling 0.9 –1.06

Relativistic effects are much smaller than errors involved in the determi-
nation of characteristic roots and than errors involved in the observational
determination ot the motion of the perijoves. For example for Jupiter I(Io)
the relativistic contribution to the characteristic root is ∼ 0.036 × 10−6d−1.
However such effects are greater than in other motions in the Solar System.

The characteristic roots are also affected by the Libration. The effects of
the Libration are considered in Section 7.7 where corrected values for the
characteristic roots are obtained (Table 7.2).
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5.6 The Free Equations of the Centre

The effects of the free oscillations in the longitudes and radius vector of the
satellite orbits are obtained by using equations (4.5) and (4.6). It follows that

δri = −ai
∑

µ

Mµ
i cos(λi − gµt− βµ)

δθi = 2
∑

µ

Mµ
i sin(λi − gµt− βµ). (5.17)

These inequalities are characteristic of the system of Galilean satellites of
Jupiter. It is noteworthy that the strong interactions among the satellites did
not allow us to accept approximate solutions arising from separated equations
and thus resulted four inequalities similar to the equation of the centre for each
satellite. In each inequality, the oscillation is referred to the proper perijove
of one of the satellites.

According the description by Laplace in book IV of its Exposition du
Système du Monde “the eccentricity of the orbit of the third satellite presents
unique irregularities and the theory allowed me to know the origin. They de-
pend on two separate equations of the centre. The first, proper to this orbit is
referred to a perijove whose annual sidereal motion is 9400 arcseconds, and
the other, which may be considered an emanation of the equation of the centre
of the fourth satellite, is referred to the perijove of this last body. [· · ·] These
two equations, when combined, lead to a variable equation of the centre re-
ferred to a perijove whose motion is not uniform. They were coincident and
were added in 1682, and their sum rose to 796 arcseconds. In 1777 they were
subtracted one of the other and their difference was only 307 arcseconds.”

The study of these inequalities puts some difficulties that are still not
solved. The free equations of the centre of Jupiter III (Ganymede) may be
written as

δθ3 = 2M3
3 sin(λ3 − g3t− β3) + 2M4

3 sin(λ3 − g4t− β4)

sinceM1
3 andM2

3 are very small. The longitude g4t+β4 is well known and the
observations of Jupiter III may serve to determine the remaining parameters.
However, de Sitter concluded that it is impossible to find a common solution
valid for the old observations of eclipses of Jupiter III (1668 to 1898) and
modern extra-eclipse observations done in the first quarter of this century.

The first solution in Table 5.6 leaves large residuals in the old eclipses and
the second would leave large residuals in the representation of the modern ob-
servations for which no explanation is available. If the first solution is adopted,
the only possibility for the satisfactory representation of the old observations
is the assumption of a systematic error depending on the zenith distance of
Jupiter, or in the season of the year, having roughly the period of Jupiter’s
time of revolution.
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Table 5.6. de Sitter results

Parameter Modern Observations only Old and Modern Observations

M3

3 139 ± 3 ×10−5 134 ± 3 ×10−5

M4

3 67 ± 5 ×10−5 75 ± 3 ×10−5

β3(1917.1) 13.2◦ ± 1.5◦ 18.4◦ ± 0.7◦

g3 128 ± 4 ×10−6d−1 118.9 ± 0.6 ×10−6d−1

The values of the Mµ
j are related to the eigenvectors of the coefficients’

matrix in equation (5.15). If their numerical values given in this Chapter are
used, we obtain, in units of the corresponding Mµ

µ , the set of values shown in
Table 5.7.

Table 5.7. The Eigenvectors (units Mµ
µ )

µ Mµ
1

Mµ
2

Mµ
3

Mµ
4

1 1 −0.0130 −0.0086 0
2 0.0057 1 −0.0421 −0.0001
3 0.0319 0.1677 1 −0.1060
4 0.0033 0.0172 0.0996 1

The values of the Mµ
µ are obtained from the observations (see Table 5.2)

and are discussed in Chapter XI. A corrected set of values for the eigenvectors
is obtained in Section 7.7 (see Table 7.3) when the Libration and its effects
are taken into account.
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The Equations of the Centre - II

6.1 The Forced Oscillations

After studying the free oscillations in longitude and radius vector we consider
the calculation of a particular solution of the complete system of variational
equations (5.5). The right hand sides are such that the solutions may be
written as

ζj = Bj exp iu+B′
j exp iu

′ (6.1)

where the coefficients Bj and B′
j are undetermined. In order to obtain their

approximate value, equations (6.l) are substituted into equations (5.5). Iden-
tifications of coefficients of the terms exp iu and exp iu′ lead to two sets of
four equations in Bj and B′

j . However the quasi-commensurable ratios n1/n2

and n2/n3 introduce significant corrections as shown in Chapter V and may
not be disregarded. Here, they arise from the terms of second degree in the
eccentricities whose arguments are 2u or 2u′ given by the expression (3.28).
To obtain the contribution of these terms, it must be kept in mind that the
terms in (3.28) occur in Rij exactly in the same way as in Rji since the mutual
distances do not depend on which satellite is disturbing or being disturbed.
Using equations (4.4) and introducing these terms in equations (5.5), we have:

i
dζ1
dt

= · · · −
(
b112ζ

∗
1 − b212ζ

∗
2

)
exp 2iu

i
dζ2
dt

= · · · −
(
b223ζ

∗
2 − b323ζ

∗
3

)
exp 2iu′ +

(
b121ζ

∗
1 − b221ζ

∗
2

)
exp 2iu

i
dζ3
dt

= · · · +
(
b232ζ

∗
2 − b332ζ

∗
3

)
exp 2iu′

where
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biij =
Gmj

4nia2i

(
44A4

ij + 14ai
∂A4

ij

∂ai
+ a2i

∂2A4
ij

∂a2i

)

bjij =
Gmj

4nia2i

(
42A3

ij + 14ai
∂A3

ij

∂ai
+ a2i

∂2A3
ij

∂a2i

)

biji =
Gmi

4nja2j

(
42A3

ij + 14ai
∂A3

ij

∂ai
+ a2i

∂2A3
ij

∂a2i

)

bjji =
Gmi

4nja2j

(
38A2

ij + 14ai
∂A2

ij

∂ai
+ a2i

∂2A2
ij

∂a2i

)

j = i + 1 and ζ∗ is the complex conjugate of ζ. In order to get a particular
solution of the complete system, we will introduce the angIe

θ = u′ − u. (6.2)

In Section 5.4 we used the theorem of Laplace, after which θ = π. In this
Section, since the equations are part of the assumptions to demonstrate the
theorem of Laplace, such procedure is not allowed. We will show that equation
(6.1) is still an approximate particular solution of the complete system. Let
the solutions of the complete system be written as

ζj = Bj exp iu (6.3)

where

Bj =

+∞∑

−∞

Bk
j exp kiθ. (6.4)

On multiplication by exp(−iu) and substitution, it follows

mB1 −
∑

k

{1, k}Bk = −F12 −
(
b112B

∗

1 − b212B
∗

2

)

mB2 −
∑

k

{2, k}Bk = −G12 − F23e
iθ +

(
b121B

∗

1 − b221B
∗

2

)
−
(
b223B

∗

2 − b323B
∗

3

)
e2iθ

mB3 −
∑

k

{3, k}Bk = −G23e
iθ +

(
b232B

∗

2 − b332B
∗

3

)
e2iθ

mB4 −
∑

k

{4, k}Bk = 0.

In the calculation of the right hand side of each equation, we had a term

−iḂj , but we dropped this term; we assumed that they are very small when
compared to the main coefficients. Also, in the forthcoming calculations, m is
taken as a constant. The numerical values of bkij are
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b112 = 0.000 1915 b212 = 0.000 2811

b121 = 0.000 4089 b221 = 0.000 5932

b223 = 0.000 2879 b323 = 0.000 4237

b232 = 0.000 1095 b332 = 0.000 1592.

The identification of the resulting equations in the powers of exp iθ leads to
an infinite set of linear equations whose solutions for |k| ≤ 2 are (units: 10−6)

B1 = 4333 + 136 e−iθ + e−2iθ + 8 eiθ

B2 = −2312 + 7412 eiθ + 49 e2iθ − 326 e−iθ − 2 e−2iθ

B3 = −1− 615 eiθ − 19 e2iθ

B4 = −0.2 eiθ.

6.2 Induced Equations of the Centre

The effect of forced oscillations in the longitude and radius vector of the
satellites is obtained by introducing the results of Section 6.1 in equations
(4.5) and (4.6). We get

δri = −aiBi cos(λi − u0)

δθi = 2Bi sin(λi − u0).

To calculate these inequalities, the Laplace theorem in the form θ = π was
used again. Then

B1 = +0.004 190

B2 = −0.009 358

B3 = +0.000 598

and the inequalities are given by

δr1 = −0.004190a1 cos(λ1 − u0) δθ1 = +0.008380 sin(λ1 − u0)

δr2 = +0.009358a2 cos(λ2 − u0) δθ2 = −0.018716 sin(λ2 − u0)

δr3 = −0.000598a3 cos(λ3 − u0) δθ3 = +0.001197 sin(λ3 − u0).

These inequalities are very similar to equations of the centre and on account
of the fact that the motion of u0 is very small (−0.013 d−1), they have motions
very close to the sidereal mean motions. They are called induced equations of
the centre and the |Bi| are called forced eccentricities. According to Sampson
the induced equations of the centre are
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δr1 = −0.004124a1 cos(λ1 − u0) δθ1 = +0.008230sin(λ1 − u0)

δr2 = +0.009430a2 cos(λ2 − u0) δθ2 = −0.018678sin(λ2 − u0)

δr3 = −0.000633a3 cos(λ3 − u0) δθ3 = +0.001204 sin(λ3 − u0).

In these equations, the two values underlined were deduced from observation
and the remaining were calculated by Sampson. It is worthwhile to report de
Sitter’s values for the inequalities in longitude:

δθ1 = +(8128± 40)× 10−6 sin(λ1 − u0)

δθ2 = −(18665± 50)× 10−6 sin(λ2 − u0)

δθ3 = +(1117± 130)× 10−6 sin(λ3 − u0).

To compare these results, we must remember that some inequalities having the
same arguments as the induced equations of the centre have been calculated
in Chapter IV (Tables 4.1 and 4.2) and adding these results to those obtained
in this Section, we have

δr1 = −0.004169a1 cos(λ1 − u0) δθ1 = +0.008312 sin(λ1 − u0)

δr2 = +0.009367a2 cos(λ2 − u0) δθ2 = −0.018533 sin(λ2 − u0)

δr3 = −0.000638a3 cos(λ3 − u0) δθ3 = +0.001210 sin(λ3 − u0).

These results agree well with Sampson’s values.

6.3 Periodic Solutions of First Kind

In case of Jupiter I(Io) and Jupiter II(Europa), the induced equations of the
centre have much more importance than the free inequalities. The induced
inequalities have been observed since a long time and their amplitudes are
well studied; prior to the space probes flight near Jupiter they have served in
the determination of the physical parameters of the system (see for instance
Section 11.6). For Jupiter III (Ganymede), the induced equation of the centre
and the free equations have amplitudes of the same order of magnitude. One
of the free equations served in the determination of the physical parameters
(see Section 11.6).

The results of this Chapter show that the observed motions of the two
inner satellites deviate from a uniform circular motion more because of the
induced inequalities than because of the Keplerian elliptic inequalities. In
view of this fact, de Sitter considered as starting point of his theory, a set of
intermediary orbits already affected by these inequalities. It was first pointed
out by Poincaré that the motion of the three inner Galilean satellites is very
close to a periodic motion of first kind.

The periodic solutions of the first kind for k satellites orbiting around an
oblate planet were studied by Griffin and by de Sitter for the three inner



6.4 Osculating Eccentricities and Perijoves 63

Table 6.2. Forced Eccentricities in Periodic Solutions

Griffin’s Results
Satellite Without With de Sitter’s Section

Oblateness Oblateness Results 6.2

I 0.0044 0.0026 0.00404 0.00417
II 0.0093 0.0086 0.00936 0.00937
III 0.0006 0.0006 0.00060 0.00064

Galilean satellites. For comparison we also show the relative coefficients of
the radius vector inequalities calculated in Section 6.2.

The differences arise mainly from the set of values of the masses adopted
by Griffin; he considered Laplace’s old determination, which, in some cases, is
wrong by a factor 2. The results shown in the last column include the effect
of Jupiter IV(Callisto) and Sun.

6.4 Osculating Eccentricities and Perijoves

The osculating eccentricities and longitudes of perijoves are composed in a
single complex variable

ζi = ei exp i̟i

which yields ei = |ζi| and ̟i = arg ζi. For the first two satellites, ζi does
not differ too much from the forced oscillations. The amplitudes of the free
oscillations in this case are only a few percent of the amplitudes of the forced
oscillations. The osculating values oscillate slightly around the values

e1 = 0.00419 ̟1 = u

e2 = 0.00936 ̟2 = π + u.

In the case of Jupiter IV (Callisto), there are no forced oscillations like the
induced equations of the centre and the three composed free oscillations are
much more smaller than the main one. Thus, the osculating values oscillate
slightly around the values

e4 =M4
4 (= 0.00733) ̟4 = g4t+ β4

In the case of Jupiter III (Ganymede), the situation is quite different from
others and we have to consider at least two free oscillations added to the
forced oscillation B3 exp iu. Using observed values for the free oscillations, we
obtain

ζ3 = 0.00147 exp i(g3t+ β3) + 0.00064 exp i(g4t+ β4) + 0.00060 exp iu.
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Fig. 6.1. Eccentricity of J3 (Ganymede)

Fig. 6.2. Perijove of J3 (Ganymede)

Terms below 10−5 have been neglected. One consequence of this relation is
that |ζ3| may never become equal to zero. The minimum value that the os-
culating eccentricity can attain is ∼ 0.0002. Since u is much faster than the
proper perijoves, the eccentricity passes from relative minima to relative max-
ima (and vice-versa) in 8 months. The free oscillations modulate this rhytm:
the deeper minima are reached at every 180 years and have occurred around
1961. This periodic behavior of the free oscillations is the same considered by
Laplace and has been told in Section 5.6.

The motion of the osculating perijove of Jupiter III is dominated by the
motion of the proper perijove of the satellite. One oscillation of total amplitude
50 degrees and period 180 years due to the other free oscillation is superim-
posed. The 16-month component due to the forced inequality has variable
amplitude: it is 86 degrees at the epoch of the deepper minima of the osculat-
ing eccentricity and it is only 32 degrees at the epoch of the higher maxima
of e3.
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7

The Libration

7.1 The Laplacian Theory

In Section (5.4), the equations for the mean longitudes were considered and
the great inequalities arising out of the free equations of the centre were
calculated. The indirect effect arising out of the induced equations of the
centre, discovered by Laplace, is a completely different phenomenon. Let the
forced terms (6.3) be substituted in equation (5.11). 1t then follows

d2ρ1
dt2

= −
∑

k

Kk
12 sin kθ

d2ρ2
dt2

= −
∑

k

[
Kk

23 sin(k − 1)θ + Lk
12 sin kθ

]
(7.1)

d2ρ3
dt2

= −
∑

k

Lk
23 sin(k − 1)θ

where

Kk
ij = −3niFijB

k
i − 3nj

mja
2
j

mia2i
G′

ijB
k
j

Lk
ij = 6njGijB

k
j + 6ni

mia
2
i

mja2j
FijB

k
i .

This is not the only instance where the arguments kθ appear. In fact if the
induced equations of the centre are substituted in the equations for εIi corre-
sponding to the same parts of the disturbing function considered in equations
(7.1), and if the resulting equations are differentiated with respect to time we
obtain equations like

d2εI1
dt2

= −
∑

∆Kk
12 sin kθ,
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etc. The coefficients ∆Kk
12, etc., are just a few percent of the corresponding

coefficients in equations (7.1), and in a first approximation its contribution
needs not to be taken into account.

In each case, the coefficients are at least quadratic in the satellite masses.
Many similar terms exist when all contributions of the second degree in the
masses are considered. In Sampson’s theory, there are 25 terms contributing
to each term K1

12, and K
2
12, and so on. While the terms considered here are

the most important, the remaining, being large in number, in total give a
non-negligeable contribution.

In this book we are just interested in the characteristic of the phenomenon.
We will limit the equations to their main part as it has been done by Laplace.
Let us consider just the contributions arising from the main Bk

j and use the
approximations

B0
1 =

−F12

m+ g1
B0

2 =
−G12

m+ g1

B1
2 =

−F23

m+ g1
B1

3 =
−G23

m+ g1

and G′
ij = Gij (since a3j/a

3
i ≃ 4). Thus

d2ρ1
dt2

= K
m2m3

a21
sin θ

d2ρ2
dt2

= −3K
m1m3

a22
sin θ (7.2)

d2ρ3
dt2

= 2K
m1m2

a23
sin θ

where

K = − 3n2a
2
2

m+ g1

G12F23

m1m3

.

The way of integration of equations (7.2) is different from that of equations
(5.13), since there θ was supposed to be a constant (π). The differential equa-
tion in θ is

d2θ

dt2
=

d2

dt2
(λ1 − 3λ2 + 2λ3).

As we have neglected the effects arising from εIi, we have to consider just

d2θ

dt2
=

d2

dt2
(ρ1 − 3ρ2 + 2ρ3)

which results
d2θ

dt2
= C1 sin θ (7.3)

where
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C1 = K

(
m2m3

a21
+

9m1m3

a22
+

4m1m2

a23

)
(7.4)

is the Laplacian approximation for coefficient C1. From the figures in preceding
Chapters we have K = 2.87× 104b20d

−2 and C1 = 1.30× 10−5d−2

In the discussion of the consequences of the libration, it is convenient to
introduce the factors of libration

Q1 =
Km2m3

C1a21
Q2 = −3Km1m3

C1a22
Q3 =

2Km1m2

C1a23

which are the coefficients of sin θ in equations (7.2) in units of C1. This sim-
plified calculation leads to

Q1 = 0.127 Q2 = −0.275 Q3 = 0.024.

It is noteworthy that
Q1 − 3Q2 + 2Q3 = 1.

7.2 Possible Solutions of Equation (7.3)

Equation (7.3) is the equation of the simple pendulum and may be solved
exactly in terms of elliptic functions. Multiplication of it by dθ/dt yields an
exact differential equation which on integration leads to

1

2

(
dθ

dt

)2

= C0 − C1 cos θ (7.5)

where C0 is an integration constant. It then follows

dt = (2C0 − 2C1 cos θ)
−1/2dθ

and the elliptic integral

t = t0 +

∫ θ

θ0

(2C0 − 2C1 cos θ)
−1/2dθ.

If C0 > C1, the quantity under the radical sign is positive for all θ and the
function t(θ) defined by the integral is monotonic: the solutions are circu-
lations. The angle θ circulates and the period of the circulation is given by

T =

∫ 2π

0

(2C0 − 2C1 cos θ)
−1/2dθ.

The time spent in going from θ = π/2 to θ = 3π/2 is

T1 =

∫ 3π/2

π/2

(2C0 − 2C1 cos θ)
−1/2dθ.
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In the integration interval, cos θ ≤ 0, thus

T1 <
π√
2C1

that is T1 < 616 days. This variation in θ would be greater than 0.3 degrees
per day and would not escape detection. On contrary, observations show that
θ is almost constant and equal to π.

If C0 = C1, we may perform the integration by means of elementary
functions (this integral is also called lambda function)

t = t(π) +
1√
C1

log | tan θ
4
|.

It is noteworthy that the integral diverges at the boundaries θ = 0(mod 2π).
In this separatrix solution the angle θ has been in the remote past close to the
unstable equilibrium point θ = 0 and is going to be close again of this same
point, in the remote future, after performing one complete revolution (in an
infinite time). Under such condition, the angular velocity

dθ

dt
= 2
√
C1 sin

θ

2

reaches its maximum value 2
√
C1 when θ = π (0.4 degrees per day), and this

solution may be discarded. If θ is close to π, as observed, the solution is not
almost constant whereas if it is constant θ should be close to 0.

This fact leads to C0 < C1. In order to discuss these solutions we introduce
θ0 defined by the relation

C0 = C1 cos θ0 (0 ≤ θo < π).

Then we get,

t = t0 +

∫ θ

θ0

[
2C1(cos θ0 − cos θ)

]−1/2
dθ. (7.6)

To have a real solution, cos θ < cos θ0, that is, θ0 < θ < 2π − θ0. Let it be
remarked from the Jacobian integral (7.5) that dθ/dt is equal to zero only at
the boundaries θ0 and 2π−θ0. If dθ/dt is positive at the initial time, the angle
θ will increase from its initial value to the boundary 2π − θ0; at this point,
the angular velocity dθ/dt becomes zero and changes its sign. The angle θ will
start decreasing and will reach the boundary θ0. Once more dθ/dt becomes
zero, changes its sign and the evolution of θ is changed. The solutions in that
case are called librations. The angle θ oscillates between the boundaries θ0 and
2π−θ0. The amplitude of the oscillation (2π−2θ0) depends on the integration
constant C0. The period of libration also depends on the integration constant
and is given by

T = 4

∫ π

θ0

(2C0 − 2C1 cos θ)
−1/2dθ. (7.7)
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7.3 The Libration

Let the auxiliary angle Φ be defined by the standard transformation

sinΦ = − 1

k
cos

θ

2

where

k2 =
C0 + C1

2C1

.

Equation (7.6) then becomes

t = t0 +
1√
C1

[
F (Φ, k)− F (Φ0, k)

]

where F (Φ, k) stands for the elliptic integral of the first kind. If the starting
point is the stable equilibrium position θ0 = π, we have

t = t(π) +
1√
C1

F (Φ, k).

The inversion may be performed by means of the Jacobian elliptic functions:

cos
θ

2
= −k. sinΦ = −k.sn[

√
C1(t− t(π))].

The period of the libration already given in equation (7.7) becomes

T =
4√
C1

K(k) (7.8)

where K(k) stands for the complete elliptic integral:

K(k) =

∫ π/2

0

(1− k2 sin2 Φ)−1/2dΦ.

K(k) is a monotonic function and for 0 < k < 1 we have π/2 < K(k) <∞.
The amplitude and period of the libration depend on the value of the

integration constant C0 and must be determined from observations. This de-
termination is very difficult because the amplitude of the libration is very
small and its period is not accurately calculated. In 1907, de Sitter, assuming
the value of the period, found 0.16± 0.05 degrees for the half-amplitude. The
standard error is underestimated. In 1928, in a new discussion, the amplitude,
period and phase were determined; he then found 0.025± 0.01 degrees for the
half-amplitude and 2180± 60 days for the period. A separate determination
using only Jupiter I(Io) gave nearly the same phase but an amplitude about
four times larger, while using only Jupiter II(Europa) he obtained the same
amplitude but a difference of 100 degrees in phase. The determination is thus
extremely uncertain and the conclusion is that libration is too small to be
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detected from old observations. It is noteworthy that Brouwer in the determi-
nation of libration from the Johannesburg series of eclipse observations found
practically the same values for the half-amplitude (0.031± 0.009 degrees) and
phase assuming the period equal to 2050 days. However the separate analysis
of every satellite gave contradictory results and thus he concluded that the
determination only showed the libration to be too small to be determined
from the observations.

The agreement of two absolutely independent determinations from differ-
ent observations and by different investigators is, however, very remarkable.

Recent determinations by Lieske show amplitudes twice greater (see Sec-
tion 11.8). These results show that the amplitude of the libration around the
stable equilibrium point π is very small. We may write

d2θ

dt2
= C1(π − θ) (7.9)

instead of equation (7.3). The solution of equation (7.9) is an harmonic oscil-
lation around the center of libration π:

θ = π +D sin(nLt+ E) (7.10)

where nL =
√
C1; D and E are integration constants. We have, in this ap-

proximation,
sin θ = D sin(nLt+ E)

and equations (7.2) become

d2ρ1
dt2

=
m2m3

a21
KD sin(nLt+ E),

etc. On integration, we get the following inequalities, called Librations by
Laplace:

δθ1 = −Q1D sin(nLt+ E)

δθ2 = −Q2D sin(nLt+ E) (7.11)

δθ3 = −Q3D sin(nLt+ E).

7.4 The Period of Libration

The period of libration is 2π/nL and was first determined to be equal to
2270 days by Laplace using the equations of Section 7.3. The values of the
masses used by Laplace in some cases were wrong by a factor more than
two. When one uses the values of the masses adopted by the International
Astronomical Union, one obtains 1740 days. An accurate determination was
made by Sampson who considered the entire set of terms whose argument was
kθ and, for the coefficients of sin θ and sin 2θ, he found
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C1 = 11.75× 10−6d−2 C2 = 1.14× 10−6d−2,

respectively. For small librations, the solution is still given by equation (7.10),
where

nL =
√
C1 − 2C2

and the correaponding period is 2042 days. If this period is recalculated using
the present adopted masses, it will become smaller by about 30 days.

The results of Sampson have been revitalized in the past years at the Jet
Propulsion Laboratory (Pasadena, Cal.) and at the Bureau des Longitudes
(Paris). At the JPL, Lieske obtained 2094 days and at the BdL, Vu obtained
2240 days. In each case the Sampson set of masses was adopted. Using a set
of masses close to the set used in this text (within 4%), Brown obtained 2032
days.

The main difference between these results and Laplace’s results is that
in all theories developed in this century the terms of second degree in the
equations of perturbations have been fully considered. The importance of the
inclusion of second degree terms in the solution of libration has explicite1y
been pointed out by Marsden in 1966.

7.5 Laplace Theorems

The results of Section 7.3 may be summarized in the two theorems stated by
Laplace:

(a) The time-average of n1 − 3n2 + 2n3 is zero; and
(b) The time-average of ε1 − 3ε2 + 2ε3 is π.

In fact, the libration is very small and we may write n1 − 3n2 + 2n3 = 0 and
ε1 − 3ε2 + 2ε3 = π. There are some interesting kinematical consequences of
these theorems. The three satellites may not have a triple conjunction, that
is, a situation in which the three satellites are on the same side of the planet
and on a straight line with Jupiter. In fact, the three situations in which a
conjunction happens are as follows:

(a) If Jupiter I(Io) and Jupiter II(Europa) are in conjunction, that is, λ1 =
λ2 (mod 2π), then, necessarily, λ2 − λ3 = π/2 (mod π). This shows that
the radius vector of Jupiter III (Ganymede) is perpendicular to the line of
conjunction of the two inner satellites. The situation of Ganymede relative
to Io and Europa is a quadrature.

(b) If Europa and Ganymede are in conjunction, that is λ2 = λ3 (mod 2π),
then λ1 − λ2 = π (mod 2π); this means that Io lies in the same straight
line as the other two and the planet, but on the opposite side of Jupiter.
The situation of Io relative to Europa and Ganymede is an opposition.
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(c) If Io and Ganymede are in conjunction, that is, λ1 = λ3 (mod 2π), then
λ1 −λ2 = π (mod 2π/3); Europa is in opposition to the other satellites or
it is in the same side of the planet as the other two but its radius vector
is 60 degrees away of the conjunction line.

Fig. 7.1.

It may be kept in mind that these results refer to the mean satellite. In fact
the inequalities in longitude studied in earlier chapters may move the satellite
forward or backward from their mean positions by as much as one arc degree.

7.6 Indirect Effects

Let some long period inequalities in the mean longitude be written

δλ1 = L1 sin(αt+ β)

δλ2 = L2 sin(αt+ β) (7.12)

δλ3 = L3 sin(αt+ β).

It does not matter how they arose; let it just be assumed that they were calcu-
lated in an identical way as inequalities in the mean longitude were calculated
earlier. The corresponding second-order differential equations are

d2λi
dt2

= −Liα
2 sin(αt+ β).

If we do not integrate as usual but add the right-hand side of these equations
to those of equations (7.2), we obtain

d2λi
dt2

= QiCi sin θ − α2Li sin(αt+ β) (7.13)

and, instead of equation (7.9), we have
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d2θ

dt2
= C1(π − θ)− α2L sin(αt+ β)

where
L = L1 − 3L2 + 2L3.

Thus, to the general solution (7.10), we have to add the particular solution

θ =
α2L

C1 − α2
sin(αt+ β).

When this additional term is introduced in equations (7.13), the integration
results, besides libration, the inequalities

δλi =

(
Li +QiL

C1

α2 − C1

)
sin(αt+ β). (7.14)

If these results are compared with former values of the inequalities (7.12), we
find that the coefficients of the inequalities were modified and the modifica-
tions are as important as the period of the inequalities approaches the period
of the librations.

Let the results of this section be applied to the Great Inequalities in the
mean longitudes introduced in Section 5.4. Equations (5.14) were obtained by
direct integration of equations (5.13) and the numerical results are shown in
Table 7.1. Table 7.1 also shows the results obtained after correction of the
libration effects by means of equation (7.14). In general the corrections are
not great since the periods of the Great Inequalities are not close enough of
the period of libration. However, in the greatest among these inequalities,

δρ2 = 4′03′′ sin(u− g3t− β3), (7.15)

Table 7.1. Great Inequalities in the Mean Longitudes

Factors multiplying the Forced Eccentricities

Satellite Argument Sampson de Sitter Brown Equations Libration Coefficients
(5.14) Corrected

u-g1t-β1 −2.704 −2.705 −3.04 −2.95 −3.03 −0.00003
I u-g2t-β2 +0.833 +0.925 +1.34 +1.37 +1.36 +0.00012
Io u-g3t-β3 +0.104 +0.094 +0.134 +0.123 +0.136 +0.00020

u-g4t-β4 +0.0084 +0.0155 +0.0123 +0.0127 +0.0140 +0.00010

u-g1t-β1 +4.288 +3.888 +4.41 +4.22 +4.44 +0.00004
II u-g2t-β2 +1.619 +1.635 +1.18 +1.01 +1.06 +0.00010

Europa u-g3t-β3 −0.513 −0.584 −0.850 −0.767 −0.804 −0.00118
u-g4t-β4 −0.0426 −0.1055 −0.0734 −0.0759 −0.0801 −0.00059

u-g1t-β1 −0.067 −0.030 0 +0.01 −0.01 −
III u-g2t-β2 −0.702 −0.717 −0.762 −0.76 −0.77 −0.00007

Ganym. u-g3t-β3 +0.077 +0.121 +0.164 +0.142 +0.145 +0.00021
u-g4t-β4 +0.0069 +0.0219 +0.0126 +0.0139 +0.0142 +0.00010
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the correction reaches 11′′. This correction is to be considered big if we re-
member that in Sampson’s tables of the Galilean satellites all effects greater
than 0.02′′ were supposed to be considered. Nevertheless the most striking
features in Table 7.1 are the great differences between corresponding values;
they indicate that the results are very sensitive to the values of the masses
and also to the perturbations technique adopted in the calculations. Thus, in
Sampson’s tables, the coefficient of the inequality corresponding to equation
(7.15) is only 2′36′′.

7.7 Effects on the Free Oscillations

If the inequalities that appear in the right-hand side of equation (5.15) are
affected by libration then the coefficients ajk in equations (5.16) are also
affected. As a consequence, the characteristic roots gµ and the eigenvectors of
the coefficients’ matrix are also affected . The values of the characteristic roots
obtained by equation (5.16) with corrected ajk values are shown in Table 7.2,
where, in addition, values obtained by Sampson, de Sitter and Lieske are also
included.

Table 7.2. The Characteristic Roots (units: 10−6d−1)

µ Eqn.(5.16) Sampson de Sitter Lieske

1 2731 2756 2810
2 700 822 700±39 814
3 130 121 123±5 124
4 32.0 32.4 32.9± 0.5 32.1

Note: The values underlined are deduced from the
observations

The corresponding values of the Mµ
j are shown in Table 7.3. These values

may be compared to the set of values recently obtained by Brown (Table 7.4)
in a complete second-order calculation.

Table 7.3. The Eigenvectors (units: Mµ
µ )

µ Mµ
1

Mµ
2

Mµ
3

Mµ
4

1 1 -0.0115 -0.0089 0
2 0.0039 1 -0.0424 -0.0001
3 0.0331 0.1690 1 -0.1059
4 0.0034 0.0173 0.0994 1

The discrepancies in the fourth column of Tables 7.3 and 7.4 are the most
important since the proper eccentricity of Jupiter IV (Callisto) M4

4 is much
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Table 7.4. Brown’s Eigenvectors (units: Mµ
µ )

µ Mµ
1

Mµ
2

Mµ
3

Mµ
4

1 1 -0.0039 -0.0082 0
2 -0.0016 1 -0.0452 -0.0001
3 0.0351 0.1686 1 -0.1127
4 0.0031 0.0152 0.0882 1

greater than the eccentricities of the inner satellites. A simple analysis of the
formation of theM4

k (k 6= 4) shows that they are given by a linear combination
of the {j, 4} (j 6= 4). The coefficients in this combination depend weakly on
m4 (the dependence is the same as of g4 on m4) while the {j, 4} (j 6= 4)
are proportional to m4. Brown has used a value of m4 close to Sampson’s
and we used the value derived at the Jet Propulsion Laboratory from the
analysis of the orbit of space probes Pioneer 10 and 11 and recommended by
the International Astronomical Union. For comparison with Brown’s results
our values of M4

j (j 6= 4) must be reduced by 16 percent.

The most important remark is related to M4
3 . We obtained M4

3 =
0.0994M4

4 . Since the observed value ofM4
4 is 0.0073, it followsM4

3 = 0.00072.
Sampson and de Sitter, from observations, independently obtained 0.00064
and 0.00067 (with standard error 0.00004) for M4

3 . Our value for M4
3 is not

consistent with the observational values. Future research must decide on three
alternatives: (1) Sampson’s and de Sitter’s values for M4

3 with different ob-
servations are too small, (2) the value of m4 obtained from the path analysis
of Pioneer 10 and 11 is too high, and (3) it is not possible to relate M4

3 with
m4 accurately in current theories. It is noteworthy that one determination by
de Sitter using old and modern observations gave 0.00075 (see Section 5.6),
which is the expected value.

7.8 Effects of Quadratic Inequalities

We may also evaluate what would happen in the presence of actions, like dissi-
pative forces, that would lead to quadratic inequalities in the mean longitudes.
For instance, let these inequalities be calculated as L1t

2, L2t
2 and L3t

2 when
libration is completely disregarded. The corresponding second order differen-
tial equations are

d2λi
dt2

= 2Li (i = 1, 2, 3).

Because of the libration, these actions should be considered together with
equations (7.2); they contribute the additive quantity 2Li to the right-hand
side of each one of equations (7.2). In equation (7.9), we obtain the additional
forced term 2L where L = L1 − 3L2 + 2L3. Thus, we have
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d2θ

dt2
= C1(π − θ) + 2L

whose general solution is

θ = π +
2L

C1

+D sin(nLt+ E). (7.16)

If this solution is introduced in the composed second-order equations, we
obtain, besides librations, the inequalities

δλ1 = (L1 −Q1L)t
2

δλ2 = (L2 −Q2L)t
2

δλ3 = (L3 −Q3L)t
2.

This set of solutions contains two noteworthy facts: (i) the libration center
deviates from π to π+2L/C1, and (ii) the individual effects due to the physical
agent on each satellite are redistributed among themselves in such a way that
the Laplacian relation n1 − 3n2 + 2n3 = 0 is preserved.

This shows a reality in the dynamical evolution of the Galilean system.
As an example, let us suppose that a resisting medium exists around Jupiter
and reaches the orbit of Jupiter I(Io) but not the outermost orbits. If Io was
orbiting alone this fictitious condition would give rise to an acceleration Lt2

in its longitude. Because of the resonance this effect becomes smaller and is
partly redistributed to the outer satellites. The calculations yield

δλ1 ≃ 0.873Lt2, δλ2 ≃ 0.275Lt2, δλ3 ≃ −0.024Lt2.

Note that the acceleration of the third satellite would be negative and also that
ṁ = 0.33L (positive). On contrary, if tidal torques are acting on the satellites,
L is negative along with ṁ and the relation n1 − 2n2 tends to become more
close to zero than it is now.

References and Notes

• 7.1
The libration factors given in this Section may be compared to values
derived from other works.

Table 7.5. Libration Factors

Q1 Q2 Q3

Section 7.1 0.127 −0.275 0.024
Sampson Tables 0.1381 −0.2704 0.0254
Lieske’s Ephemeris E-2 0.1152 −0.2767 0.0274
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• 7.2
It is worthwhile to mention that a Laplacian resonance also happens among
the inner satellites of Uranus whose mean motions are

Uranus V (Miranda): n5 = 4.4452 d−1

Uranus I (Ariel): n1 = 2.4933 d−1

Uranus II (Umbriel): n2 = 1.5162 d−1.

Then
n5 − 3n1 + 2n2 = −0.0024 d−1.

Nevertheless, in this case, the commensurability is not close enough to get
a libration. The angle θ circulates. The theory presented in this book does
not apply to Uranus satellites since, in that case, m is not a small quantity
(m = −0.54 d−1) and the forced terms in equations (5.5) and (5.11) may
not be restricted to those whose arguments are u and u′.

• 7.4
With the present adopted masses Lieske’s result for the period of libration
becomes 2074 days.

• 7.6
de Sitter results in Table 7.1 are from

W. de Sitter: 1928, “Orbital Elements determining the longitudes
of Jupiter’ s Satellites derived from Observations”, Annalen Ster-
rewacht Leiden XVI(2).

The coefficients in the last column were obtained using the proper eccen-
tricities of Lieske’s ephemeris E-2 (see Section 11.8).
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Solar Effects

8.1 The Variations

The disturbing solar forces derive from the force-functions Ri0 calculated in
Section 3.2 (eqns. 3.5). The resulting inequalities are similar to those found in
the theory of the Moon and they are named after the classical denominations
of the lunar theory. We call variations the inequalities whose arguments are
2λi − 2λ0. They arise from

3

4

Gm0

a0

(
ai
a0

)2 (
cos(2λi−2λ0)+ei cos(2λ0−3λi+̟i)−3ei cos(2λ0−λi−̟i)

)
.

The corresponding variational equations are

dai
dt

= −3
Gm0ai
nia30

sin(2λi − 2λ0)

d2ρi
dt2

=
9

2

Gm0

a30
sin(2λi − 2λ0)

dεIi
dt

= −3
Gm0

nia30
cos(2λi − 2λ0)

dζi
dt

=
3

4

Gm0i

nia30

(
exp i(−2λ0 + 3λi)− 3 exp i(2λ0 − λi)

)

except for terms that are of the order of the eccentricities. The integration
leads to

δai =
3Gm0ai

2nia30(ni − n0)
cos(2λi − 2λ0)

δρi = − 9Gm0

8a30(ni − n0)2
sin(2λi − 2λ0)
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δεIi = − 3Gm0

2nia30(ni − n0)
sin(2λi − 2λ0)

δζi =
3Gm0

4nia30

(
exp i(3λi − 2λ0)

3ni − 2n0

− 3 exp i(2λ0 − λi)

2n0 − ni

)
.

The corresponding inequalities in radius vector and longitude are obtained
when these results are used in equations (4.5) and (4.6), It then follows

δri =
3Gm0ai
4nia30

(
2

ni − n0

− 1

3ni − 2n0

− 3

ni − 2n0

)
cos(2λi − 2λ0)

δθi = −3Gm0

4nia30

(
7ni − 4n0

2(ni − n0)2
+

2

3ni − 2n0

− 6

ni − 2n0

)
sin(2λi − 2λ0).

An important simplification follows immediately since ni ≫ n0 and n0 may be
neglected in all combinations with ni. Thus, we obtain simplified equations:

δri = −Gm0ai
n2
i a

3
0

cos(2λi − 2λ0)

δθi =
11

8

Gm0

n2
i a

3
0

sin(2λi − 2λ0).

To obtain the usual simplified equations of the variation, we introduce Gm0 =
n2
0a

3
0 (m0 is the mass of the Sun) and get

δri = −
(
n0

ni

)2

ai cos(2λi − 2λ0)

δθi =
11

8

(
n0

ni

)2

sin(2λi − 2λ0). (8.1)

In the motion of the Galilean satellites, these inequalities are very small
since ni ≫ n0. The values of the coefficients are shown in Table 8.l.

Table 8.1. The Variations

Coefficients of the Variations
Satellite ————————————————–

Radius Vector Longitude

I –0.17 a1 ×10−6 0.23 ×10−6

II –0.67 a2 0.93
III –2.74 a3 3.77
IV –15.0 a4 20.7

In the calculations, we adopted
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n0 = 0.001 450 215 d−1

a0 = 10900.84 b

e0 = 0.04842

m0 = 1047.572 Jupiter masses;

the usual value 1047.355 is the ratio of the mass of the Sun to that of the
Jovian system, while m0 is the ratio of the mass of Sun to that of Jupiter.

We may compare with the theory of the Moon where n0/ni ≃ 1/13 and
the variation in longitude is close to 0.5 arc degree.

8.2 The Annual Equations

The annual equations are the inequalities whose argument is the mean
anomaly of Jupiter in its motion around the Sun. The period of these in-
equalities is the anomalistic period of Jupiter; in the theory of the Moon,
the period is one anomalistic year and this is the reason of the denomination
annual.

The annual equations arise from

3

4

Gm0

a0

(
ai
a0

)2

e0 cos(λ0 −̟0)

which forms part of the disturbing function and contributes only to one of the
variational equations:

dεIi
dt

= −3
Gm0

nia30
e0 cos(λ0 −̟0)

which on integration gives

δθi = δεIi = −3
Gm0

nin0a30
e0 sin(λ0 −̟0).

If we use Gm0 = n2
0a

3
0, we get

δθi = −3
n0

ni
e0 sin(λ0 −̟0).

This inequality has a very long period (12 years) and thus will be strongly
affected by libration as discussed in Section 7.6. The formulae 7.14 apply to
this case also and lead to

δθi = −3n0e0

(
1

ni
+QiL

C1

n2
0 − C1

)
sin(λ0 −̟0), (8.2)

where
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L =
1

n1

− 3

n2

+
2

n3

.

The numerical results depend on the values of C1 and also on the factors
of libration Qi. If the Qi are considered as in Section 7.1, and if we take
C1 = 9.18 × 10−6, which corresponds to P = 2074 d, we have the results
shown in Table 8.2.

Table 8.2. Annual Equations

Coefficients
Satellite ——————————————————————–

libration corrected without correction

I –3.0 ×10−5 –5.9 ×10−5

II –18.4 –11.9
III –23.4 –24.0
IV –56.0 –56.0

8.3 The Evections

The evections are the inequalities that arise from the term

15

8

Gm0

a0

(
ai
a0

)2

e2i cos(2λ0 − 2̟i).

Because of the squared eccentricity that appears as a factor, the only signifi-
cant contributions from this term come from perturbations in the eccentricities
and perijoves. We have to add the term

−15Gm0

4nia30
ei exp i(2λ0 −̟i)

or

−15Gm0

4nia30
ζ∗i exp 2iλ0 (8.3)

to the right-hand side of equations (5.5); in (8.3), the asterisk stands for
complex conjugation. It is worth recalling that in Chapters V and VI we
already found

ζi =
∑

µ

Mµ
i exp i(gµt+ βµ) +Bi exp iu.

This approximation allows us to modify (8.3) to

−15Gm0

4nia30

(
∑

µ

Mµ
i exp i(2λ0 − gµt− βµ) +Bi exp i(2λ0 − u)

)
.
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The particular solutions that correspond to this additive term are

ζj = −
∑

µ

Aµ
j exp i(2λ0 − gµt− βµ)−Aj exp i(2λ0 − u)

where the real coefficients Aµ
j and Aj are to be determined. The substitution

of this solution in the complete equation leads to five algebraic systems:

(2n0 − gµ)Aµ
j +

∑

k

{j, k}Aµ
k = −15Gm0

4nja30
Mµ

j (µ = 1, 2, 3, 4)

(2n0 +m)Aj +
∑

k

{j, k}Ak = −15Gm0

4nja30
Bj .

Since the evections have small amplitudes, we may consider the approxi-
mate solutions obtained when the terms outside the main diagonal in {j, k}
are neglected, i.e., {j, k} = 0 if j 6= k. This approximation yields

Aµ
j = −15Gm0

4nja30

Mµ
j

2n0 − gµ + {j, j}

Aj = −15Gm0

4nja30

Bj

2n0 +m+ {j, j} .

In some cases, however, the divisor 2n0 − gµ + {j, j} approaches zero and a
rigorous solution of the algebraic system is needed. If the result is enhanced
by an internal resonance, the theory of the evections must be reformulated to
get meaningful results.

The evections in longitude and radius vector are

δrj =
∑

Aµ
j aj cos(2λ0 − λj − gµt− βµ) +Ajaj cos(2λ0 − λj − u)

δθj =
∑

2Aµ
j sin(2λ0 − λj − gµt− βµ) + 2Aj sin(2λ0 − λj − u).

At variance with the theory of the Moon, we have four evections for each
satellite rather than just one. Each evection is related to one of the proper
perijoves. Also, there is a fifth evection related to the induced equations of
the centre. The numerical results are shown in Table 8.3.

Table 8.3. Coefficients of the Evections (units:10−6)

j A1

j/M
1

1 A2

j/M
2

2 A3

j/M
3

3 A4

j/M
4

4 Aj

1 +1038 –616 –82 –1 –0.7
2 +198 –2735 –267 –21 +2.7
3 +1711 +201 – 3395 –299 –0.3
4 –123 +1 +822 –7381 0
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References and Notes

• 8.1
Jupiter orbital elements are from

J.L.Simon and P.Bretagnon: 1975, “Perturbations du Premier Or-
dre des Quatre Grosses P1anètes”, Astron. Astrophys. 42, 259-263.

• 8.2
Second-order terms increase the evection of Jupiter IV (Callisto) by apr.
1 arcsecond.

S.Ferraz-Mello: 1968, “Sur l’Evection de Callisto dans la Théorie
de Laplace”, Anais Acad. Brasil. Ciências 40, 447-449.



9

The Rotation of Jupiter

9.1 Euler’s Dynamical Equations

The motion of a rigid body is completely known if we know the space motion
of one fixed point inside the body and the motion of the body around this fixed
point. The theory of motion of a rigid body depends on two main theorems:
(i) the theorem of (linear) momentum (Q) and (ii) the theorem of angular
momentum (s):

dQ

dt
= F ext

ds

dt
= M ext

where F and M are the total external forces and the total moment (torque) of
the external forces acting on the body with respect to the point of reference.
If the motion is a free motion (i.e. without constraints), it is convenient to
take the point of reference in the centre of mass of the body. In this Chapter,
we assume that the space motion of the centre of mass is well known and we
study the motion of the solid around the centre of mass.

Euler’s dynamical equations are the most suitable expressions of the the-
orem of the angular momentum. The angular momentum is defined by

s =

∫

M

(r × v)dm

where the integral is taken over the complete mass of the body; the velocity v

of a point is related to the velocity of the centre of mass through the expression

v = v0 + ω × r

in which ω is the instantaneous angular velocity vector. We have

s =

∫

M

r × (ω × r)dm.

If the reference system is formed by the principal axes of inertia of the body,
it follows
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s = Ap i+Bqj + Crk

where A, B, C are the moments of inertia along the principal axes, p, q, r are
the components of ω in this system of axes and i, j,k are three unit vectors
that form a right-handed system along the principal axes. The derivative of s
is

ds

dt
= ṡ+ ω × s.

Euler’s dynamical equations in vector form are

ṡ+ ω × s = M ext;

in the classical scalar form, they are

Aṗ− (B − C)qr = L

Bq̇ − (C −A)rp = M (9.1)

Cṙ − (A−B)pq = N

where L, M , N are the projections of lhe moment of the external forces with
respect to the centre of mass, on the principal axes.

9.2 Free Nutation of Jupiter

Let the rigid body under consideration be Jupiter and let the external actions
be Newtonian actions arising from another body, for example, one of its satel-
lites. Let the distribution of mass of Jupiter be assumed axially symmetric,
that is, B = A. The force that acts on an element of mass dm in the planet is

df i = − Gmidm

|r − ri|3
(r − ri)

where mi is the external mass, ri is its jovicentric position and r is the
jovicentric position of the element of mass. The moment of this force about
the centre of mass of the planet is

dM i = r × df i

and hence the total moment

M =

∫

M

r × df i

or
M = −ri × grad

Pi
Wi (9.2)

where

Wi = −
∫

M

Gmidm

|r − ri|
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is the force-function of the gravitational field of Jupiter at the point Pi and
it was considered in Section 3.1 (equation 3.2). Except for the central part
Gmi/ri whose contribution to the cross product in equation (9.2) is zero, and
except for the factor mi that is not considered since RiJ is a force-function
per unit mass (i.e. an acceleration-function), Wi and RiJ are the same. Then

Wi = −GmiJ2
r3i

P2(sinφi). (9.3)

It is noteworthy that b = 1 and MJ = 1 are natural units in this text. The
z-component of the moment is given by

N =
∂Wi

∂Xi
Yi −

∂Wi

∂Yi
Xi

where Xi, Yi, Zi are the coordinates of the external body referred to the axes
of inertia of Jupiter. On account of the fact that sinφi = Zi/ri, Wi depends
on Xi and Yi only through ri. Thus,

N =
∂Wi

∂ri

(
Xi

ri
Yi −

Yi
ri
Xi

)
= 0

and the third Euler’s dynamical equation becomes

ṙ = 0.

Thus, if the planet is rigid and has axially symmetric mass distribution, we
have r=constant. In other words, the polar component of the rotation vector
is constant; the remaining equations become

ṗ+ νq =
L

A

q̇ − νp =
M

A
(9.4)

where

ν =
C −A

A
r.

If the body is free from external forces (that is, if L =M = 0), the immediate
solutions are

p = αr cos(νt+ β)

q = αr sin(νt+ β) (9.5)

where α and β are integration constants. The rotation vector in this free
motion describes a circular cone about the symmetry axis whose opening
depends on the initial conditions and whose period is
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T =
2π

r

A

C −A
. (9.6)

The dynamical determination of J2 allows us to calculate C−A = 0.01475;
since A < 0.4 (limit that corresponds to a homogeneous distribution), there
results T < 11 days. The amplitude shall be very small. It is worth remem-
bering that for Earth, the observed Chandler period is around 14 months
(for a rigid Earth it would be 305 days), and the amplitude corresponds to
α = 2× 10−6.

9.3 Euler’s Geometric Equations

The knowledge of the forced motion of the planet requires particular solutions
of the complete equations (9.4).

Let a set of geometrical equations relating a reference system solidary with
the body and the fundamental system of reference be considered. Let K be a
unit vector in the direction of the pole of the fundamental reference system.
In a moving reference system, the time derivative of K is

K̇ + ω ×K = 0. (9.7)

Let the components of K in the moving reference system be K1,K2,K3. The
scalar equivalents of equation (9.7) are Poisson’s equations:

K̇1 = rK2 − qK3

K̇2 = pK3 − rK1 (9.8)

K̇3 = qK1 − pK2

Also (see figure), K · k = cos Ĩ and

projijK = sin Ĩ(− sinχi+ cosχj)

where the angle χ is measured from a fixed meridian on the equator and, by
definition, includes the rotation of the planet. The last equations become

K1 = − sin Ĩ sinχ

K2 = sin Ĩ cosχ (9.9)

K3 = cos Ĩ .

It is evident that the determinant of the system (9.8) where the unknowns
are r, p and q, is zero and the system cannot be solved. Under such condition
an independent additional equation is necessary. On equating the derivatives
of the unit-vector N in both the system – moving and fixed – we have

Ṅ + ω ×N = Ω̇(K ×N) (9.10)
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Fig. 9.1.

and, from figure 9.1,

N1 = cosχ

N2 = sinχ

N3 = 0.

The first scalar component of equation (9.10) is

Ṅ1 = rN2 − ˙̃
ΩK3N2.

Since Ṅ1 = −χ̇N2, we have

r = K3
˙̃
Ω − χ̇. (9.11)

Equations (9.8) may now be solved for p and q. Keeping in mind that

K̇1 = −K2χ̇−K3
˙̃
I sinχ

K̇2 = K1χ̇−K3
˙̃
I cosχ,

we get

p = K1
˙̃
Ω + cosχ

˙̃
I

q = K2
˙̃
Ω + sinχ

˙̃
I. (9.12)

Equations (9.11) and (9.12) are Euler’s geometric equations.

9.4 Equations of Motion of Jupiter’s Equator

On substitution of Euler’s geometric equations in Euler’s dynamical equations
(9.4) and considering equations (9.8) and (9.11), we have
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A
(
− qK3

˙̃
Ω +K1

¨̃
Ω −K3

˙̃
Ω
˙̃
I sinχ+

¨̃
I cosχ

)
+ Cr

(
K2

˙̃
Ω +

˙̃
I sinχ

)
= L

A
(
pK3

˙̃
Ω +K2

¨̃
Ω +K3

˙̃
Ω
˙̃
I cosχ+

¨̃
I sinχ

)
− Cr

(
K1

˙̃
Ω +

˙̃
I cosχ

)
=M.

Since all velocities in the left-hand sides are negligible when compared to
r, we can write, approximately,

Cr
(
K2

˙̃
Ω +

˙̃
I sinχ

)
= L

−Cr
(
K1

˙̃
Ω +

˙̃
I cosχ

)
=M.

Solving these equations for
˙̃
Ω and

˙̃
I and substituting equations (9.9) in the

results, we get

˙̃
Ω sin Ĩ =

L

Cr
cosχ+

M

Cr
sinχ

˙̃
I =

L

Cr
sinχ− M

Cr
cosχ. (9.13)

The components L and M of the moment of the external forces defined by
equations (9.2) and (9.3), may be written as

L = −YWZ

M = XWZ

where

WZ = −3GmiJ2
r5i

Zi = −3GmiJ2
r4i

sinφi

is the partial derivative of W with respect to Zi, obtained explicitly and not
considering the dependence of W on Zi through ri, for it does not contribute
to L and M . Substitution in equations (9.13) yields

˙̃
Ω sin Ĩ = − 1

Cr
WZ(−X sinχ+ Y cosχ)

˙̃
I = − 1

Cr
WZ(X cosχ+ Y sinχ). (9.14)

The brackets represent a rotation of the solidary axes that brings the x-axis
into the intersection (nodal line) of the fundamental reference plane and the
equator of the planet. The rotation of the system about this line bringing
the fundamental reference plane to coincide with the equator results in a
correction of the order of (1− cos Ĩ), that is, of the order of the square of the
inclinations. Neglecting this correction, we have

˙̃
Ω sin Ĩ = − 1

Cr
WZyi

˙̃
I = − 1

Cr
WZxi. (9.15)
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The values of xi and yi are given in Chapter III (equations 3.4) except for the
correction of the fact that the origin of the system x, y is displaced from the
origin of the system x, y and this displacement is measured by the angle Ω̃.
Thus

xi = ri

(
x(θi − Ω̃) +

1

2
I2i sin(Ωi − Ω̃) sin(λi −Ωi)

)

yi = ri

(
sin(θi − Ω̃)− 1

2
I2i cos(Ωi − Ω̃) sin(λi −Ωi)

)
.

Retaining only the terms that are independent of orbital eccentricity and
inclination, we have the approximate re1ations

xi = ai cos(λi − Ω̃)

yi = ai sin(λi − Ω̃).

The direction cosines of the axis OZ in the system Oxyz can easily be
calculated, and

Zi = −yi sin Ĩ + zi cos Ĩ .

Neglecting the higher-order correction (1 − cos Ĩ), we have

Zi = zi − yiĨ

or
Zi = aiIi sin(λi −Ωi)− aiĨ sin(λi − Ω̃).

When all these results are substituted in equations (9.15) and when terms
involving eccentricities as a factor are neglected, those equations become

˙̃
Ω sin Ĩ = −3GmiJ2

2Cra3i

(
−Ii cos(Ωi − Ω̃) + Ĩ + Ii cos(2λi −Ωi − Ω̃)− Ĩ cos(2λi − 2Ω̃)

)

˙̃
I = −3GmiJ2

2Cra3i

(
Ii sin(Ωi − Ω̃)− Ii sin(2λi −Ωi − Ω̃) + Ĩ sin(2λi − 2Ω̃)

)
.

All terms in the brackets have coefficients of the same order (the order
of inclinations). The integration destroys the equality in orders since every
term will be multiplied by its period. To an approximation, it is sufficient to
consider only the constant and long-period terms:

˙̃
Ω sin Ĩ = −3GmiJ2

2Cra3i

(
Ĩ − Ii cos(Ωi − Ω̃)

)

˙̃
I = −3GmiJ2

2Cra3i
Ii sin(Ωi − Ω̃).

These equations may still be written as
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˙̃
Ω =

1

Cr sin Ĩ

∂Ui

∂Ĩ

˙̃
I =

−1

Cr sin Ĩ

∂Ui

∂Ω̃

where

Ui = −3GmiJ2
4a3i

(
Ĩ2 − 2IiĨ cos(Ωi − Ω̃)

)
.

For Jupiter, instead of considering Ui, we have to consider U =
∑
Ui

where the summation comprehends all the Galilean satellites and the Sun.
Thus, these equations are considered in the form

dĨ

dt
= −

4∑

j=0

WjIj sin(Ωj − Ω̃) (9.16)

Ĩ
dΩ̃

dt
= W5Ĩ +

4∑

j=0

WjIj cos(Ωj − Ω̃)

where

Wj =
3GmjJ2
2Cra3j

and

W5 = −
4∑

j=0

Wj .



10

Inequalities in Latitude

10.1 Variational Equations

The approximate variational equations for the spatial orbital elements are

dIj
dt

= − 1

nja2jIj

∂R

∂Ωj

dΩj

dt
=

1

nja2jIj

∂R

∂Ij
.

Since the inclinations of the orbits of the Galilean satellites are very small the
above pair of equations will be considered in its modified form

dpj
dt

=
1

nja2j

∂R

∂qj

dqj
dt

= − 1

nja2j

∂R

∂pj
. (10.1)

The problem is greatly simplified if we introduce a complex quantity Πj de-
fined by

Πj = qj + ipj i =
√
−1.

Equations (10.1) become

dΠj

dt
= − 1

nja2j

(
∂R

∂pj
− i

∂R

∂qj

)
=

2i

nja2j

∂R

∂Π∗
j

(10.2)

or
dΠj

dt
=

i

nja2j

(
∂R

∂Ij
+

i

Ij

∂R

∂Ωj

)
exp iΩj . (10.3)

Let us consider the spatial parts of the disturbing functions where the
longitudes of the satellites and of the Sun are absent. We have

−3

8

Gm0

a0

(aj
a0

)2 (
I20 + I2j − 2I0Ij cos(Ωi −Ω0)

)

−3

4

GJ2
a3j

(
Ĩ2 + I2j − 2ĨIj cos(Ωj − Ω̃)

)

−1

8

∑

k 6=j

GmkB
1
jk

(
I2j + I2k − 2IjIk cos(Ωj −Ωk)

)
.
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The corresponding variational equations are

dΠj

dt
= − G

4nja2j

(
3m0a

2
j

a30
+

6J2
a3j

+
∑

k

mkB
1
jk

)
iΠj (10.4)

+
3Gm0

4nja30
iΠ0 +

3GJ2
2nja5j

iΠ5 +
∑

k

GmkB
1
jk

4nja2j
iΠk

where, to keep similarity, we put

Π0 = I0 exp iΩ0 Π5 = Ĩ exp iΩ̃. (10.5)

If equations (10.4) are compared to equations (9.16), we find that all these
equations are interdependent and may not be integrated separately. Thus,
besides equations (10.4), we have to consider

dΠ5

dt
=

5∑

0

iWkΠk. (10.6)

Equations (10.4) and (10.6) form a linear differential system

dΠj

dt
− i

5∑

k=1

(j, k)Πk = i(j)Π0 (10.7)

where, for each j, k = 1, 2, 3, 4,

(j, j) = − G

4nja2j

(
3m0a

2
j

a30
+

6J2
a3j

+
∑

k

mkB
1
jk

)

(5, 5) = W5

(j, k) =
GmkB

1
jk

4nja2j
(j 6= k)

(j, 5) =
3GJ2
2nja5j

(5, k) = Wk =
3GmkJ2
2Cra3k

(j) =
3Gm0

4nja30

(5) = W0 =
3Gm0J2
2Cra30

.

The numerical values of (j, k) and (j) are given in Table 10.1. For the main-
diagonal elements and for the elements in the fifth column, we considered also
the second-order contributions
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15G

8nja7j
(3J2

2 − 2J4)

that were added to the (5, j) and subtracted from the (j, j).
It is noteworthy that in each row of Table 10.1, the sum is equal to zero.

Indeed, from the preceding formulae, we have

5∑

k=1

(j, k) + (j) = 0. (10.8)

This is a well-known fact in planetary theories and it is not altered when
the motion of the equatorial plane of the primary body is included. The only
difference with respect to the classical equations of p1anetary theory is the
definition of the (j, k) when j or k takes value 5 and the existence of an
external action, which gives rise to non-zero coefficients (j).

Table 10.1. Values of (j, k) and (j) (in units 10−7d−1)

j (j, 1) (j, 2) (j, 3) (j, 4) (j, 5) (j)

1 -23262 438 175 18 22626 4
2 638 -5789 659 43 4440 9
3 66 170 -1261 142 865 18
4 7 12 150 -330 120 42
5 33 4 3 0 -42 0

Another important property of (j, k) is that

dk (k, j) = dj (j, k) (10.9)

where
dj = mjnja

2
j (j < 5), d5 = Cr.

Let the quantity

s =
∑

j

djΠj

be defined. From equation (10.7), it follows

ṡ = i

∑

j

dj
∑

k

(j, k)Πk + i

∑

j

dj(j)Π0

and, using the symmetry property (10.9), we have

ṡ = i

∑

k

dkΠk

∑

j

(k, j) + i

∑

j

dj(j)Π0.

Hence
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ṡ = i

∑

j

dj(j)(Π0 −Πj).

If the solar influence is not considered, the right-hand side of the above equa-
tion vanishes and we find the law of conservation of the angular momentum:
s = const. The existence of this first integral is associated with the fact that
in absence of external (solar) actions, we have det(j, k) = 0 and one of the
characteristic roots of the system is zero.

In planetary theory, the plane whose inclination and node are given by
Π = s/

∑
dj is called the invariable plane. This plane is no more invariable

in the Galilean system since the (j) cannot be taken as zero.

10.2 Free Oscillation of the Nodes

In these calculations, like in the calculation of the free equations of the centre
(Section 5.2), we cannot accept approximate free solutions obtained from the
separated equations

dΠj

dt
− i(j, j)Πj = 0. (10.10)

The solution is obtained by integrating the complete associated homogeneous
system

dΠj

dt
− i

5∑

k=1

(j, k)Πk = 0 (10.11)

whose fundamental solutions are the functions

Πj = Cj exp ibt

where b is a root of the characteristic polynomial

det
(
b δjk − (j, k)

)
= 0.

The comments of Section 5 2 also apply in this case and the general solution
of equation (10.11) is

Πj =
∑

Nµ
j exp i(bµt+ γµ) (10.12)

The values of the four main characteristic roots obtained by the values
listed in Table 10.1 are given in Table 10.2 where we compare these values
with those obtained by Sampson, de Sitter, Brown and Lieske.

The angles bµt + γµ (µ < 5) are the longitudes of the proper nodes. The
assignment of a proper node to a satellite is made without ambiguity since
the solutions in the non-coupled case would be bµ = (µ, µ) and the numerical
difference to the actual values is small.
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Table 10.2. The Characteristic Roots (in units 10−6d−1)

µ bµ Sampson de Sitter Brown Lieske

1 −2331 −2340 −2306±16 −2305 −2318
2 −580 −571 −569± 7 −576 −569
3 −126 −123 −124± 1 −123 −125
4 −31 −32 −31± 1 −31 −31

The fifth root is extremely small:

b5 = −3.3× 10−8d−1

(Souillart found −3.8× 10−8d−1).
The real constants Nµ

j are not independent, and are such that:

5∑

k=1

(bµ δjk − (j, k))Nµ
k = 0. (10.13)

To each value of µ, we have five equations out of which four are independent.
The Nµ

j are completely known if we know 5 amongst them, one for each value
of µ. With the numerical values listed in Table 10.1, we obtain, in units of the
corresponding Nµ

µ , the set of values shown in Table 10.3.

Table 10.3. The Eigenvectors (units Nµ
µ )

µ Nµ
1

Nµ
2

Nµ
3

Nµ
4

Nµ
5

1 1 −0.0359 −0.0027 −0.0003 −0.0014
2 0.0236 1 −0.0377 −0.0011 −0.0009
3 0.0071 0.1418 1 −0.1620 −0.0034
4 −0.0013 0.0227 0.1493 1 −0.0038
5 0.9994 0.9939 0.9695 0.8601 1

These values may be compared with the values recently obtained by Brown
which are thrown in Table 10.4.

Table 10.4. Brown’s Eigenvectors (units Nµ
µ )

µ Nµ
1

Nµ
2

Nµ
3

Nµ
4

1 1 −0.0351 −0.0026 -
2 0.0244 1 −0.0370 −0.0011
3 0.0111 0.1499 1 −0.1745
4 0.0022 0.0241 0.1367 1

By analogy with the approximated solutions obtained from the separated
equations (10.10), the N j

j may be called proper inclinations. However, the way
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in which forced oscillations are considered in Section 10.3 modifies equations
(10.12) and also the geometric interpretation of the integration constants (see
Section 10.4).

10.3 Forced Oscillations

On the right-hand sides of equations (10.4), we have the terms i(j)Π0 where
Π0 is the complex parameter that gives the position of the orbital plane of
Jupiter. If we could assume it as a constant, the particular solutions of equa-
tions (10.8) would be Πj = Π0(constant) for all j, and the general solutions
would be

Πj = Π0 +
∑

µ

Nµ
j exp i(bµt+ γµ). (10.14)

In fact, Π0 would be a constant if Jupiter was the only planet in the Solar
System. However, other planets disturb the orbital motion of Jupiter. With
respect to the ecliptic and equinox of a certain date, say 1950.0, we have

Π0(t) =
∑

ν

Sν exp i(sνt+ σν)

and this function is nothing but the general solution of the system (11.11) in
the problem of mutual interactions of the planets in the Solar System. The
numerical values found by Brouwer and van Woerkom are given in Table 10.5

Table 10.5. Motion of Jupiter’s Orbital Plane

ν Sν sν σν (1950.0)

0 + 0.0275703 0 ×10−8d−1 +1.869
1 − 207 −6.9 +0.339
2 − 130 +8.7 −0.732
3 − 2 −24.9 −1.832
4 − 18 −23.4 −1.108
5 − 63064 −34.2 +2.223
6 − 9571 −3.9 −0.784
7 − 11689 −0.9 −2.753

We have not yet defined the fixed reference plane. Let it be the orbital
plane of Jupiter in a given epoch t0. Then, from the spherical triangle formed
by this plane, the orbital plane at t and the reference plane of Table 10.5 (see
figure 10.1) neglecting terms that give a value of the order of 10−5, we have

Π0 = Π0(t)−Π0(t0)

or
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Fig. 10.1.

Π0 =
7∑

ν=0

Sν
(
exp i(sνt+ σν)− exp i(sνt0 + σν)

)
.

For sake of convenience, we will take t0 as the epoch of the data in Table 10.5,
that is, 1950.0; therefore

Π0 =

7∑

ν=1

Sν
(
exp i(sνt+ σν)− exp iσν

)
.

It is sufficient to consider the first-order approximation

Π0 = it
7∑

ν=1

Sνsν exp iσν = iK0t (10.15)

as the period of all components are very great (the shortest is that for ν = 5
and is 50,000 years). The forced oscillations, considered in only a small fraction
of their periods, will appear as secular and have the form

δΠj = Π0
j + iΛjt (10.16)

where Π0
j and Λj are undetermined coefficients. If this solution is introduced

in the complete equations (10.7), the identification in the powers of t yields

Λj −
∑

(j, k)Π0
k = 0

∑
(j, k)Λk = −(j)K0.

By using the equation (10.8), it follows

Λk = K0

for all k, and

K0 −
∑

k

(j, k)Π0
k = 0. (10.17)
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The numerical results are

Π0
1 = 0.99935Π0

5 − 6K0 × 102

Π0
2 = 0.9938Π0

5 − 35K0 × 102 (10.18)

Π0
3 = 0.9692Π0

5 − 125K0 × 102

Π0
4 = 0.859Π0

5 − 360K0 × 102

The complete system may not be solved because the fifth equation introduces
a huge uncertainty in the system. Roughly we have Π0

5 = −3K0 × 107. The
error in Π0

5 does not allow to give different values for the other Π0
j ; these

errors are large and arise mainly from the fact that (5) is very close to zero.
A better determination of Π0

5 needs the accurate determination of satellite
masses with at least 4 significant figures.

We may relate Π0
5 to Nµ

k . Equations (10.17) and (10.13) when multiplied
by djN

µ
j and djΠ

0
j , respectively, and summed over the subscript j, yield

∑

j

∑

k

djN
µ
j (j, k)Π

0
k = K0

∑

j

djN
µ
j

∑

j

∑

k

djΠ
0
j (j, k)N

µ
k = bµ

∑

j

djN
µ
j Π

0
j .

Because of equation (10.9), the left-hand sides of the above equations are
equal, then

bµ
∑

j

djN
µ
j Π

0
j = K0

∑

j

djN
µ
j .

This system has 5 linear algebraic equations and may be solved. We have

Π0
j =

∑

µ

Nµ
j

bµ

∑
k dkN

µ
k∑

k dk(N
µ
k )

2
K0. (10.19)

In view of the values listed in Table 10.3 together with the values of the char-
acteristic roots, it is evident that only the term µ = 5 contributes significantly
to Π0

5 . With an internal precision better than 10−3, we may write

Π0
5 =

K0

b5
,

which shows that the large uncertainty in the determination of the Π0
j is a

consequence of the rough determination of the fifth characteristic root.
The particular solution of the complete system will be considered in a

modified form. Indeed, we can add αN5
j exp ib5t with arbitrary constant α

to any solution and the result is still a solution. Since b5 is very small, even
when compared to the other characteristic roots, this additive term may be
written αN5

j (1 + ib5t). Adding this term to the particular solutions (10.16)
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and choosing αN5
j = −Π0

j in order to eliminate the constant term of δΠj , we
get the particular solutions

δΠj = iKjt

where
Kj = Λj −Π0

j b
5.

The numerical values of the Kj are given by

K1 = 0.00065K0 = 0.014× 10−10 exp iσ

K2 = 0.0062K0 = 0.13× 10−10 exp iσ

K3 = 0.0309K0 = 0.65× 10−10 exp iσ

K4 = 0.141K0 = 3.0× 10−10 exp iσ

K5 = 0

where we have introduced
K0 = S0 exp iσ

and used S0 = 2.12× 10−9d−l and σ = 2.23 as calculated from Table 10.5.
The above choice of α is not the same as made by Souillart (α = 0) or

by Tisserand. Hence, the results of these calculations may not be directly
compared.

10.4 Inequalities in Latitude. Proper Inclinations

Let φ′j and ψj be the latitudes of a satellite referred to the fixed reference
plane and to the orbital plane of Jupiter, respectively (see Figure 10.2). The
sinus law yields

sinφ′j = sin Ij sin(θj −Ωj).

Fig. 10.2.
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If higher-order terms and the satellite eccentricities are neglected, we have

φ′j = Ij sin(λj −Ωj). (10.20)

A similar reasoning over the other triangle yields

φ′j − ψj = I0 sin(λj −Ω0). (10.21)

If we use the complex variables Πj , the equations (10.20) and (10.21) become

φ′j = ℑ(Π∗
j exp iλj),

φ′j − ψj = ℑ(Π∗
0 exp iλj).

Therefore
ψj = φ′j + tS0 cos(λj − σ).

Considering the results of the preceding sections, we have

φ′j =
∑

µ

Nµ
j sin(λj − bµt− γµ)− tSj cos(λj − σ).

ψj =
∑

µ

Nµ
j sin(λj − bµt− γµ)− t(S0 − Sj) cos(λj − σ)

where

Sj =
KjS0

K0

.

To have the latitude referred to the equator of Jupiter, we use the approximate
form of equation (3.6)

φj = φ′j − Ĩ sin(λj − Ω̃)

or
φj = ℑ

(
(Π∗

j −Π∗
5 ) exp iλj

)
.

Therefore

φj =
∑

µ

(Nµ
j −Nµ

5 ) sin(λj − bµt− γµ)− tSj cos(λj − σ). (10.22)

N j
j −N

j
5 are the proper inclinations of the orbital planes referred to the plane

of Jupiter’s equator. The smallness of the N j
5 (j 6= 5) and the inaccuracy that

involves the determination of the N j
j allow us to write N j

j −N j
5 ≃ N j

j .
The proper inclinations determined by Sampson, de Sitter and Lieske are

gathered in Table 10.6.
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Table 10.6. Proper Inclinations (in units 10−4)

Satellite Sampson de Sitter Lieske

1 4.76 5.5±0.2 7.0±2.9
2 81.55 81.4±0.2 81.5±2.0
3 35.59 31.2±0.2 32.4±1.6
4 47.47 42.8±0.2 44.3±4.8

10.5 Position of Jupiter’s Equator

The position of the equator of Jupiter with respect to the reference plane is
given by

Π5 =

5∑

µ=1

Nµ
5 exp i(bµt+ γµ) (10.23)

where forced terms do not appear due to the choice made for the arbitrary con-
stant α. In order to have the position of the equator of Jupiter with respect to
the actual mean orbit of the planet, we have to consider the spherical triangle
shown in figure 10.3, which may be solved with respect to these parameters.
Except for third-degree terms, wc have:

Ĩ ′2 = Ĩ2 + I20 − 2ĨI0 cos(Ω̃ −Ω0)

I0 sin(Ω̃ −Ω0) = Ĩ ′ sin(Ω̃′ − Ω̃).

Therefore
Ĩ ′ exp iΩ̃′ = Ĩ exp iΩ̃ − I0 exp iΩ0

or
Π ′

5 = Π5 −Π0. (10.24)

It then follows

Π ′
5 =

5∑

µ=1

Nµ
5 exp i(bµt+ γµ)− itS0 exp iσ.

Fig. 10.3.
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The numerical values of Nµ
5 and S0 are very small compared to N5

5 . Let then
the parameters

θµ =
Nµ

5

N5
5

(µ 6= 5), θ5 =
tS0

N5
5

,

and the angle
Ω̃′′ = Ω̃′ − b5t− γ5

be introduced. We have

Ĩ ′ exp iΩ̃′′ = Π ′
5 exp i(−b5t− γ5);

hence

Ĩ ′ exp iΩ̃′′ = N5
5

(
1 +

5∑

1

θµ exp iβµ
)

(10.25)

where

βµ = (bµ − b5)t+ (γµ − γ5) (µ 6= 5),

β5 = σ − b5t− γ5 − π

2
.

The absolute value of the summation in equation (10.25) is very small when
compared to unity. Equation (10.25) may be easily solved for the unknowns

Ĩ ′ and Ω̃′′. The result is

Ĩ ′ = N5
5

(
1 +

5∑

µ=1

θµ cosβµ
)

Ω̃′′ =

5∑

µ=1

θµ sinβµ

and

Ω̃′ = b5t+ γ5 +

5∑

µ=1

θµ sinβµ.

Ω̃′ is the motion of the jovian equinox. It has a retrograde (b5 < 0) linear part
– the jovian luni-solar precession – of 2.5 arcseconds per year. The nutation
terms θµ sinβµ (µ ≤ 4) are periodic and their periods are the periods of
revolution of the satellite nodes in a reference system affected by the jovian
luni-solar precession. The fifth term: θ5 sinβ5 is, approximately,

−θ5 cos(σ − γ5) ≈ tS0

N5
5

cos(σ − γ5)

which is the jovian planetary precession. If we adopt N5
5 = 3.11◦ and γ5 =

316.4◦ (see Section 11.1), we have +3.0 arcseconds per year. The jovian general
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precession in longitude is then direct and very small: just 0.5 arcseconds per
year.

The inclination is affected by the nutation terms Nµ
5 cosβµ (µ < 5). For

µ = 5, we have tS0 cosβ
µ, or the linear approximation

tS0 sin(σ − γ5).

The corresponding secular variation of the jovian mean obliquity is −2.1 arc-
seconds per century.

10.6 Periodic Inequalities

We have discussed every part of the disturbing function, except one. The
terms that have not been discussed so far are

3

8

Gm0

a0

(aj
a0

)2 (
I2j cos(2λ0 − 2Ωj)− 2I0Ij cos(2λ0 −Ωi −Ω0)

)

of solar origin, and the term

3

4

GJ2
a3j

(
I2j cos(2λj − 2Ωj)− 2Ij Ĩ cos(2λj −Ωj − Ω̃)

)

that originates from the planet’s force-function. Two other terms of the same
order were not considered since they are independent of Ωj and Ij and thus
may not give rise to inequalities of the same order as the considered ones.
From Souillart’s complement to the force-function (eqn 3.23), we get

GmkB
3
12

8
ℜ
(
(Π∗

1 −Π∗
2 )

2 exp 2iu
)
+
GmkB

3
23

8
ℜ
(
(Π∗

2 −Π∗
3 )

2 exp 2iu′
)
.

These parts add some terms having periodic coefficients to the right-hand side
of equation (10.7). They are

i(j)(Π∗
j −Π∗

0 ) exp 2iλ0 + i(j, 5)(Π∗
j −Π∗

5 ) exp 2iλj

from the first two parts, and from Souillart’s complement to the force-function:

iGm2

4n1a21
B3

12(Π
∗
1 −Π∗

2 ) exp 2iu,

iGm3

4n2a22
B3

23(Π
∗
2 −Π∗

3 ) exp 2iu
′ − iGm1

4n2a22
B3

12(Π
∗
1 −Π∗

2 ) exp 2iu

and
−iGm2

4n3a23
B3

23(Π
∗
2 −Π∗

3 ) exp 2iu
′,

for the first, second and third satellites, respectively.
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In the actual calculations Π∗
j are substituted by the general solutions of

the homogeneous part as given by equations (10.12). Also, the left-hand side
of the equations are not considered in its complete form as in equations (10.11)
but as given by the separated approximate equations (10.10). As an example,
for the first satellite, we have

dΠ1

dt
− i(1, 1)Π1 = i(1)(Π∗

1 −Π∗
0 ) exp 2iλ0

+i(1, 5)(Π∗
1 −Π∗

5 ) exp 2iλ1 +
iGm2

4n1a21
B3

12(Π
∗
1 −Π∗

2 ) exp 2iu

and the resulting periodic inequalities

δΠ1 =
∑

µ

(1)Nµ
1

2n0 − bµ − (1, 1)
exp i(2λ0 − bµt− γµ)

+
∑

µ

(1, 5)(Nµ
1 −Nµ

5 )

2n1 − bµ − (1, 1)
exp i(2λ1 − bµt− γµ)

−
∑

µ

Gm2B
3
12

4n1a21

Nµ
1 −Nµ

2

2m+ bµ + (1, 1)
exp i(2u− bµt− γµ).

There are also variations related to the motion of the orbital plane of Jupiter,
i.e., to the variation of Π0:

K0(1)

2n0 − (1, 1)

(
1

2n0 − (1.1)
− it

)
exp 2iλ0.

These contributions are very small. Among the periodic oscillations described
above, we consider just those that are increased by the smallness of the de-
nominator. The terms of solar origin increase in importance with j and µ. We
select:

δΠ1 = 4.6× 10−6 exp i(2λ0 − b5t− γ5)

δΠ2 = 13.8× 10−6 exp i(2λ0 − b5t− γ5)

δΠ3 = 31.0× 10−6 exp i(2λ0 − b5t− γ5)

δΠ4 = 66.5× 10−6 exp i(2λ0 − b5t− γ5) + 6.0× 10−6 exp i(2λ0 − b4t− γ4).

Souillart’s terms are of the order of 10−7 and are not calculated explicitly
here.

The corresponding inequalities in the latitude of the satellites are calcu-
lated in the same way as in Section 10.4. For example

δψ1 = δφ′1 = 4.6× 10−6 sin(λ1 − 2λ0 + b5t+ γ5)

and so on.
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11

Elements and Physical Parameters

11.1 Physical Parameters

The theory of motion of the Galilean satellites of Jupiter involves more than
thirty physical parameters and integration constants, which are to be deter-
mined from observations. There are 6 integration constants for each satellite
orbit, 2 for the motion of the pole of Jupiter and several physical parame-
ters. These physical parameters are associated with disturbing forces. Until
recently, the determination of the masses of the satellites and the second
harmonic of Jupiter’s potential, was done simultaneously with the orbital
elements. Other parameter, the fourth harmonic, was determined from the
motion of the node of the innermost Jovian satellite: Jupiter V (Amalthea).
de Sitter, using a known value of J2 and the formula derived by H.Struve
determined J4. More recently, Brouwer and Clemence obtained

23269J2 − 8121.6J2
2 − 9024.0J4 = 346.53± 0.14. (11.1)

With modern space probes flying in the vicinity of Jupiter, the main param-
eters can be determined independently. The first effort was made at the Jet
Propulsion Laboratory (JPL), Pasadena, California, by analyzing the Doppler
shift of the signals emitted by the spacecrafts Pioneer 10 and Pioneer 11 when
they were near Jupiter. These results together with the classical results ob-
tained by Laplace, Sampson and de Sitter are shown in Table 11.1. The last
column of Table 11.1 shows the values recommended by the Sixteenth General
Assembly of the International Astronomical Union to be used in the prepara-
tion of ephemerides; these IAU values have been adopted in this book.

It is worth noting that the JPL determination of J4 agrees completely
with the values expected by using equation (11.1). Further, the attempts to
determine J3, J6 and J22 have been unsuccessful within 1 × 10−6 for J22,
1× 10−5 for J3 and 5× 10−5 for J6.

Other physical parameters are related to Jupiter: size, rotation, mass, mo-
ments of inertia, etc. For the equatorial radius of Jupiter, the value recom-
mended by IAU is b =71398 km, which is based on the Pioneer 10 and 11
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Table 11.1. Satellite masses and Jupiter’s J2 and J4

Parameter Laplace Sampson de Sitter JPL IAU

Masses ×106MJ

m1 17 45.0 38.1±4.5 48.84±.22 47.0
m2 23 25.4 24.8±1 25.23±.25 25.6
m3 88 79.9 81.7±1.5 78.03±.30 78.4
m4 42 45.0 50.9±6 56.61±.19 56.0

Harmonics ×104

J2 219 148.5 145.3±2 147.33±.04 147.5
J4 8.9 -5.87±.07 -5.8

studies. The mass of Jupiter with respect to the solar mass is well known
and we adopted the reciprocal of 1047.572 (IAU recommended value 1047.355
refers to the whole Jovian system). The rotation of Jupiter is a parameter
difficult to be determined: we can observe only the upper atmosphere of the
planet and the observed rotation depends on the latitude. We have adopted
the radioastronomical determination P = 0.41354 d of the period of Jupiter
as it is believed that the radio signals originate from deeper regions and may
be related to the actual body of Jupiter. The moment of inertia of Jupiter is
ill determined and we have adopted C=0.26.

The position of the pole of Jupiter, determined from the motion of Pioneer
10 is

α = 267.998± 0.016◦

δ = 64.504± 0.004◦

on December 3, 1974. The transformation in Ω̃′ and Ĩ ′ gives

Ĩ ′ = 3.11± 0.03◦

Ω̃′ = 316.4± 0.5◦.

Precision is lost in the transformation because of uncertainties in figures giving
the position of Jupiter’s orbit derived from the theory of Brouwer and Van
Woerkom. This determination is compatible with Sampson’s values for 1900.0:

Ĩ ′ = 3.1035◦

Ω̃′ = 316.051◦.

In this book we have adopted for the epoch 1950.0 the values

Ĩ ′ = 3.103◦

Ω̃′ = 316.06◦.

11.2 Sampson’s Orbital Elements

The orbital elements determined by Sampson were obtained from the analysis
of several series of photometric records of eclipses of the satellites made at
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the Harvard College Observatory from 1878 to 1903. These observations were
supplemented by visual observations of eclipses collected by Delambre, for the
determination of two secular motions, and also supplemented by the results
of Damoiseau for the determination of the mean motions.

Sampson first determined the mean longitudes at a fixed epoch (1890 Jan-
uary 1.0). The observations were reduced twice, independently, at Harvard
and Durham. The average longitude for the three inner satellites were found
to be

λ1 = 242.9671◦ λ2 = 59.6381◦ λ3 = 57.9727◦

and thus
λ1 − 3λ2 + 2λ3 = 180◦ − 0.0018◦.

Sampson assumed the sum to be equal to 180◦ and to fit such condition, he
introduced the corrections +0.0003◦, −0.0003◦ and +0.0003◦, respectively.
Thus,

λ1 = 242.9674◦ λ2 = 59.6378◦ λ3 = 57.9730◦.

The corresponding values from Damoiseau’s tables are

λ1 = 243.0160◦ λ2 = 59.6578◦ λ3 = 57.9803◦.

The comparison between these values indicates corrections to Damoiseau’s
values by

− 0.0486◦ − 0.0200◦ − 0.0073◦

or corrections to Damoiseau’s daily tropic motions yielding the values

203.488 992 435◦/day

101.374 761 672◦/day

50.317 646 290◦/day.

For Jupiter IV (Callisto), processing in exactly the same way, except for li-
bration corrections, Sampson found the correction to Damoiseau’s tables to
be +0.0426◦. However, it was not clear that this should be attributed to
erroneous mean motion or not. Delambre’s collection of eclipses, when redis-
cussed, showed that at epoch 1788.79 Damoiseau’s mean longitude was in
error by +0.0352◦. This was accepted by Sampson and total correction was
then +0.0074◦ in 36966 days. The corrected daily tropic motion resulted is

21.571 109 630◦/day.

In order to have sidereal mean motions, it is sufficient to consider the preces-
sion. The resulting values are

n1 = 203.488 954 208◦/day

n2 = 101.374 723 445◦/day

n3 = 50.317 608 063◦/day

n4 = 21.571 071 403◦/day,
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which have been adopted by Sampson.
The position of perijoves and nodes at the epoch JD 2415020.0 (1900

January 0.5) determined by Sampson are given in Table 11.2.

Table 11.2. Perijoves and Nodes (1900 Jan. 0.5)

Satellite Perijove Node

1 265.719◦ 33.299◦

2 196.534◦ 290.550◦

3 340.679◦ 320.705◦

4 283.258◦ 7.331◦

The other elements determined by Sampson have been considered in details
in preceding chapters.

11.3 Sampson’s Time Scale

The nominal time scale in Sampson’s tables is the mean solar day which is not
uniform. The theory of Sampson as well as every mechanical theory defines a
proper time scale, uniform except for the errors of the theory itself. This scale
is directly related to the observations used for sake of obtaining the integration
constants of the theory, i.e., the elements.

The first studies on Sampson’s time scale (tS) were made by Rodrigues
(1970) assuming that the shift of tS leads to a systematic component in the
observed positions. His results have been confirmed by further studies. Some
recent results are shown in Table 11.3.

In these results, the shift of Sampson’s time scale is a weighted mean of the
least squares solution for the shift of the individual time scale of each satellite.
The results show that a significant shift in Sampson’s time scale exists. A very
simplified model may help us to have a better understanding of what happens.

Let us suppose a simple phenomenon whose state is given by a measurable
parameter θ and assume that a theory exists showing that θ depends on the
uniform time through a linear function L(t):

θ = f
(
L(t)

)
. (11.2)

If the mean motion L is determined from two sets of measurements made at
the mean epochs ta and t0, it is possible to evaluate the effects of using a
non-uniform time scale (UT) as it happened in the derivation of the mean
motions by Sampson. He used the law

θ = f
(
L(s)

)
(11.3)

where s is the same instant as t but in the UT-scale.
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Table 11.3. Values of ∆t

Epoch tS − E.T. (min) Observatory/Observer

1913.5 0.29 ± 0.03 Cape/*
1914.6 0.25 ± 0.02 Cape/*
1915.7 0.30 ± 0.03 Cape/*
1916.8 0.24 ± 0.02 Greenwich/**
1919.0 0.29 ± 0.03 Greenwich/**
1922.3 0.24 ± 0.04 Leiden/W.H.van den Bos
1924.6 0.22 ± 0.04 Cape/*
1927.5 0.36 ± 0.04 Johannesburg/H.L.Alden
1928.7 0.49 ± 0.05 Johannesburg/H.L.Alden
1934.4 0.28 ± 0.08 Bucharest/G.Petrescu
1968.2 0.41 ± 0.04 Leander-McCormick/D.Pascu
1973.7 0.67 ± 0.03 U.S.N.O. Washington/D.Pascu
1974.7 0.26 ± 0.04 U.S.N.O. Washington/D.Pascu

* J.Lunt, J.W.Jackson, R.Woodgate and G.Duncan
** M.Jones, C.Davidson, P. Melotte and E.Martin

The correct determination of the mean motion is given by

L̇E =
g(θ0)− g(θa)

t0 − ta
(11.4)

where g = f−1. The actual calculations have been made with the improper
law (11.3):

L̇U =
g(θ0)− g(θa)

s0 − sa
. (11.5)

The relationship between these two mean motions may be written as

λ =
L̇E

L̇U

= 1− d0 − da
t0 − ta

where d0 and da are the differences ET−UT in the considered epochs:

d0 = t0 − s0 da − ta − sa.

Let this theory be used for a new set of measurements made at the mean
epoch t. Since the UT is not uniform, the improper law will not reproduce the
measurements. Let ∆s be the correction of the time scale required to get the
observed result with the improper law. Then

θ = f
(
LU (s+∆s)

)

where LU is the linear function L with L̇U as mean motion. Therefore

g(θ) = LU (s+∆s) = L̇U (s+∆s− s0) + LU (s0).
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Fig. 11.1.

We assume that the correct law (11.2) would reproduce exactly the observa-
tions; thus

g(θ) = LE(t) = L̇E(t− t0) + LE(t0).

We also assume that both laws reproduce exactly the measurements at the
mean epoch t0,

g(θ0) = LU (s0) = LE(t0).

Then
L̇U (s+∆s− s0) = L̇E(t− t0)

and after some calculations, we have

∆t = (λ− 1)(t− t0)− d0 (11.6)

where ∆t = ts − ET.
Let us now apply this simple model to Sampson’s tables. The old data used

by Sampson were longitudes provided by Damoiseau’s tables, which depend
on eclipses observed from the end of the seventeenth century to about 1830.
The current values of ET−UT adopted for that epoch and for the mean epoch
of the Harvard eclipses are

ta = 1750.0 da = 0 s

t0 = 1890.0 d0 = −7 s

and thus we have
λ− 1 = 0.05 s/yr.

The adopted values for ET−UT were obtained by D.Brouwer who com-
pared observations of the Moon to the theory of E.W.Brown. Brown’s adopted
tidal acceleration of the mean longitude of the Moon was −11.22′′T 2 (where
T is in centuries). Van Flandern claims that this acceleration needs a correc-
tion −10′′T 2. The Moon moves one arcsecond per 1.82144 seconds and the
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corresponding correction in Brouwer’s determination of ET is +18.21T 2. He
then suggests the correction

0.15− 2.55(T − 19.63) + 18.21(T − 19.63)2 seconds.

If this correction is adopted we have

d∗a = 88 s d∗0 = 5 s

and
λ∗ − 1 = 0.6 s/yr.

On adopting the time-scale correction of 0.6 minutes per century (0.36 s/yr),
we have the sidereal mean motions

203.488 956 4 ± 0.0000004◦/day

101.374 724 5 ± 2

50.317 608 6 ± 1

21.571 071 64 ± 05,

which have been used throughout this book1.

11.4 On Accelerations

The time scale of Sampson’s theory may not explain the observed deviations
in the longitude of the satellites. There are errors in other elements, viz.
positions of perijoves and nodes, and there are errors in the coefficients of
important long period inequalities. Besides, neglected long period inequalities
and accelerations may exist. The extension of the model considered in previous
section to the case where accelerations exist is very easy. Instead of equation
(11.2) suppose that the state of the phenomenon is given by

θ = f
(
Q(t)

)
Q = a+ bt+

1

2
ct2. (11.7)

The mean motions derived by means of equations (11.4) and (11.5) from the
sets of measurements made at the mean epochs ta and t0, respectively, are

L̇E = λL̇U = b+
1

2
c(ta + t0)

where L̇E is the average of Q̇ in the time interval. For the set of measurements
made at the mean epoch t, we have

Q(t) = LU (s+∆s),

1 Hence, m = 0.739 507◦/day = 0.01290d−1
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which defines ∆s. Similarly, for the mean epoch t0, we have

Q(t0) = LU (s0)

since ∆s = 0 at epoch t0. Thus

g(θ) = LU (s0) + L̇E(t− t0) + L̇U

(
∆t+ d0 + (1− λ)(t − t0)

)

and

g(θ) = Q(t0) +
(
b+

1

2
c(t0 + t)

)
(t− t0).

Neglecting higher-order corrections in these relations, it follows

c

2b
=
∆t+ d0 − (λ− 1)(t− t0)

(t− ta)(t− t0)
.

From the data given in the previous section we have c/b = +7× 10−9cy−1

were we used Brouwer’s results. Using Van Flandern scale ET*, we have c/b =
−5× 10−9cy−1. These results need some discussions.

Data listed in Table 11.3 are averages of the evolution of the satellites. Ac-
celerations are expected because of secular variations in the orbit of Jupiter
and, in this case, the outermost satellites would be more affected than the in-
ner satellites. Accelerations are also expected because of tidal friction and in
this case only the inner satellites would be affected. But observational consid-
eration of each satellite separately is impaired by the existence of important
long-period residuals (which are more or less averaged when we consider a
joint time-scale correction). At the end, the model used is very simplified.
The results only serve to give an idea of the observational uncertainty still
existing before acceleration is detected.

When tidal friction is neglected, the most probable source of acceleration
in the motion of a satellite is the secular variation of eccentricity of the orbit
of the central planet around the Sun. The quadratic term in the longitude of
the epoch is given by the equation

dεI

dt
= −3Gm0e

2
0

2na30
≃ −3n2

0e
2
0

2n

where e0 = const+ ė0t. After integration, the time dependent part of e0 gives

1

2
ct2 = δ2ε

I = −3n2
0

2n
e0ė0t

2

which is very small. After Brouwer and Van Woerkom ė0 = 1.59× 10−6 yr−1.
Therefore, for the Galilean satellites, nc = 4.85× 10−11 d−2cy−1. The maxi-
mum rate c/b is that of Jupiter IV (Callisto): −3.4× 10−10cy−1.

Tidal effects are important sources of evolutionary inequalities in a system
of satellites. The classical formula is
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ȧ

a
= 3

(
G

Ma13

)1/2

mk2b
5 sin 2ǫ

or
ṅ

n
= −3ȧ

2a
= −9mnk2

2a5
sin 2ǫ.

In these formulae k2 is the tidal Love number and ǫ is the tidal lag angle:
the angle between the maximum tidal bulge and the planet-satellite line of
centres. For the innermost satellite, we have

ṅ

n
= −0.08k2 sin 2ǫ cy

−1

where the fact that it will redistribute part of its effects to other satellites
because of libration was already considered. For almost circular orbits, the
sign of c is governed by the sign of r−n which is positive. Therefore, whatever
is k2 sin 2ǫ, the acceleration is negative.

At last it must be kept in mind that important long-period residuals still
exist in Sampson’s tables. These residuals avoid a meaningful study of the
accelerations. Nevertheless, new campaigns of observations and the recon-
sideration of old data progress. We are confident that a better knowledge of
long-period terms will be soon available and will allow to consider the residual
accelerations with more rigour and to obtain some results.

The values obtained by de Sitter 50 years ago of the order of 10−8 cy−1 are
not acceptable. Their corrections to get a uniform time scale were based on
a uniform deceleration of the Earth whereas, in fact, the Earth’s deceleration
is in no way uniform at all.

11.5 Elements of de Sitter

The determination of the elements by de Sitter, who considered all available
observations made before 1928, was much more eclectic than that of Sampson.

(a) Photographic observations: de Sitter considered about ten series of
photographic observations made at the Observatories in Helsingfors, Cape,
Pulkovo, Greenwich, Leiden and Johannesburg in the period 1891-1927. The
telescopes used had focal lengths ranging from 3.43m (Carte du Ciel telescopes
at Helsingfors and Pulkovo) to 10.9m (Yale-Columbia Southern Station tele-
scope at Johannesburg). The precision of these series were studied by de Sitter,
who determined the standard errors involved for one coordinate (averages of
6 exposures measured in two positions). The results are shown in Table 11.4.
These results have not yet been confirmed by more recent analysis of the
observational data.

(b) Micrometric observations: Several series of micrometric observations
made between 1903 and 1909 at Washington and Berlin were considered.



120 11 Elements and Physical Parameters

Table 11.4. Standard Errors

Telescope Focal Length Standard Error

Carte du Ciel 3.4 m 0.08′′

Leiden 5.2 0.05′′

Cape and Greenwich 6.8 0.05′′

Johannesburg 10.9 0.03′′

(c) Heliometric observations: de Sitter considered the series of observations
made with the Cape heliometer (focal length 2.5m) by Gill and Finlay in 1891
and by Cookson in 1901 and 1902.

(d) Observations of eclipses and phenomena: de Sitter also considered parts
of the old collection of eclipses used by Wargentin, Delambre and Damoiseau,
and the photometric series of Harvard as well as the very detailed observations
of phenomena made by Innes and Wood at Johannesburg and discussed by
Brouwer.

From the point of view of their intrinsic precisions, it is interesting to
compare these different kinds of observations. Table 11.5 shows de Sitter’s
estimates of the standard errors converted in time (seconds).

Table 11.5. Standard Errors in seconds

Satellite I II III IV

Eclipses (Harvard) 10 16 17 32
Heliometer (D.Gill) 9 12 15 19
Photographs (Johannesburg) 5 7 9 12

Considering all data listed above, de Sitter deduced elements. Table 11.6
lists the mean motions and the positions of the perijoves and nodes at the
same epoch of Sampson’s elements. Other elements were considered in details
in the preceding chapters.

Table 11.6. Mean Motions, Perijoves and Nodes

Satellite Mean Motion (◦/d) Perijove Node

1 203.4889 9636±20×10−8 75±32◦ 64.7±3.8◦

2 101.3747 6336±17×10−8 149.5±6.6 292.81±0.16
3 50.3176 4706±15×10−8 345.6±1.2 319.83±0.46
4 21.5711 1041±20×10−8 282.79±0.10 12.79±0.31

Although de Sitter’s results have one more digit than allowed by the mag-
nitude of the standard errors, they have less digits than Sampson’s results.
The results given by Sampson have many meaningless digits; they have been
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kept in this book in order to reproduce exactly the data used by Sampson in
his theory and in his tables.

11.6 Other Observational Data

To determine the physical parameters of the satellites, Sampson, as well as de
Sitter, determined from the observations the amplitudes of several inequalities
and some daily motions. The quantities that were determined by them from
the observations are:

(a) The coefficient 2B1 of the induced equation of the centre in the longi-
tude of Io (see Section 6.1);

(b) The coefficient 2B2 of the induced equation of the centre in the longi-
tude of Europa (see Section 6.1);

(c) The coefficient 2M4
3 of the free oscillation in the longitude of Ganymede

whose argument is λ3 − g4t− β4 (see Sections 5.6 and 7.7);

(d) The daily motion g4 of the proper apsis of Callisto (see Sections 5.6
and 7.7);

(e) The daily motion b2 of the proper node of Europa (see Section 10.2).

Their results are shown in Table 11.7 together with the results obtained
in this book using the IAU recommended values of the physical parameters.

de Sitter also made determinations of other proper apsides and nodes (see
Tables 5.4 and 10.2) as well as the amplitude of some other inequalities:

(f) The coefficient N4
3 of the free oscillation in the latitude of Ganymede

whose argument is λ3 − b4t− γ4 (see Section 10.4), and

(g) The coefficient 2B3 of the induced equation of the centre in the longi-
tude of Ganymede (see Section 6.1).

Table 11.7. Comparison of some quantities (in units 10−5

Deduced from Observations
Quantity Computed ————————————

Sampson de Sitter

2B1 827.0 823.0 821.5±3.4

−2B2 1852.6 1867.8 1866.5±4.8
2M4

3 145 128.8 134.3±12.6
g4 3.21 3.24 3.29±0.05
b2 58.0 56.7 56.9±0.7
N4

3 66.1 50.9±4.0

2B3 121.0 112±15
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11.7 Mutual Events Results

A concerted campaign and much international cooperation provided a large
collection of observations of mutual phenomena of the Galilean satellites dur-
ing the favorable passage of the Earth through the plane of Jupiter’s equator
in 1973. Aksnes and Franklin made an analysis of 91 mutual eclipses and oc-
cultations that occurred from June to December 1973. They obtained four
different least-squares solutions for longitude corrections and two different
least-squares solutions for latitude corrections.

The best solutions for the proper elements at the mean epoch of the ob-
servations JD 2441 920.5 (1973.65) are shown in Table 11.8.

Table 11.8. Mutual events results

Satellite Proper Proper Proper Proper
Perijove Eccentricity Node Inclination

1 328±17◦ 33±9×10−5 117±8◦ 73±23×10−5

2 43±23 15±4 136.4±0.5 824±16
3 174.7±0.9 152±3 128.2±0.8 384±19
4 332.88±0.09 730±4 321.3±0.4 377±23

They also determined from the observations the coefficients of the two
largest inequalities in longitude:

B1 = (416± 10)× 10−5

−B2 = (928± 5)× 10−5.

If the values in Table 11.8 are compared to Sampson’s tables, some important
disagreements arise: (a) the node of Io is 90◦ far from the value predicted in
Sampson’s tables for the mean epoch of the observations (26.8◦); (b) the peri-
joves of Io and Europa have shifts of 135◦ and 20◦, respectively; (c) remaining
perijoves and nodes have shifts that are smaller but important because the
corresponding eccentricities and inclinations are large.

The discrepancies arise mainly from some unexpected bad values for some
characteristic roots in Sampson’s tables. Table 11.9 shows the motion of the
proper perijoves and nodes deduced from comparison of Sampson’s determi-
nations of the perijoves and nodes at 1900 Jan. 0.5 to mutual event results.
Motions obtained with de Sitter’s determinations instead of Sampson’s are
shown in brackets. Table 11.9 also shows the characteristic roots in Samp-
son’s tables, in Lieske’s ephemerides E-2 (see Section 11.8) and the values
obtained in this book. The bad value of the motion of Jupiter II (Europa)
obtained with the approximate theory given in this book is an example of the
importance of high-order terms in the theory of the motion of the Galilean
satellites.
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Table 11.9. Motion of proper perijoves and nodes (in units 10−6d−1

Deduced Lieske’s Tables
Satellite from Tables Sampson’s Ephemeris 7.2 and

11.8 and 11.2 Tables E-2 10.2

Perijove
I 2840 [2733] 2756 2810 2731
II 835 [865] 822 811 700
III 126 121 124 130
IV 32.2 32.4 32.1 32.0

Node
I -2280 [-2302] -2340 -2318 -2331
II -567 [-569] -571 -569 -580
III -125 -123 -125 -126
IV -29.9 -32 -30.7 -30.8

11.8 Lieske’s Ephemeris

Recently, at the Jet Propulsion Laboratory, Lieske developed analytic expres-
sions for the positions and partial derivatives of the satellites utilizing the
same method as Sampson and made a preliminary evaluation of the constants
employed in the new theory in order to best fit observations. He started with
the analysis of the photometric eclipse observations made at Harvard during
the years 1878-1903 as well as the very few photometric eclipse observations of
half-brightness made since then. A set of parameters (called E-l) was derived
by iteratively fitting and re-fitting the data until the solutions converged. As
noted before by Aksnes and Franklin, some parameters (viz. the nodes and
apsides) require large corrections. As in Sampson’s tables, the orbit of Jupiter
IV (Callisto) is derived from few observations (31 in the period 1878-1903 and
7 after 1954).

A second set of parameters (called E-2) was derived in the same way,
fitting also the mutual events data, as well as 2964 photographic observations
from 1967 to 1978. The photographic observations were obtained with equal
telescopes at the U.S. Naval Observatory by D. Pascu, and at the Leander
McCormick Observatory by D. Pascu, P. Ianna and P. Seitzer. The mean
motions, proper elements and longitudes at the epoch JD 2443 000.5 (1976
August 10.0 ET) for E-2 ephemeris are shown in Tables 11.10 and 11.11.

Table 11.10. Metric Elements in Ephemeris E-2

Satellite Mean Motion (◦/d) Proper Eccentricity Proper Inclination

I 203.4889 5536 ± 75 ×10−8 1±0.4 ×10−5 70±28 ×10−5

II 101.3747 2456 ± 59 ×10−8 9±2 816±21
III * 147±3 324±16
IV 21.5710 7087± 62 ×10−8 733±3 443±49

*(3n2 − n1)/2 =50.3176 0915 ± 59 ×10−8
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Table 11.11. Angular Elements in Ephemeris E-2

Satellite Longitude at the epoch Proper Perijove Proper Node

I 106.0786 ± 0.0176◦ 82 ± 74◦ 308 ± 18◦

II 175.7338 ± 0.0039 129 ± 16 100 ± 1
III * 187.6 ± 0.9 119 ± 2
IV 84.4558 ± 0.0049 335.3 ± 0.1 323 ± 2

*(3ε2 − ε1)/2=180.5614 ± 0.0048◦

Since the mean motion and longitude at the epoch of Jupiter III (Ganymede)
are derived from Laplace theorems, two other independent integration con-
stants are needed. They are the amplitude and phase of the libration. The
two amplitude determinations made by Lieske are shown in Table 11.12.

Table 11.12. Amplitude of the Libration

Lieske’s Ephemeris Amplitude (D)

E-1 9.7 ± 3.5 ×10−4 (3′22′′)
E-2 11.5 ± 2.2 ×10−4 (3′57′′)

In both determinations, the phase is close to zero at JD 2443000.5 but the
standard error of the determined values is very great. The librations in the
longitudes of the three inner satellites are

δθ1 = +0.00014 sin(nLt+ E) (27′′)

δθ2 = +0.00032 sin(nLt+ E) (65′′)

δθ3 = +0.00003 sin(nLt+ E) (6′′)

These inequalities have amplitudes of the same order of magnitude as some
among the Great Inequalities in Longitude (see Table 7.1). Lieske’s value of
nL is 3.03× 10−3d−1 which corresponds to a libration period of 2074 days.

The work of Lieske is still in progress and the results of this Section are
expected to be improved shortly.

Lieske’s set of elements E-2 together with the mean motions derived in
Section 11.3 have been widely used all along this book.
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