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PRI:fACE 

The l aunching of space probes t o the outer Solar System 

started in thl;! 1970 decade and the planning for Jupiter orbiter 

mi ssions in the 198 0 decade creAted A wide range o f interest 

toward s the mot i on of thl;! Ga l ilean sate llites. In fact,c~t 

Jupi t er mission planning includes e xtensive use of the 

Gal i l e-'ln satellites fo r dynami c OT'bi t shaping t o enhance 

sci entific observation and mi ssion performance. 

Hodern theoretical I;!fforts involve both the revit a l izat ion of 

earl ier theories and the proposal of completely new ones . In 

both cases , to obtain high preciS ion, the t heories deal 

par t icularl y with the Galilean sate lli tes and t he Wld.erstNlding 

of the results requires a thorough study of their matilcmatiO!l l 

formulation~. Nevertheless , a theory which uses the ba s ic 

Lagrange ' s equations , i s sufficient to cxpla.in and understand 

a lot of recent investigations on the motion of the Galilean 

satellites . The purpose of wri ti ng this book is to develop 

this suggestion . The theory is reconstructed fo llowing a 

classical presentAt i on wrote hy Tisserand in I IHIU and the early 

theory of Laplsce . Host of the mat@rial presente d in this 

book are bas e d on t he courses tha t I gave s ince 1972 t o 

graduate students at t he Ae ronauti cs Institute of TechnOlogy 

snd at the Un] veT'si ty of Sao Paulo . Little previous knowledge 

is expected o f the reader. 

Galilean satellites are very appropriate t o introduc e probl~ 

in Celestial Mechanics . If we disregard the effects of the 

Sun , of the oblateness of Jupi ter and the libration , the 

Galil ean s<ltel li tes form a well - behaved pZ4n~tar!l 8!18tem. When 

the action of the Sun ov@r one satellite is considered we have 

the u...a1' probZ8m. When the oblatencs s of the planet is consid ­

ered t he satellites show the main fe a tures of the mo t i on of 



a r t-if7:ciAl. (mwl.liteu while Jupi U:"C' dicplayc frt:-e nuLatw>I.pr·"",,:wiQ>I 

o'Ind nutAtion. At last theC'e iG the lib r a Lion produced by the 

reson<lnc:e !;ct:wP.P. 1l the mean motions o f the three inneC' G;;1t -

ell i t:es . 

It i s wuC'l.)l' .... h i le to me ntion that the objective of th~ pre~ent: 

book is neit~er to r.i ve a ll inequalit i e s important t:o compute 

e phemp~ides nor to eive 3ccurate values for t he main inequal ­
ities . for comp lete ana p~ecise ~esults the re4d~r is 

referred to the publications indicate d at the end o f the 
Ch .. p'tf!~s . 

1 .. m indebTPd to Dr . P . D. Singh, MC' . M. Tsuchid.:l .:lnd Mi:;$ S . M. 

MoJ!'CU1.i.:1U fuz' hel p i:l the preparation o f thi s book . The 

publica,ion ' .... as supported by CNPq - Bra!ilian Council for 

Scientific and Tec hnolo r,ic"11 De velo pr:lp.n t . 



CONTENTS 

I . TNTRODUCT LON 

1. The Discovery 

7. . Jupi te r ' ,; Satellites 

3. Ga 1i lean S~ l cllites 

Referencc ~ <.!flU Notes 

2 . THr: r:QUATIONS 

1 . Mutu.:tl Interactions 

2 . Equdt i ons of t he Motion 

3 . ?1ane t occnt!"'ic !:quations 

Lj . Rot ating f Z'<.J.meO! 

;, . E'1ua l iOll ';; in Kotating Coorcl in~ tes 

fi . App l ic.:t lion to the Gali lean Satellites 
7 . Kcplc ri.:tn ~lements 

e. V<3 I'i.:ttion of the [Iement!'. 

9 . Inv<.lI'i .. mce of t he Brac ke'ts 

10 L.:tgr.:tnge ' s Variational r:qua'tions 

11 Tisse!"'and ' s Transformation 

12 Small Eccentricities and Inclinations 
References and Notes 

3 . T!1E DISTUR BI NG fU NCTIONS 

1 . forces <.Ict i ng on the Satellites 

2 . Exp.:tnsion o f t he Sol" r forc e - Fun c tion 

3 . Expansion of the Jupiter ' s Force - function 

1 

3 

5 

9 

11 

13 

" 15 

18 

19 

20 

20 

23 

24 

25 

27 

29 

30 

32 

35 

Li. Laplace Coeffi c i en ts 36 

5 . Numerica l Values for the Gal i l ean Sa te llites LiQ 

6 . The Force - Function o f the Mutual Interactions LjLj 
7 . Some simplification,;; Lj9 

Referenc es and Note ,;; 5 3 



~ . INtQUALITIES OF PLANETAR~ TYPE 

1 . Variations in semi -m~jor Axis and Mean Longitude 55 

2 . Variations in Eccentricity and Peri jove 57 

3 . Tnequalities i n Long itude <.Lnd Redius Vector 59 

~. De Ma~rdt1' $ Tnequalities 51 

S . The Const an t PertuY'h,'1.'tion 53 

6 . Oscul a ting M~ an Motion and Semi-major Axi ~ . 

Mean Di:n: ~nec 

References end Notcs 

S . THE EQUATIONS Of THE CENTRE- I 

1. The Variational Equations 

2 . The free Oscillations 

J . Proper Eccentricities and Perijoves 

II. Great Inequali ties in the Mean Longitudes 

S . lJew Eq uations f o r the Free Osci llation~ 

6 . The free Equat ions of th~ Centre 

5 . THE EQUATiONS or THE CENTRE - II 

1. The f orced Osci lla t i ons 

'2 . Induced Equations of the Centre 

3 . Periodic Solutions of First Kind 
4. Osculating Eccentricities an d Perijoves 

References and Notes 

7. THE LIBRATION 

1. 

2 . 

3 . 
, . 
S. 

6 . 

7. 

8 . 

The Lap l acian Theory 

Possible Solutions 

The Libration 

The Period o f Libration 

Laplace Theorems 

Indirect Effects 
Effects on the Free Oscillations 

Effects on Quadratic I neq ualities 

Refe r ences and Note s 

'" 67 

68 

71 

72 

74 

76 

80 

83 

86 

88 

B9 

92 

93 

96 

99 

102 

103 

'" 107 

110 

III 



8 . SOLAR EffECTS 

1. Tne Va~iations 

2. Tne Annual Equations 

J . Tne Evections 

References ~nd Notes 

9 . ROTATION Of JUPITER 

1. Euler' s Dynamical i::qu<llio/ls 

2 . Free Nutation of Jupi te l' 

3 . euler ' s Geometric Equations 

11. !:quations of Mot i on of Jup iter' s Equator 

10 INEQUALITIES IN LATITUDE 

1 . Variational 1:quiltions 

2. Free Oscilliltion of tne Node~ 

3. Forced Oscilla tions 

Ii , Inequalities in Latitude.Proper Inclina t ions 

!:i . Position of Jupiter's Equator 

6 . Pe r'iodic Inequalities 

l<efct'c/lcCS <!.nd Notes 

11 ELEMErOTS AND PHYSICAL PARAMETERS 

1 . Physical ParAmeters 

2. S<.Lmp:;on' :; Orbi tal Elements 

3. Sampson' :; Time - Scale 

Ii. On Accelerations 

5 . El emen t~ of De Sitter 

6 . Otner Ob~ervational Data 

7 . Mutuell Events Resu l ts 

8. Lieske ' ~ Ephemeris E- 2 

References elnd Notes 

SUBJECT INDEX 

113 

116 

117 

120 

121 
123 
126 

128 

134 

139 

142 

14' 
150 
153 

157 

1sa 
161 

163 

168 

1 71 

'" 176 

1 79 

191 





• 

DYNAMICS OF THE GAL I LEAN SATELLITES: 
An Introductory Treati se 





CHAPTER I 

INTRODUCTION 

1.1 THE DISCOVERY 

On t he seventh dOH of January. 1610 . <It on4' o -'clock tn the 

morning . when I 101128 e::ploring the heav4'ns with the t ele .cope, 

Jupiter pr 8a8nted itaelf befor6 my eyes ; and becaus e I had 

built an in8trum~nt o f high prec iBion I saw thre e small Star s 

c looe to it . Though I believed them to b6 Stal'B. they W6ra 

Ce<l8 e Ze88 a8toni8hin~ me becauDe they Deemed to lie 8~aatly 

over o ne 8~raight line para llel to Lhe eoliptio and they were 

mo re spl6ndid than other Stars of the Dame magnitude. The il' 

p08itio ns wera th a following 

EA ST • • o • WEST 

that ie. there wer e two in the eas tern side and one to the 

west. The easternm08t and the western One seemed t o be sh.ghtlll 
greater t han t he third On8 . I paid no attention to t hsi r dis­

tanc es from Jupiter for, as I have already tol d. I believed 
them t o be fized Sta ro. Who n, on the ,ight - Led by what , I do 

not know _ I r etu rn ed to tho same obulZ·tlat.ion. I eaw a compLe~ 
ly different arrangement :the three Stars were now a ll. in the 

",estern Bide, and they war s closer of eaoh o ther than in th, 

day before , and at equal intertlal o from on' another . as .hown 

in the followinl1 drawing 

EAS T o • • • WEST 



2 DYM~lICS OF l1-IE G\LI LEAN SATELLITES 

Faoing thia phenomenon and unabZe to oonceive that Sta~s could 

ohange I'elative pOlJitiol13 . I bagan to hesitate and I wonder on 

how Jupite r ~ ould b. east of th060 StaI's when it had OIlSI1 west 

of two of them the day be/ora. Would ''lOt itu motion be diract , 

at variance with thG astronomioal. oalculaticmll, and would it 

bV it!! "WI'! motion w8nt bayol'ld ensue Stal'O? 

I ~ait.d for t ha naxt night with impatience but I uae dift ­

appointed in my hOp08 lor the aky was cloudy everywhere . 

On tho tonth, howeVer. the Stars appsal'sd in the roZlowi "~ 

positions with reapect to Jupiter 

EAST • • o WEST 

They were just two Stare and both in the east8 1'n 8ide of 

Jupiter; the third uos, I aSBumed, hidden behind the planet . 

They were , as befor • • in the S<lIIIe straight ~in' !.>ith th" planet 

and p r ecisely along th. Zadiaa. Facing thia fact and having 

unders t ood that 8uch mutation. cauld not be attributed to 

Jup'ter; /lfJt convinc.d that the." Stal's wel'fJ stitt the aam'~ 

my hesitation wau tl'ansformea into ama36m6nt . I undel'atood 

that ths apparent chan9" belonged nat to Jupiter but to the 

Stal' •. POl' that reason I decided to continue th e ObS61'1)atione 

with greatel' care and att,ntion . 

EAST • • o WEST 

just tOlO Stars east of Jupiter . the aentraZ ane boi01g th1'6e 

tim06 au dista nt from Jupiter 00 from the athol' Stars ; the 

easternmost OIas tOlO times greater tha1l the central one wher,au 

in tho nigh t before they appearad squaZ . I admit.d sinc6 then 

that thOlro exiuted in t he heat',n8, without Qny doubt . Stars 



turning around Jupitc~ i n t~e oame way in uhich M'rcur~ and 

V"nua tU I' >! a round the Su n ••• 

In thes e words Galileo told the dis~overy of the four great 
sAtellites of Jupiter. 

The deep sig n ificance of t his discovery has not: been paralleled 

many times in t he history of the Astronomy . It would be 

nowadays comparable , fo t' ex.;unple, to a di s covery o f life on 

Hal'S or tlH~ d etection by radioastronomers of signals ari s ing 

from some extra-terrestrial civi li zation . 

The discover y o f the fouT' s ... telli t es served to remove wha't 

wa~ a great ob jec t ion to the motion of the E.:Irth. Th e objecti on 

was that though 1'111 the planets turn <I t'ound the Sun . the Earth 

alone is not solitary bu t goes togethe r in the company of the 

Moon a round the Sun in one year while at the same time the 
Moon moves around the Ea~th every mont h . The discovery of 

satellites of Jupiter r>emoved this apparen t anomaly of the 

theory of Copernicus, fo~ Jupiter, like another Earth , goes 

around the Sun , in twelve years accompanier.! no t by one but 

by four moons. 

1. 2 JUPITER ' S SATE1.l..I'I" ES 

Today thirteen satel l ite s of Jupiter are known . The last sat ­
ellite discovered is J upi ter XIII(Leda ) found by C.T . Kowal 

on plo!ltes taken o n September, 1974, with the 1. 2- meter 

Schmidt telescope of the Palomo!lr Observatory . The visual 

magnitude of l.eda is approximat ely 20 and it is estimated to 

be less than 8 kilometers i n diameter . 

The main charact erist i c o f the Satellite s o f Jupiter are 

shown i n Tab l e 1.1 

, 



4 D'iNi'J.UCS OF 1HE G.\LILFM SATEI.LITES 

Table 1 . 1 - Jupiter ' s !:iatell i tcs 

V IIllulthea 

1 10 

11 Europ!! 

111 banyr.lede 

TV C'.allisto 

XlII l.ediI 

VI !lima} i~ 

x Lisythea 

VI! U..t!\.\ 

XII fllIitnKC 

Xl CarnIe 

VIn Pdziphae 

IX SillOpe 

Ser.U-major 

Axis (105kr.l) 

1.61 

4 . 12 

6 . 71 

In . 7 

18 . 8 

III 

115 

117 

117 

207 
224 

'" 237 

1: See Sr.:cti on [; . 4 

~~en­

u'ldty 

Inclination Period Visual 

(degrees) (mys) MagniTude 

0 . 0028 0. 5 

0 . 00'12 '" a.OL! 

0 . 00911i1 0 . 47 

vcll'.iable" D. EI 

0. 0073 0. 25 

0 . 11+8 27 . 8 

0. IS8 27 . 6 

0.130 29 . 0 

0 . 207 24 . 8 

0.169 

0 . 20 7 

0 . 378 

0 . 7.75 

147 ( - 33) 

161.1 (-15) 

11+5 (-35) 

153 (-27 ) 

o. So 

1. 77 

3. 55 

7. 16 

16. 7 

239 

'" ,GO 
260 

617 

'" 735 

75 8 

13 . 0 

5. 0 

5. 3 

4 . 6 

5. 6 

20 

14 . 8 

18. I.! 

16 . 4 

18 . 9 

18 . 0 

11.1 

18. 3 

For the Galilean satellites anrl Jupiter' V(AmalthO!:d) the in­

clination is referre d to the e'1ul!.toria l 1'1<3.0 (.' of Jupi ter. For 

the distant satellites the orbit.,1 plane of the planet is nore 

re l evant . The oscu l at i ng e(.!cen tri.ci't ie s o f Juplter 1(101, 

Jupi ter II (Europo!l) a nd Jupi l(.·r II I (Ganymede) are discus::.ed 

in Sect ion 6 . 4 . 

Sa'tellites VI lo XII were named in 1975 by the Working Group 

for Plane t a r y Sy::. t e rn Nomenc latuz 'c of t he International 

Astronomical Union . The names follow the traditi.ons estal;llished 

by the e:ds'ting name::. in the system . The name J..cda was pI'OpOSed 

by the discoverer o f Jupi'ter XI I T . The out~·!· s 4tel l itcu ",ith 

direct orbits have names endin e in a . The ou'ter s.ll el 1itell 
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wi~h retrograde orbi~s have names ending in e . 

If we class i fy t he satel l it~s by t~eir physical and orbi~a l 

parameters w~ find ~ ha t a l most all of ~hem bel one to one of 

thr"e g ro ups: 

( a ) GaLilean sate llites . Massiv~ sat~llites o r bit ing very 

close ~o t he p l anet in very regular equa t oria l orbi ts . 

(h) /ii",alia g1"ln,p . Small sa t e ll i t es with direct orbits a t 

,In a ve-ra g '" d i s T.;on CC o f about 11 million ki l ometers from the 

pl. . .lne t .... ·i th very s imilar inclinations and eccentricities . The 

similari t y of orbita l e l ements has indicated to some that the 

me mbers of t his group res u l 't from 'the same event . Capture has 

heen 5 ugee5 ~ed but th e app.;orent lac~ of l arge bri e h t ness 

var i at ions f or .;ony satell i~e and the unu sua l color of Jupiter 

VI (jolim.:ll i.:l) a rgue t h.:lt t hese s.:Itelli t es mily not be simp ly 

c<.<ptur<.:d .:I s te r·oids. 

(c) Puoiphuii gPOup. Very irn;,gu1.a.r g roup of "a t elli t es with 

r e trog.:l(.k orbits .:It .:In .:Ive r .:lge dist.:lnce of 22 million kilom­

eters from the planet, eccen t ri c , and incl ina t ed laO ~o 3So 

over t he orbit al p lan e of t he plane t . Jupiter VIIHPasiphaiO 

has the distinc~ion of a t taining a greater dis~ance from its 

primary t han o~h er k nown satellite in the Solar System; 33 

million kilometers. J upiter IX(Sinope) complele~ i t s revolution 

in 2 . 07 yaars and has the longest: period of r evolution alI.ong 

t he known p la neta~y sa te llites . There is almas, gene~al 

aereement ~ hat all of t hem must have been cap tu red, but so 

far there is no de~ailed theory which expl~ins the c apture 

of t hem . I t seems reasonable that there is a connection 

between t h e se sat ell:i~es and the Trojan s and i ~ is possible 

tha t th e sate lli tes are captured aster-aids; perhaps sho~tly 

f ollowi ng the Solar Sys ~em ' s origin, when the space de" si. ty 

of asteroids in the vicin ity of Jupiter ' s orbit WolS co nsLcI­

erably hi gher th.:ln it i s today. 

J upi t er V(Amalthea) is very sma l l and t oo far aw ol Y from the 

5 



, DYNAMICS OF TIlE GALILEAN SATElLITES 

first: group to be a memtJel' . It is thO!! only observed member o f 

another group of le~s massive Jovian satellites. 

Analy tical theories of the motion of outer sate llites arc 

difficult to derive since the eccl'ntricities and the r atio of 

the me<lln motions of the satellite and Jupi1:er are large. The 

mOGt curren t and efficie nt tool i$ numerica l integrationwh1dl 

gives an accuracy of <11 few arcseconds . Some noticed near ­

commen$urabilit tes of the satellites mean motions and the 

jovicl!ntric mean mo'tion of the SUIl . In fae '!:, the only 

noticeable Ucdl"- CClmme.nsurability fro m Table 1. 1 happens for 

Jupiter XII (Ananke) : " 12-7° 0=0 , 001 8 deg/day . This value is 

very sensitive to impl"ovements in the period of the Mtellit e 

a.nd , a.fter all, t he given determ i nation l a yc; over no more 

tna.n a. dozen revo lu tionc; (Ananke wa s d is cover~d in 1951) . 

A probable four teenth (latcllite , o f photovisual magnit ude 1.1 , 

September was picked up by Kowal with t he Schmidt telc=IJe 
on September-October, 19 75. Not enough observat ions were 

obtained to allow t he determination of an orbit f or this 

object , buta heliocentric orbit has been ruled out . It was 

hoped that mot'e observations could be obtained at the 

following oppositions of Jupiter , but no addit i onal 
observations have been reported . Pres umably this obj ect will 

be r~discovered at some opposition in the future . 

1 .3 THE GALILEAN SATELLITES 

The Gal i l ean satellites form with the Moon , Saturn YI(Titan) 

and Neptune I( Triton) a family of giant satellites with 

masses ranging from Sx 1025 g ( Europa) to l S~ 1025g (Tri ton, 

Titan and Ganymede) . The remain ing satel l ites in t he Solar 

System have masses at least 10 timec; smaller. Ganymede Io'OUld 

l:;ecompara:tively an easy nak ed-eye obj ect , were i t no t for the 

proximity o f the bright planet; the other Galilea ns woul d 
be near the limit. A very modest pair Of binoculd r~ will 
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reveal them all . 

The mosc ince~estine ~nd eas i ly observed phenomena of these 

bodies are their eclipses, t hei~ occultations and their ~sits 

across the diSK of the planet. Also, when one sa tel lite is in 
transit across t he diSK, the shadow it projects on the face 

o f the planet can generally be seen. 

The inner sate l lites pass through the shadow of Jupiter at 

superior conjunction, and across his disk at every inferior 

conjunction . C~llil';to is the only one that is far enough away 

fT'om the planet eveT' cO pass above or below the shadow and the 

disk when the con junctions are distant of the line of nodes 

of the sacellite orbit . 

The distances of Ganymede and Callisto are large enough to 

allow both disappearance and reappearance at a 

to be observed on the same side of the planet 

single eclipse 

when the angle 

between the Earth and the Sun, as seen from Jupiter, is 

sufficiencly laree . 

Twice each Jovian year (which is 11.85 Earth years long) the 

plane containing the satellite orbits passes through the Sun 

and for some th~ee to six months both the Sun and the Earth 
~emain close to that plane. Then, mutual occultations and 

mutual eclipses may h~ppen . Mutual phenomena are very impor­

tant since the i r observat ion provides us with the most 

precise data for the study of the motion of satellites 

The theory of the Galilean satellites is one of the most 

interesting in Celestial Mechanics. There is a conspicuous 

reliiition between the mean motion of the three inner Galilean 

satellit e:> ; 
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It W&" t rea ted with vrotound skill by La.place (see Chapter VIl). 

Emendations to thi~ theory were eiven by Souillart, Tisserand 

and Sampson. Modern imp!'ovcment:s a:ld results .:t.rc due to Hclr'~d.~n 

and Brown . Laplace shown that if "the mean longitudes and mean 

motions iH'1I! !;uc:h that the •. mile ~1- 3}.2"'V'3 differed a li'ttle 

f rom 180°, there was a minute ~estoring force arising from the 
mutual actions of the So!Itellites , tending to bring this angle 

toward the value 180° , Thus , oscillations will be produced in 

virtue of which the allgle wi 11 osc i llate very ~lowly on each 

side of the central va l ue . This is the phenomenOn called 
Libratiol1 of the Galilean satellites . 

Sampson's tolblelS (If the four greal satelU:tes , publi shed in 

19l 0, have for many ye~~s been the only available source for 

the prediction of the phenomena and of satellite positions. 

They &.re now 70 ye.u 'IJ old. New theor i es are no ,", under study 

in Br&.zil , France and United States . Samp~on ' s theory &.nd 

tables have been l'cvitalL .. ecl by J . Lieske ~t the Jet Propul­

sion Laboratory; Lieske 's subroutine~ package for the 
computation of ephemeris is the best available today . 

Current Jupiter orbiter mission plann i ng includes extens ivc 

use of gravitational fields of the Gali1ean satellites for 
dynamic orbit shaping to enhance scientific observation and 

mission performance . During the course of the nominal 
operational lifetime of such orbiters(l-2 years), some degree 

of active control based on real time adaptive orbit design 

must be in effect so to avoid prematu~e coll i sion with the 

satellites . Accuracy requirement s in the pos i tions of the 

Gal i lean satelli tes are 400 km i n the c~se of Voy ager land 

Voyager 2 missions. In these missions t he probes al"f! catapulted 
by the powerful Jovian gravity toward Saturn, Uranus and e ven 

Neptune, after close up photographic surveys of ,Jupiter . 

Accuracy requirements for the J upiter Orbiter Probe(GaU/.eO) 

aps 5till tighte~ ( SO- l OO kID) . 



TtmlOIX.CTlOO 9 

The evolution of 'thfl G&lile&n system i d open ques"t ion . Some 

c laims that t he observed resonances among the mean mo"tions are 

dUfl "to d i ssipative force'S like drag, efficient i n tilt.' early 

staees of 'the formation of th~ Solar System , and t ides . Somt.' , 

however , following idflas first ex~o'3cd by Roy and Ovenden on 

the occurrence of commensurable mean mo'tions in the Solar 

System , argue "tha"t conservative evolution is sufficieut to 

explain "the pr!!!sen"t si"tua"tio/l . Recent calculations show tha t: 

t:he t:im!!! of gravi"ta"tional cvolu"tion necessary to gct the sysTem 

close to the presellt configurat:ion, in which t11c time- mean of 

the a .;; tion associa.-ted wi"th the mutual i ntcr<loction of "the 

satellit es is a minimum, is closely comparablc with the age 

of the Sola[, System. 

REFERENCES AND NOTES 

1.1 The desC['iptioo of the discovm'Y of 'the satell.itt.'s is a t:NnSlat:ion 

of sane p.:uts of G.Jlilco ' s Sidol'tlus Nunciu.r(the Starry Ii::!ssengeT') 

published in veni<;e in 1610. 

1.2 [)at ... in Table 1.1 are lI'CS"tly from 

J . E. furns(cd.): 1977 , P~nsta1'Y SateUitec. Univ . Arizona 

Press , TucOClll . 

Data relative to the Galilean satellites ~ tlnse discussed in this 

"""k. 
See also 

H.Alfven and G.l\rrtclius : 1976. EllQlutiol'l "f th.J Solar Syst_. 

NASA sp-34~. WashinE'ton . 

1.3 The classical t:heory wed all along this century is 

R.A. Sampson : 1921 . ''Theory of "the Four' ~t Sa"tellitc!: of 

Jupiter", Mamotra R()yal AI1tt'Cn. SQc . , VoJ., OOIi . 

and its revitaliUltion 
J . Llcske: 1977, "'l1wory of M:>t: ion of Jupiter ' :> C-.'Ililean Sat­

ellites". Aatro>1. Aatroph:ya . fJ6,333 - 3S2. 
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The construct ion of ne'"" theot'ies, in progress, is r-ounded on 

S. fernil7.- Mi> l1o ; 19GG, "Recherches sur Ie Mouvement des 

Sdt e lli"tes Galileens de .Jupiter", Bull. Astronomiqutf, serie 

3,1, 287- 33 0 . 

J . L. S.:lgnicr: 197 3 , "Contribution a l ' etude dynamique du 

Sy~t&re Galil ecn de Jupiter" , Aat:ron. Aatrophys , 25, 113-124 . 

S . F"!'Iuz-~llo : 1974, "On t he Theory of the Galilean 

&i.tellites of Jupiter" i n Y. KoMi (ed . ) , TIIil Stability "I 

the SOu.u· Syutti111 and of S"'aU StnlZa!o Syatoms, D. Reidel, 

!)JnJrecht , pp. 167- 184. 

S. fer:'dZ-Mel1o : 19') ~> "A &o,-'ond-ot'der Theory of the 

Galilean Sat ellites of Jupi ter" in V. S7.el:::ehel y (ed.), 

Dynami~s of PZanets and Satel Zi t eu and Theorieu of their 

Motion, D. Reidel , lbrdrecht, pp . 209-236 . 

1'hO:.'OriC6 ~ing other t echniques a.re 

w. re Sit ter 1925, "New Mathema:tical Thoory of Jupiter's 

Satellite5~ Anna Z,m Sterrnwaaht Uiden , vol. XU . 

B.Marsden : 1956, "The Motions of "the Galilean Sa"tel lites of 

,r\lpi'ter ", Ph . D. Dissl3rtation, Yale University, New H.;i.ven . 

A ccrnple te study of 'the free oscillat:ions and long-period 

inequali Lies i s 
B. C. fu'q,.m : 1977 , ''The Long Period l3ehavior of t he Orl::>it!> of 

"the Galilean Sa'te llit:es of Jupiter", CeleBtial Mec hanic6, 

16, 229- 259. 

~'" nllI!'eI'ical result s are extensively lll;ed ill Chapters V 'to X 

f (fr sake o f ~T'ison . 



CHAPTER II 

TIII: EQUATIONS 

2.1 MurUAL I NTERACTIONS 

Before deriving the equations of variation of t he Keplerian 

elements we shall describe t he equations of the motion of a 

system of satellite!> in i ts more genera l vector' form. Let 

the central body and surrounding satellites be considered as 

a se t of n+1 poin t masses rna , m
l

, . . . ,m
n 

at the posi t:ions 
" . r O,rl ,. · · ,rn and t he distance between t:he two masses, m

i 
and 

mj , is given by r ij The force arising from mj and act:ing on 

m
i 

is 

the value of G depends on t:he 

distance (66'lO±S -11 
"10 ces 

(2 . 1) 

chosen units of mass, time and 

uni t s). The force 1 .. is radial 
"J 

and its absol ute value depends only on th e distance r .. and 
" J 

on extrinsic physical quantities (the masses) , In this case 

we have <,!"pl 'fij " o and ,he fOT'ce f
ij 

arises f!:'Om a force field 

whose potential is 

i.e. 

t • • -
' ".<.:1(1'. - 1'.) 
~J ~] 
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The above in~egra l is I
.... ... - 1 

equiill to - 1'i - r j I ,ond then 

The i ntegration conc;tant is determined by the normalizing 

condition Um Wij ;;; ll, I'ij ... 00 , which makes t he inteeration 

constant equal to :.:ero. Thus 

,:tad 

r.. ;;; grad w~) .• 
.I. ) r i " 

The operator p1'ad ha:; a v~ry precise meanine ; it is not 
r· • 

intrinsic since i t depends upon the origin wh ic h shal l be 

precisely defined. In t his c ase t he origin is at 

where 

grad 
ri 

• • 
= I'i-rj 

I'ij . 

(unit vector). Introduc ing a new operator 

we get 

\l •• w .. • 
.I.) 1] 

Then 

(2 . 7) 
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2.2 EQUII'l'IONS Of THE MOTION 

The 'tot:lII l fOl"ce; which lIIct:s on m. i, , 
• • Ii 11j 

rj - r i • , • r GrniJrlj , (2 . 3) 
I'i j 

where r i represent:s a sum over 'the subs cr ipt j for all j from 

a t:o n except:ed j=i. Using dist:ribut: ive properties of 

V- operat:ors we get: CUJ"l li=o • which shows that: t:he field in 

;1 ,u'i~ing [{'Om the superposit:ion of t:he indiv idual f ields 

~ s als o potential. I f 

o· 
n 
r r 

i= O j> i 

equations ('2 . 2) and (7 . 3) can be written "s , respe;c t:ive ly. 

and 

If the syst:em of reference is an i nertial Gali lean fz· .:unc, the 

Newton ' s l aws of mot ion are appli cable a nd the equatioll s o f 

the motion olrc 

n , 
j =O 

These e quations form a differential system of 6 (ntll- th order 

and they possess t en known first inte grals . 
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2, 3 PLANrTOCrNTRIC r QUAT I ONS 

In the case of a system of sate l lites (or a sys t em of planets) 

whos e ind i v idu~l m~~~ e s are ml ,m2 , . .. ,mn , orbiting around a 

ccnt L'~ l mil~sive body of mass mO where mi«mO (i=l , ... ,n), it 
is a wis e s te~ t o introduce a new reference frame whose 

origin is kept fi xed in the central mass and the axes arc kept 

p~L'~llel to those of the Galilean frame. In this Copern ican 

frame the accelerations are 

" " 0 

and the equation s of the motion a l'e 

n , 
j =0 

V
Oj 

H1'" 

These equa tions form a differential syst em o f the 6n - t n order. 

I f the solutions of equat ion (2 . 5) are known, the l aw of 

conserv~tion of momentum and the reduction to the centre of 

mass illlow us to have t he solution of the equations (2 . 4) . 

In astronomy this step is often unnecessary since in general 

only r elat i ve mot ions are considered. The Copern ican equations 

possess f our first integrals which are not as simple as in 

the Galilean frame and in practice their use do not lead 

any simp l e problem. Also, if they are used. the symme t r ica l 

and simp l e shape of equations (2 . 5) disappear. The on l y 

exception is t he case of three bodies for which Lagrange 

succeeded to rmntain the symmetrical shape of t he equa1: ions 

by means of a set of very suh1:1e transformations. 

Intr oducing nO and n defined by 

n , 
j =l 

1: "'ij 
j >i 
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we ha.ve 

and t he equa tions of motion of the sate l lite s in the Coper ­

nican planet oce n t r ic frame are 

(l • 
m. 

"""'" mo 
, 

j# i 
( 9 •• 0 t 

·1 

mi 
- V, O·O). 
. 0 J 

( 2 . 6 ) 

The forces in t he right-hand s i de are well known . We have 

the central Kcplcrian attract ion 

(l • 
mi 
- ) V· O• O · 0 • 

and the disturbing force 

( 2. 7) 
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I n the d i sturbi ng force , the f irs t term , referre d as direct 

distu:t'bing f ore, . account s fo r the direct act ion of all o t her 

sate l lites over the i - th s atellit e ; the s e cond term, referr ed 

a s indiroeat disturbing f01'CtJ, acco ull t::: for the count e rp;;ar t over 

the i - Lh sate l li te , of the act ion o f t he o ther satellites 

on the motion of the central body . 

2 .4 ROTATING fRAMES 

Let us consider a new frame whi ch is r otating with a cons tant 

angu lar velocity: with r espec t t o t he Copernican fr ame . The 

Corio lis theorem writes 
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We may 

of the 
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. . {. . . ) 
not~ce that curZ(w~ w~( ri- rO) ) =0 . 

ordinary ru les o f the vector triple 
Illdeed because 

product • 

. 
w 

Since ~ is const~nt. the last term on the right hand side of 

this equation is zero, and using the i nvariance pr operty of 
the sc:a\ac: t ripl e product we have 

Thus the curl of the centrifugal acce leration o f the i -t h 

satellite is zero . The centrifugal acceleration arises from 

the potent: ial 

i. e. 

the integration cons t an t is zero, which means that the 

cenTri fugal potentia l is normali:.:ed dnd is zero at the origin. 

We can st111 write: 

and the equations of the motion of the i - th satellite in the 

nelol f rarne a r e 



• t 
j;ti " • 'j' mi 

", - ) ., 
In this eqUdtion f>evera l V-operators have been used. To have 

a more homogeneous equation the direct and indirect d i stur­
bi ng forces a re to be modified.. By using the definitions of 

these opera tors we have 

• • 
t V j 0 

", 
~ V. , Gm

j 

r"i,I'j 

j;l!i ., , 
j Jf i 3 

r"jO 

and 

t Vi j " ~ Vi JL 
j#i 

m. mi , 

The equations of the motion become 

. -, 
ili + 2111 >1v i = 

or 

• •• a i • 2wxv . ~ , 
, (w><r. )2 Vi {i • , 

", . " mi 

G(mO-t llli ) 

riD 

, 
joH 

• • 

17 

(- '-
r .. 1". 

• , Om . ~)} (2 . 8) 

j li J r'ij I' j 0 
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2 . [, EQUA1'ION$ IN RO TA'l'1NG COORDINATES 

Dcpcmlil1g on the kind of s"t\ld y the ro"t.:ltil1g frame should he 
• emphasized . We mily "take t.) pcrpcndi<.:ul.J.r to the f;.mdam" nt"l 

plane of "the referencc sys t em and positively oriented. 

In retangular coordill<ltes the v-operator is 

, 
v. " (<lx. " , 

alGo;:; = (O,O,Nl, and the F.u.1erian equ<lliullS of the motion 

are 

'w. 
9i • 2N;'i ~ 

, 
tiYi 

aw. , . , , a ~ i 

where 

• • 
1 2 :.i '2 mO+mi _,_ r . . r' . 

w. ~ ., N(xi"'Yi) • G • , Gm. ( --'--1' , 
riO j # i J r . . 

' J r'jO 

Similarly, in cylindrica l coordinates "the Eu)"rian equations 

o f the motion are 

Pi Pi$i 
, 

2NPJi -

Pi"i • 2Pi~i 2NPi 
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2.6 APPLICATION TO THE CALILEAN SATeLLITES. 

All these w~ys of de~cribing t he motion of a system of 

satel lites have been used a t several occasions. In moderm 

theore tical studie s of the Galilean satellites the equa t ions 

rcferred to the Eule l'ian fraJlle have been preferred . The 

choice o f the rotation velocity of the fr~e is made on the 

grounds of one special fcature of the problem; 

The mean motions of the thr~~ 

inner sa telli tes are such that 

n l -2n 2 = n2- 2n 3 (2 . 9) 

19 

and the rotation is chosen in such a way that the mean llDti oos 

referred t o the Eulerian frame 

are such that 

The Eulerian equati ons of motion have played import&nt role 

in several class ical studies of the motion of the Hoon. Euler, 

in his pioneer work, referred the motion to a rotating frame 

whose rotation velocity was the sidereal mean motion of the 

Moon. G. W.Hill in his celebrated work, considers the same 

equations, but the frame rotates following the mean motion of 

the Sun. 

In the Laplacian theory of the Galilean satellites the equa ­

tions are Lagrange'S equ~tions of variation ~f the e lements. 

We will derive these equations, starting from the 

planetocentric equat ions of the moti on of the sate l l ites . 
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2.7 KEPLERIAN ELEMENTS 

If we neglect the mutually di s turbing action of the satellite~ 
the forces acting on each satellit e are reduced to 

( l+rni/mO)ViRO and resulting motion is described by an ellipse, 
t he centre of the planet be ing at its one focus. This is a two 
body probl~ and we as s ume t hat its sol u t ion is known: 

x " r{cos n cos(f+w) - cos I sin n sin(f+w) } 

y " r {sin n c06(f+w) i- cos I co , 0 sin(fi-IJ.\) } 

, " r sin I sin(fi-w) 

r " 
a, <l_e 2 ) 

H e cos f 

f = Z + 2~ s i n Z + ~ e 2 sin 2Z + .. . 

Z = nt+ CI 

(2 . 10) 

Through these equations the coo r dina t e s x,y, z of one sat el­
lite are related to the elements of its osculating orbit: the 

semi-major &xis a , the eccentricity e , the inclination I , 

the longitude of the ascending node 11, the argument of the 
perijove II) and t he mean anOMaly of the epoch 0. Ao auxiliary 

quantitie s are the true anomaly f , the mean anomaly l and 

the mea n motion n 

2 . 8 VARIATION OF THE ELEMENTS 

We shall also consider the i nver s e pr oblem, namely, t he 
determination of the s i x elements of a satellite orbit when . . ' . 
the position vector r and the correspond~ng veloc~ty v a re 

known. The calculation of the elements l eads for every 

or bital element Ci to a relation 
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(i ;1, ... ,6) and for i t s var i.!lt ion 

. 
~i = ~ ' VrCi t v,VVC1 

or 

(2 . 11l 

The subscripts ~ and v in the V- operators i ndi cate whether 

the grad i ent is taken wit h re ~pec t to the coordinates or to 

the componen l s of the vel ocity. 

Like Eulerian equations , the planetocentric equations (2 . 6) 

can also be transformed and the result would be the same if 

; was made equal to zero i n equat i ons (2 . B) . If for sake of 

simpl icity we write 

the pl~netocentric 

. . 
r i .1nstead 

motion are 

G(m,+m.) 
> , 

riO 

+ + 
of r i-rO ' t he equati ons f or 

(2.12 ) 
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In order to obtain the equations of variation of the elements 

of one satellite, l et the p1anetocentric equation of its 
motion be written as 

where FO represents the central Kep1erian attraction and R 

the distur bing force- func tion per unit mass. Equa tion (2 .lll 

then becomes 

In case of undis tur bed motion of the satellite the ele.ents 

Ci do not var y (Ci ;O) , and the following r elat ion must hold 
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The vA!'ia'tion of the elements then results 

i.e. 

Also 

and 

'Yk ,~ C. 
i "'-i ~ 

, , 
k i 

In an analogous way, considering that R does not depend on 

the velocities we have 

, , 
k i 

and we obtain the symmetrical equations 

• >R 
, [ej,c. ] Ci = Cle. 
i J. J 

wheN! [C
j 

,e
i 

] are Lagrange's brackets defined by 

(2.13) 

(2 . 14) 
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2.9 INVARIANCE or THE BRACXETS 

Thc calcu l\l sof the brackets offers it great deal of s~lifica­

t ion on account of the propcrTy 

(:2.15 ) 

lndecd, we have 

where the radius vector r and the accelera tion a are rela t ed 
to the osculating elements Ci through the solution of the 

problem of two bodies: 

'0 t hat 

aak 
~ 
, 

aCi j 

and 

a :: V f r 0 

aa k ax. 

>xjac7 

, , 
1< j 

~ , 
j 

a'r ax . a 
ac7 b

j
3xk 

The invariance of the brackets stated in equation (2.15) 

fol lows from the in variance of the above f ormulae to the 

exchange of the SUbscripts i and j . 

23 
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"2 . 10 LflGRANGE' S VARIATIONAL EQUATIONS 

The Lag~anee'6 brac ke ts may be calculated at a fixed point 

of the orbit ~nd th~ periapsis offers t he best point at which 

they s ]lould be considered . Computing all the derivatives we 

h.;tve 

[Il,a] 0 - [.:t,n] 0 ~. na cos I ,1{l - e 2 ) 

[w ,a] 0 - [a,w] 0 
1 
'1 na ,IO _e 2 ) 

[ .-,a] ~ - [ a ,cr] 0 
1 
;- na 

en"~ ] 0 - [e,n] 0 naZe 00' I J 1<1_e 2 ) 

[w,e] [ e ,w] 
, 

J lO _e "2 ) - 0 na , 

[n,I ] 0 - [I,n] 0 na' sin I ,In_e2 ) 

All other brackets are equal to zero. In obtaining the deriv ­

atives, Kep l er's law of areas may be used for calcula ting 

the time derivative of the t rue anomaly: 

Also , it mus t be kept in mind that the positions and velociti es 

depend on the semi-major axis not only explicitely through the 

radius ve ctor but also through the mean motion, which i s 

implici tely contained in the anomalies . 

Equations ('2 . 13) can be solved. The resulting set is that of 

Lagrange ' s equations for the variation of the osculating 

elements: 
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0 , ,. 
• , 

" n-

o ,10 _e 2 } OR, l_e 2 3R , , 
na 2e 

,. 
na2e ra 

I 1 , , 
,1(1-e2 ) 

(aR 
~ - cos I <lR) 

Ow (2.16) 
n. sin I 

0 , aR 1-. 
, 

3R 
0 , 

na <la ~ 3. 

0 ,10- e 2 )3R 1 3R 
w , 

na 2e 
",- , 

,1(1-e2) n n. tg I 

n , 1 ,. 
na 2 sin I ,1n-e2 ) ar 

These equations a~e the li~st-o~der equations of the motion 
in the phases rep~esentation space a. tl.I.o,w,n. The variations 

of the elements an:,> ve~y slow and, in first approximat ion, the 

motion may be obtained by keeping then as constants in the 

right - hand side of the equations. Nevertheless, before 
integrating, some modifications must be made in order to avoid 

Poisson terms, whose coefficients are monotonic functions of 

time. Indeed, in the FOUl"ier expansion of R the angl e a 

appears allways, th~ough the mean anomaly nt+a, among the 

arguments. Hence R will depend on the semi-major axis a ~ 

the coefficients and also through the arguments since ~ is a 

function of a. The series 3R/3a wi l l have poisson terms and 

they will give rise to unbounded pe~tubations in £. 

2.11 TtSSERAND ' S TRANSFORMATION 

In order to avoid this difficulty a new parameter at defi ned 

"' 



do 
dt 

, t dn 
dt 
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is introduced to o. The new equation~ for a and o r a re 

, OR a ~ 

I na 
'0 

. I 2 ( t)R ) l_e 2 OR 
0 ~ 

na 2e ,-na 'a n 

where {a/aa}n means that the derivative with respect t o a is 

made without including th e dependence through n in the ar­

guments: only the coefficien t ~ al'e d.ifferentiated. Also 

, 'R a ~ 

na n 

, 'R 1-_ 2 'R i ~ n -
'a na 2e ,-na (2 . 17) 

wi t h R=R{a,e,I,Z,w,Ol. These new equations demonstrate the 

need of a suplementary second-order equation when one uses the 

method of successive approximations for the integration , 

Indeed, to obtain an accurate solution up to the fir~ t powe r 

of t he disturbine masses it i s not sufficient to introduce 
for n in equation (2 . l 7) the undisturbed approxima t.ion ; it 

will not give account of the part of nt due to the varia tion 

of the mean motion n. While using the method of successive 

approximations, i n order to keep homogenei t y in the 
quant.ities involved in equation (2.17), the impr oved quan tit y 

n = !:!E. 
dt 

must be substituted ror the mean motion. Jt then £0110,,"," 
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<l'.. dn 3 " do 

dt' " dt " ., dt a 

or 

1 d , 3 aR (2 . 18 ) 

dt 2 " , 
0 " 

2 . 12 SHALL eCCeNTRICITIES AND INCL INATIONS 

In the mot ion of the Galilean satel l ites two important fe ­

atun~ !; mu!; t b~ <;!ons i de!'ed: 

and 

The orbits of the Galilean !;<ltellites 

are very close to circles. 

The orbits of the Galile<ln sa t el l i te s 

and the equator of J upiter lie very 

c l osely in the same p!<lne . 

In fact t he eccentricities are sm<lller than 0 . 01 and the 

inclinat ion of the individual orbi t <ll pl<.lnef; over the plAnet ' s 

equa tor i s not greater than 25 arc minu t e s (sin T < 0 . 01) . 

These fea tures el liminate the possibili t y of us e of the anom­

alie f; a s they depend in their definitions of the posi t ion of 

the perijoves , and for nearly circular orbi ts these posi t ions 

are poorly determined . We introduce the long itudes 

i\ :: l + (If 
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where i!t=1 .... fI is 'the longitude of tJIC pcrijove o f the ol"bi 1: consid­

e red. The two features describe d above also allow uS to use 

s i mp lified equaTions in which a ll quant ities involving squ.!l"es 

of the ""c<;,cntric i t i es or inclinations are Ileglected . 

simplified equations are 

and 

dol =- 2 ~ R 
dt na n 

d, • 1 
dt -,-

na , 

dr 1 

.. ,. 

.. 
dt • 

na 2 I '5?i 

whe re p is de t er mined ft'om 

dO 
dt = 

The :;c 

(2 . 19 ) 

(2 . 20 ) 

In equat i ons (2 . 19) a nd (2.20) R is a function of a . e .T,~,~.O . 

The appearance of e and I in denomina t or of some equations is 

inconvenien t since in the deal t problem the orbits have very 

small eccentricities and inclinations . It is then desirable 

to use different equdtions . Introduc ine non-singUlar variabl es 

dcfineu lJy 

h " e s i n (II" e cos (I! 

p " I sin n q = lC05(l 
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in the last two pairs of equations in (2 . 19), we have 

dh 1 >R d k 1 >R 
dt ~ ---, aK d t 

~ 

~ aFi na 

(2 . 2 1) 

* 
1 OR "" 1 OR 

~ --, . q dt 
~ 

nat 3p n a 

Practica lly we wi l l prefer ~o combine these variabl es in order 

~o hAve the complex variables k+ih and q+ip . The corresponding 
equ~ t ion s Are given in Section 4 .2 (eqn . 4 . 4) and 10.1 

(eqn . l0 . 3) r espective l y . 

RcrCRCNCES AND NOTES 

2 • 3 l.agrange I s reduction of the 3- body problem is expLrined in 

Y.Haeihana ; 1970 , C.I.8tial Mechanico, M.I.T. Press, Cambr~ 
Vol. I, Ol&p.V. 

2. 10 Equa:tions (2 . 16) are discussed in 
F.Tisserand : 1996, Traiti d, MeOOllique C6ZMta, Gau~hier, Paris, 

Vol. T, Chap. X. 

D. Bnouwer dnd G.M.Clenenoe ; 1951, MethodO oj Cdt.,tial Mechanic~ 

Academic Press, New 'fork. , Clap.XI . 



CHAPTER III 

THE DI STURBING FUNC~IONS 

3.1 FORCES ACTING ON THE SATELLITES 

Wh~lI satellites move around a c t:ntral point~mass the 

disturbing function of the sat ellite mi ha~ been shown to be 

, 
jH 

• • r· .r· 
~) . 

r' ] 

(3.1) 

For the four Galilean satellites of Jupiter other disturbing 

actions must be considered: the action of the Sun a nd the 

actions due to the great oblateness (1/15) of Jupiter . 

The disturbing function that corresponds to the solar action, 

like (3.1), may be written as 

i\.ro) 

r ' o 

where mO is the muss of the Sun , riO is the distance of t he 
satellite from the Sun and ]!:o is the jovicentric position of 

the Sun. 

The disturbing function which corresponds to the oblateness 

of the planet may be written as 

P (sin .p.) + ... (3 . 2) 
4 ~ 
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where M represenT" The mass of JupiTer , b i ts equatorial radius. 

J 2 and J 4 two nume r ical cocffic ients relaTed TO the shape of 

the cquipoten l i a l s o f Jupiter 's gravi tati onal field .;lnd ¢i 

the l at itude of the sate l l ite over Jupiter's equato l" P2 ;:ind 

P4 are Legendre polynomials 

I n thi~ book we cons idcr mainly the effects due to the second 

harmon i c. The fourTh !lormoll it.; may be considered e xactly i n 

the same way and it only modifies the re SUlTS quanTitat ively. 

On account: of IJ4 1« I J21 the se modificatiol"Gare very smal l. 

Other d isturbing effect:s which may be taken into account come 

from other planets , Sat:urn in particular. The planets disturb 

the orbita l motion o f Jupit:er and they make its orbital p l ane 
to oscillate . The oscil lat:ions o f Jupiter ' s orbital plane 

re sult inertia l f orces t:ha t: affect the mot i on of the saTellite 

since t hi s pla ne i s taken as reference plane. In addition, 

S.Jturn produces other s t J"'ong f!fff!c ts in Jupite r ' s orbi t : the 

J upiter-Sun distance does not f o l low closely Keple r laws and 
thus Satur n ac t s on the Galilean satellite orbits throu gh a 

modulat i on o f the solar f! ffects. This indirect action is 

incr eased by the near resonant: motion of planets Jupi ter a nd 

Saturn. 

The disturbing action o f othf!r s a tellites or Jupi t er may be 

neg lect:ed : the greatest is J upi ter V (Amalthea ), which moves 

inside the orbit of Jupiter 1 ( Io), and wh ich is some t en 

t:housa nd times smaller than t:he Galilean s~t:ellit es. 

Effects due t:o an eventual oblateness of the gravi tational 
fields of the Gali lean satellites are very small compared t o 

other effects and hence may be neglected. 



32 DYNAMICS OF TIlE GALI LEAN SATELLITIiS 

The only rela t ivis tic effect whi ch would be of worth co nsid ­

erat ion is the advance o f the perijoves of the innermost 

satellites. However, the inner satellites move in near c~ul~' 

orbi ts and their perijoves arc poorl y defined . The ~lativ.ist.ic 

modification of Kepler's third Idw ma.y not he detecte d because 

of low prec i s ion involved i n direct measurements o f t he mean 

distances of the satellite f r om the planet . 

3 . 2 EXPANSION OF THE SOLAR FORCE- FUNCTION 

To introduce the disturbing functions in the Lagrange's 

equations they must be ~itten as functions of the orbital 

elements of the satellites . Th i s task, usua l ly called expansion 

of the di sturbing function, is performed in several ways : For 

sola r action the force-function whi ch gives the disturbing 

a ct ion may be written as 

- 2 - 1/2 cos S) -

where S i s the angle between the jovicentric direct ions of the 

Sun and the satellite . Using j ovicentric coordinates 

cos S = 
XiX o + YiYO + zizO 

rirO 
(3 . 3) 

RiO may be expand<!d in t he form of a Taylor series .I.n the 

powers of rilrO whi ch is fact convergent since rilr O .I. S very 
small: i t has a value less than 1/400 for the f ourth satell i te 

for which r i has maximum value . So we have 

• , 
p =2 

C . 
(..1:.) p Pp(cos S) 
Co 

where.pp are Legendre polynomi als. The term cos S given by 
equa. tl.on (3 . 3) is easily calculated by substituting the values 

of the coordinates in the ellip t ic mot ion (equations 2.10) . 
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It should be emphasized that t he introduction of the 

co- ordinates as defin ed in the elliptic motion does not mean 

that we are using an approximation. Indeed, in Sect i on 2 . 8 

the t r ansformation of R into a function of the orbital elemtmts 

is made hy llsine the solutions of the undisturbed problem , 

'that is , l!!quations (2 . 10) . Then 

cos, 
1 . I 

t '1 SID 0 

where we have i ntroduced the true l ongitudes 

It is worthwhile to note that when "the orbi't of Jupiter is 

taken as refeI'ence plane (1
0
"°). we get the s implified~s­

sion 

cos S 

For t he Sun ~nd "the Gal ill!!an satl!!lli t es the eecentI'ici'ties 

and inclinations are small and hence we may use the approx­

imate I'e l ati ons: 
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, . , . 2..,. !iino. C~i ) 
5 2 sin 2o. i - !IIi) " • • ;; ~i , , , 

ai{l • 1 2 coso,i - tIl'"i) 
1 2 2(A i - !I1i)} 

"i " 'i - ,. - ~ 'i co ~ 
• 2 , 

t'i{cOS 'i 
1 I . 2 sin o. cino,i - rzi)} O,Li) x· " • ., , , , 

Limiting ourcelve c to Rio (since ri/rO is very smal l), it 

follows 

. ~ ' i 

• .ll e. , , 

cos o.. - IjJ· ) , , 

COS(2AO-J Ait!lli) 

2 cO!i(21 0 - 2!11i) 

. * IiIO cosHli- OO) • 

(3.5) 

, 
e i COS(2A O- Ai - lDi) 

" 
3 (I. 2. I 2) - f , 0 

3 
Ii 
, 

coS<HO - 20 i ) f 



, 
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3 . 3 EXPANSION OF THE JUPITER ' S FORCE- FUNCT ION 

To develop the f o rce - function RiJ le~ ~he equator o f Jupiter 
be cons idered. Let ~i a nd ~i be the la~itude!i of the satellites 
wit h respect to the pla ne t ' s equator and the reference plane 
respectively (see Figure 3 . 1 ) . 

ORBIT 

FIQure 3 . I 

A and B a re the a:;ccndinE nodes of the equa t orial and orbita l 
planes in the refer ence plane, respective ly, and fl i and Q 
a r e their longi tudes reckoned from a fixed or igi n O. We have 

Be '" BD = 6i 
AE :: 6 i - i"I 

Exeep~ qua ntities that are proportional t o the third powers 

o f t he i ncl i nations, 

(3 . 5) 

T~lus 
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Qnd the second harmonic of Jupiter ' s force-function is 

3 
'2" GMJ 2 

In view of equations <3 . 4) : 

Thus 

9 . ~ 
3 . ~ 1.' , 

3.4 l..Jl.PLACE CO:EffICIENTS 

3 (! . 2 
~ , 

3 -, 
"1 I cos 

In planetary theories, the expansion of Rij invo lves some 

classical procedures. The procedure described in Sect i on 3.2 

to develop RiO can not be used because t he r atio of distances 

I'i/rj is a l arge quantity and the expansion in Legendre 

polynomia ls for such case converges very slowly; this results 

a large amount of terms to be considered in or der to get a 

good approximation . 

We have 
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S .. )-1/2 
.J 

co, 

(3 . 7 ) 

where Sij is the ~ngle between the jovicentric directions of 

t he two satell ites .involved . To expand it we need t he 

classical coefficient s A~j and B~j defi ned by the expressions: 

, , S} -1/2 1 .- k {a
i • "j 2aiaj cos ~ 

~ 
, 

Ai j co, kS 
, " 

(3 . 8) , , S} - 3/2 1 .- k 
a i aj{ a i • 'j 2a i a j 

co, ~ 2 
, 

Bij co, kS 

and related to t he Laplace coefficients . In genera l , for a 

given a(O<a<1l , we define 
'. 

(3.9) 

where the b~ are the Laplace coefficient s . They lire the 

the expansion of (l • 2 -, 
coefficients of " 

, 20 cos S) in a 

Fouri e r s e ries: 

,. 
bO 

~ ! J , • (l • "' - 20 cos S) - s dS 

0 
(3 . 10 ) 

b' 1 r (1 • "' 
" kS dS ~ - 20 cos S ) cos , • 

0 

To study some analytical properties of the Laplace coefficients 

we introduce a new parameter z defined by 

z '" exp is. 
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Thus 

Since iz l - l ~nd u~l the Taylor expans ions of thc terms 

(lrUZ)-s dnd (l_~z-l}-s are convergent; 

-, (l-az) _! +asz + s(s+l) 
2 ! 

s(s+ll ... (S+k~\) k k 
+ .•• + k! . a z + ... 

5(S +1) 
2 ! 

2 - 2 " , 
t s(s tl) ••• (s+J..~\) k -k 

t... k ! (1 z + ... 

and the Laplace coefficients are 

and 

~ s(s+l) ... (stkrl) 
k! 

s(stk) (12 

'" 
(3.11 ) 

s{stl) 
• 2 

(s+k)(s+k+ll" ) 
0 •. +1)(k+2) CI + .... 

Some usefull reourrence formulae can be derived from 

, 1 }-' {l + a - a(z + zl 
0.12) 
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I ndeed, we have 

'0 

:>(:1.[ 1 , .2 - a', .l) }-s - 1 n ~)~ , , 1 bk '-1 
! 

, 
" (3 . 13 ) , , - 0 

0" 

'0 

bk zk)( 1 1 ) 2 .!)} 
,-

bk kzk-1 ,., , - 0 (l , " - a' , , , , ,- , , , - 0 

Equating the ' coefficients of powers of z on both sides ( and 

shifting the subscripts inside each summation) we obtain 

(J . H) 

eq .,.a tion (3.13) C.:Ifl also be written as 

,- ,-, --
wh ich gives 

0 . 15) 

The derivlltives of bl< can be obtained from equ<ltioll (3 . 12), , 
which e i ves 

- , - ~) = ~ +~ 
'0 

equlltine t he coefficients of powers of z on both sides we 

Obtain 

(3.16 ) 
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3.5 NUMERICAL VALUES FOR THE GALII.EAIl SATELLITES 

To get valu<.::> of the numerical coe f fic.i<.:llt s which corresponds 

t o the Ga l ilean :;;atcllitc("; we have to fix some CO!l:;;tant("; of 

the motion. Adopting the val ucs cs~ahl ished in Section ~.6 

for the oscu lating semi - major a~es we ob~ain the numerical 

value!; tAbulat e d in Table s 3.1 to 3 . 9 

Table 3 .1 - Values of a 

i- i 1-3 2 - 11 1 - 4 

a 0 . 628 44 0 .62688 0.56855 0 . 39396 0 . 356~2 0.22399 

7able 3 . 2 - Value s of hk 
112 

k 1-2 2 - ' 3- 11 1-' 2-4 1 - 4 

0 2.2588 2 . 25 70 2 . 1998 2 .0852 2 .0685 2.0258 

1 0 . 75112 0 . 7515 0 . 6558 0 . 4194 0 . 3749 0. 228 3 

2 0.3631 0.3608 0 . 28 1+ 3 0 .1 21+8 0.1008 0 . 0384 

3 0 .1923 0 . 1906 0 . 1358 0 . 0411 0 .0300 0.0072 

4 0.1064 0 . 105 3 0 . 0679 0 . 01 4 2 0 . 0091+ 0 . 0014 

5 0.0605 0 . 0597 0 . 03 119 0 . 0050 0 . 0030 0. 0 003 

, 0 . 0350 0 . 03 1+4 0 . 0182 0.0018 0 . 0010 0.00 01 
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Table 3,3 Values of k - b 3/2 

k 1 - 2 2- 3 3-4 1-3 2-4 1- 4 

a 6 . 0112 5.9151 4 . 1216 2.9122 2 . 7085 2.2446 

1 4.BBI0 4 . B390 3 . 5670 1. 6232 1.3804 0.7 4 01 

2 3.6170 3.5 783 2. 11206 0.7830 0.6048 0. 2 059 

3 2.5599 2.5 ~55 1. 5558 0 . 3551 0 . 2494 0.0536 

4 1. 7814 1.7541 0 . 9610 0 .1558 0 . 0 9 95 0 . 0135 

5 1.2148 1.1934 0 . 6109 0 . 0677 0 . 0 389 0 .0033 

6 O.81B9 0.8025 0 . 3734 0 .0288 O. OlSO 0,0008 

, k 

Table 3 ,4 - Values of 
dbl !2 
---;rQ 

k 1 - 2 2-3 3- 4 1- ' 2-4 1-4 

0 1.0996 1. 0930 0 . B791 0 .4 760 0 .4151 0. 2 373 

1 1.14 91 1. 7435 1. 5461 1.20Bl 1.1646 1. 0595 

, 1.452 4 1. 4 44 5 1.1906 0 . 6812 0.5993 0.3508 

3 1 . 0 842 1. 0761 0,B130 0 .32 96 0,2633 0 . 0977 

4 0,7729 0 . 7653 0 . 5271 0.150 1 0 .1087 0 . 0255 

5 0 . 5367 0 ,53 02 0 .3 329 0 . 0661 0 . 01l34 0 . 0064 

6 0 . 3664 0.36lJ 0 . 2062 0.0 2 86 0.0169 0.0016 
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, k 

Table 3 . 5 - Value;; of 
d h1 /2 

do
2 

k 1-' 2- 3 3-' l-3 2- ' 1 -' 

0 Lj . 2675 4.2322 3 . 1815 1. 7041 L 5438 1.1852 

1 4. 0064 3 . 3700 2 . 8 7 61+ 1. 2588 1. 0639 0 . 5& 10 

, 'I. 9815 1i . 9Li6' 3.841+5 2 . 2703 2 . 0967 1. 7048 

J 5 . 2262 5 . 1848 3.9191 1. 9038 1.637 5 0 . 9061 

, I; • a 641 1i .8185 3 .4 215 1. 2402 0 .97 58 0 .34 91 

5 4 . 1897 4 .1 L!28 2 . 7234 0 . 7122 0 . 5099 0.1163 

, 3 .4 228 3 . 3774 2 . 040 7 0 . 3792 0 . 2 4 65 0 . 0356 

Table 3 , - Values of 
k 

Aij 

k 1-2 ' -3 3-' ] - ~ 41-4 1-4 

0 0 . 2 4035 O. l S051i 0 . 0834) 0 . 13909 0 . 07845 0 . 07683 

1 0 . OB025 0 . 05013 0 . 02487 0 . 02 798 0.014 22 0.00966 

, 0 .0386 4 a.OHO? 0 . 01078 0 . 00832 0 . 00382 Q. OOILjI;i 

3 0 . 02046 0 . 01271 0.00515 0 . 00274 O. OOU II 0 . 00027 

, 0.01133 0 . 00 702 0 . 002 58 0 . 00095 0 . 00036 0.00005 

5 0 . 00644 0.00398 o. 0013 2 0 . 00034 0.00011 0.00001 

, 0.00372 0.00229 0 . 00069 0.00012 0.000011 
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Tabl e ' .7 - Va lues of B~. 
') 

x 1 -2 2 - ' , - 4 1- ) 2 - 4 1-4 

, 0.'+0237 0 . 2'+999 0 . 101':111 0 . 07653 0 . 03661 0 . 01907 

1 0 . 32639 0 . 20235 0.07691 0 . 04 266 0 . 019tjtj 0 . 0062':1 

2 0. 241 87 o .14 9(jJ 0 . 0521!.! 0 . 02058 0 .00818 0 . 0017 5 

J 0 . 17185 0 .1 0607 0 . 033 7 9 0 . 00936 0.00337 0 . 000'+6 

" 0 .11912 0 . 07J 35 0.02128 0 . 00412 0 . 0013'+ 0.00012 

, 5 0 . 08123 0 . 0'+990 0.01317 0 . 00178 0 .0 0052 0.00003 , 0 . 05476 0 . 03356 0 . 00805 0.00076 0 . 00020 0 . 00001 

, k 

TAble ' .8 - Va l uI<9 of 4. 
dAij 

(<1.
i

<:4
j

) , do. , 

x 1- 2 2-' 3-4 1-3 2-4 1- 4 

0 0.0'1353 0 . 011570 0 . 018':15 0 . 01250 0.00561 0.00201 

1 0.11 700 0 . 0 7 2 91 0 . 03335 0.03175 0 . 0157 4 0. 00900 

2 0 . 09 71 2 0 . 060'+1 0 . 02567 0.01790 0.00810 0 . 00298 

, 0 . 0 7 250 0 . 01j1199 0 . 01 7 !>3 0.0066 6 0 . 0035 6 0.000S3 

4 0,05166 0.0 3200 0 . 01138 0 . 00395 0.001 47 0. 00022 

5 0.03599 0 . 02217 0 .0 0718 0.00171.1 0.00058 0.00005 

, 0 . 02 1+50 U. OUi lO 0 . 00411~ 0 . 00075 0 . 00013 O, OOOUI 
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2 k 

Tablc 3.9 -
'2 d A . . 

Values of a . --2:l (a.<a .) 
1 da . 2 ~ ] , 

k 1-2 2-3 3-" 1- 3 2- " 1-' 

0 0.17!)32 0 . 11094 0 . OJ900 0 . 01754 0 . 0074 4 0 . 00226 

1 0 . l GR36 0 . 10407 0 . 03526 0.01303 0 . 00512 0 .0 0107 

2 0.209 11 2 0 . 12967 0.01l7l3 0 . 02350 0 . 0101 0 0.00324 

3 0 . 21962 0 . 1 3591 O. OllSOli 0 . 01971 O. 00 'n~!9 0 . 00172 

" O. 2 01l1l1 0.12631 0 . 04194 0. 01284 0 . 0 0470 0 . 00066 

5 0. 1 76 07 0.1086 0 0 . 03~3a 0.00 7 37 0 . 002 4 6 0 . 00022 

5 0 . 14 383 O. O88!:>3 0.02502 0 . 0 0 3S3 0 . 00119 0 . 00007 

3 .6 THE FORCE - FUNCTION OF THE MUTUAL INTERACTIONS 

The dis~urbing func~ion Rij defined by equa~ion (3 .7 ) consis~s 

of ~wo par~s which depend only on ~he ~ ~o rd i n a ~e ~ of ~he ~wo 

s~~ell i~ es . These par~s are: 

" 2 , 
S .. }-lIZ 

r ij • (ri + r. 2r . r . 00' 
J , J 'l 

r . 
Q • 

, 
cos S .. --, 

'J rj 

and t hey can be expressed in power series of ~he eccen t rici"t i es 

and inclinationsi the eompu"ta~ians are confined up to firs"t ­

degree termr; and t o second - degree longi"tude independ e n"t "terms . 

fol.lowing sec "t ion . .1 . 2 we have 



1l1S'llJItBll',\; FU:-.l:TIU-.s .s 

'I. I . . '2 Ii 
(l-Sl.n -i-sm T+ 

'2 I. '2 1. 
+ sin ....J. COS _,1 cos(9. +9. - 2f1.) 

2 ~ J J 
(3.11) 

2 I 2 I. 
+ ::ilJl J, ,in ,1 COS(O . -O . - 2[J . +2[J.) 

1 J ~ ) 

It: is worth noting that cos Sij is equal to cos (e i - e j 1 ~pt 

for quantities which are at least proportional to the square 

of the inclinations. We can write 

(3 .18) 

Tn order 'to introduce the Laplace coeffici entS we lDay consider 

the Taylor expansions: 

, 
+ rj 

<lp .• 

+ :ia~ J 
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where for simplicit:y WI'! put 

We also conside r t he 1 i,nlited expanGions 

,,' 

(3.19) 

where are longit:ude independen t t erms of second degree: 

if I k I 0 1 

I t then f ollows 
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-112 cos(e. -e .)} , J 

3A~ 
- " -",'11) cos{(k+lll.-k.X. 4I1.} 
~ 1 J1 

47 

( 3. 20) 

In the calculations the summations are applied to k from _m 

t o +_ and when nee ded k was interchanged with - k. This 

~echnique allows to identify several terms and t o have a more 

concise result . In the sa.mc way the rerroin.i..ng part of 

equatio n (3 . 1 6) reduces to 

{I.2 + I2 
, j 

(3.21) 

The combination of equations (3 . 20) and ( 3. 21 ) Sives the 

expansion of ri~ . 

We will now develop the other part of the disturbing f uncticn. 

fl'om equations (3.1.j),(3.17) and (3 . 19 ) it is evident that 
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r i - cos rf 

;. e. ms(2J...-)..-a!.) 
L l. ....) 1 
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( 3 .22) 

The final expansion is ~hen given by 

Rij = Gm
j 

f eqn(3. 20) .. eqn.(3.Zl) .. eqn.( 3 .22)} 

Souillart in hi~ ~tudy of the theory of Laplace has shown 

'tha t because of the small divisors n l - 2n 2 and "2-2n3' it is 

!lece ssary to keep in eq uat i ons (3 . 20) and (3. 21) the second­

degree terms which arguments are 4).,2-2).1 and 4).3 - 2).2 ' 

They are 

1 2 2 
t I e j (26 Aij 

;M~ . 
.. 14 4.; ..::..:...:!..l .. .. 3aj 

aA~ . 
- 10aj ~" 

) 

2 
'j 

" ) 

cos (~j - 2).i"'1l1i -al'j) 

(3 . 23) 
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On the other hand the 3 : "' commensurAbility of Jupi t er lIT 

(C.:tnymede) and Jupiter IV (Calli::;to) mu"t a l so be r:onsider ed. 

1n 189 2 de Ha>'lrd1: 1 showe d th<lt the mean m01:ions of t hese 

sate ll ites a r e sur:h th.!!"!: 3n
3

- 7n 4 is B small divisor(Ij . 044676 

degrees per ddY) W11.leh causes a significan t inc r..:",,,e in the 

amplitudes of the cOL"I"e:;ponding inequalities. The Ul<lin terms 

in the dist urbing funr:t ion with this argument are: 

49 

2 

" C3. 24 ) 

~ + 54 t 5100 0. 3 

• OS 

3 . 7 SOME SIMPLIFICATIONS 

+ 837 

o 0 
4 a A34 

" --oj 3., OOS (7A !I -3A3-a!3-~ ) 

5 
~A34 '2 
~ + 782 a, ", 

o 5 
" ~ A34 

" --o- J 3., 

The equa tion s of Sec t ion 3.6 may be simplified i f come 

cl<lssical resul1:S on Laplace coefficients are used . We may 

exclude all der i vatives with respect to a j ; we have 



so 

and 

then 

an1.l 

3A~. 
~ aa i 

~A~. 
aa~] 

k 
Ai) , ' j 

aA~. 
aa~J • 

, k 
.. a Ai ' " .) ~ 
J~ 

) 

~ 

~ 

" 
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k 
1 dbl/2 
~ 
'j 

""""do-

k 
~~ db1 / 2 
a. do. 

) 

3A~. 
5a:) ~ 0 

, 
" 

• 

" • 

k 
b 1 /2) 

(3.25) 

(3 . 26 ) 

The equation (3 . 16) allow us to write the formula 

, k 
d b1/2 k 3 k-' k-1 , k 

da 2 
~ b 3/2 • ii {bS / 2 - '" b 512 • ( 2 H a )b 511 

- '" bk +1 
5/' • bk+2 } 

51? 

which has been used to ee'!: the values shown in Table 3 . 5 . 

Combining equation (3.15) with 
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k 3 k- l 
b 3/2 = 2k-3 {2~ b S/2 

we ob~ain ~he following important re l ation 

~ha~ is, 

, 
". " 

. '" 

51 

for k=O and k=l , the left-hand side of ~his equat i on appears 

in equa~ion (3 .2 0) that m<l.y be ... ritten as 

- 2r·r. 
" J 

1 • "1 e i 

• 1 
"1 e j 

cos(e. _e.) - 1/2 
" J 

.. , k 
(2k. Aij di 

. -
{Ok+ l)A~ . , • -- "J 

= t .-
aA~ . 
.t'-' cos { (k+1».i -k).r"-ari ) a. 

" 

tIA~ . 
di 

--'--U} (X)${JO ... - (l<:+ 1)~ .+cIl. } 
J<li " J J 

(3. 2 7 ) 

The terms introduced by Souillart in equation (3 . 20) may be 

written as 
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1 3 
~A~. 2 

'J2A~ . 
e i e

j
C42 14 -"- , ,.--f ) =S(4)'j~ni-crri...,,;rj ) ;; Aij 

, a i oa i 
ai 

i1ai 

1 e/OB , "A~ . 2 
a2~ . , 

8 Ai j • 14 a i :la~J , a i 
~) COS(4A j -:V' i -2(C"j) O.2e} 
/la. 2 , 

In equations (3.27) and (3 . 26) i~ must be kept in mind that 

i sta nds for the inner sat el l ite and j for the ou t er satellite· 

As t'ij is symmetrical with respect to these indices they are 
i nterchanged in such 11 wily that the derivatives are always 

made with respect to the semi-major axis of the inner 

satelli te . 

In a straiehtforwllrd wa y the main Laplace coefficients may 

be obtained from tables of ell i ptic integrals and from t he 
recurrence formu l a ( 3.14) . From equation (3 . 10) we ha ve 

2~ 

bO 1 J (l + 0. 2 - 20. cos 5) - 1 /2 dS 
1/2 "11 0 

2~ 

b ' 1 J (1 + 0.
2 

- 2a 
1/2 "11 0 

-1/2 cos S) cos s oS 

A new variable defined by the transforma tion of Lapde n : 

cos S 
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l eads t o 

and thus become 

~ sin2x dx 4 K(~) - E(~ ) 
,1(l_0.2sin2x} = i 0'. 

whe re K(o.) ~nd £(0.) are complete elliptic integrals of first 

and second k ind respectively. It is important to note that 

round-off errors propagat e s very fas t in the recurrence 

formulae and that where precision is required the series 

(3.11) must be pre f erred . 

RF.FF. RENCES AND NOTES 

3.1 Effects due to tl"K? oblateness of the satellit es and relativistic 

effect s are discussed in 

3. 3 

S.FeT'l"az:-Mello : 1966, "RecherchE!s sur Ie I'buvement des 

Satellites G3.lileens de Jupiter", BuH . Astronomiqus, 

Serie 3,1 , 287-330 . 

For applicat ions we have considered also some second-order effects 

of the plMe ts's potential calculated by 

H. Kinoshita : 19;17, ''Third-0rder Solution of en Artificial­
Satellite 'Theory" Smiths. Astrophye . Ooo.Spe<! . Rep . 379 . 
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J . ~ In lI\JIly classical texts superscripts an!. <llways put inside brackets. 

This is not the case of this rook. The difference between powers 

and superscripts is always evident and I!n addition<ll graphic 

distinction did not seem to be necessary. 

3. 6 Some modifications follow 

O.D"Liobel<. : 1962, Mathfmatiaal TMOry of Planetary MotionB , 

Cover reprint, New Yor+:., Section 26 . 

(Note thl!:t Dziobekts expression for H;I.. in equation (J) needs the 

correction of a signal ) . 

The terms in (3 . 2") are fran 

G. de Ponteroulant : lS3~, " T/lt:o"/'1:e A>1<lZlltique du Systeme du 

Monde"B:l.chel if'..r, Paris, Vol.III,p . 33. 
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CHAPTER IV 

I NEQUALITIES OF PLANETARY TYPE 

4 .1 VARIATIONS IN SEMI - MAJOR AXIS AND MEAN LONGITUDE 

Shor~ periodic incqual t~ies of pl~net~ry ~ype arise from ~he 
main part of the mu tua l interac~ions f o r ce- f unctions: 

1 Gmj 
, 

1 

1 • 1 Gmje i 

k 
Aij co, Jd .l. ·->'· ) 

• J 

, k ( 2kAi j - " 
aA~ . 
~) COS{(k+ l) >' i-kA j -~i l 

• 
3A~. 
~) + a; , 

... <1 i 

1 - ... e ; cos(2.\ . - A. - 41.) 
( ... 1.. ) 1.. 

which may be writt en as 

(II .1) 

Where R~. , R~ . and R~j ~enote the eccentricity in~ependent 
1.. J 1..J l-

terms , the t erms that depl'lnd on ei and the terms tha~ depen:l 
On e .• respect ively . In the s ununat ions i n (4.1) t heconst.mt: 

J 
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term } GmjA~j and ~he terms whose argu~ent comprises 2~2 -Al or 

2.1. 3->-2 are excluded. The term X=O in R~j is also exc luded . 

In a first-order theory the "effect of each term may be consid 
o -

ered separately . Rij contributes only to the first pair of 
Lagrange equations and to the complementary equation (2.20). 

W. have 

3R~. I 3R9. da i , a:<J 
dE: i 

" -'-~ dt 
~ 

<it nidi nidi , 
and 

, 
aR9. d Pi 3 

dT " --. a x~J a. , 

Then 

dai ~ , k 
<it " kAij nidi 

sin K(),i-Aj) , ~ 
nia j 

sinO'i-Aj) 

dE~ Gmj 
k 2Gm . • , aAii 

)<;().i-),j) , J coso.'i-Aj) <it aa i 
co, , n·d . • • ni4i4j 

, 
Gm

j ~ d Pi 3 , k sin kO'i-Aj) !'linO'i -A j ). dT 
~ ., kAij -

ai aiaj 

We assume in the right hand sides a Keplerl.an approxi!M.tion: 

all the elements, except the longitudes , are constant, and 
the longitudes are linear functions of the time {}" "nt+!;:) .The 

result of integr~tion is 
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Gm j 
k 

k(,1.i -}.j) _ COS(,1.i - L ) Aij eo. 2Gm. 
05a i 

~ 
, 

~ 
. J 

ni.!li ni-n j niaj "i- nj 

:'l 
k sin Jd,1.i- ,1. j) 2Gm

j 
sin{}.. - ,1.. ) 

I aAij 
05&i ~ , • • l 

ni<l.i aai )o:( 0i - n
j

) , 
ni- n j "i.:J.ia j 

k sin )c{}.i - l.j) 3Glllj si n(.L - l.. ) 
• , Aij • • l t~ 6Pi , , , 

a i k(ni - n j ) iii a j (n i - n
j

) 

~ . 2 VARIATIONS IN ECCeNTRICITY AND PERIJOVE 

i Rij contributes t o the first two pairs of Lagrange equations , 
The contribution to the fi rst pair of equations is very small 
and may he ignored ; indeed , the eccentricity of the disturbed 
satellite is a factor in all t he results. an~ in the Gal ilean 
system the eccentricities are very small . The onl y terms 
wh ich may be of interest in constructing a theory with the 
purpose of having good ephemeride:l are tho::;e which inclu,jf 
e4 (0 . 007) . However, if they are consi~ered. we have to consLd­

er also the perturbation in e i alld ~i arisinR; from terms of 
secon,j ,jegree in the eccentricities. 

Si nce the eccentric ity of the Galilean satellites is extremely 
small the second pa.ir of I..a.grange equations will be considered 

i n its modi fied form: 

(4 .2) 

and 
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(4 , :3) 

The summation in equation (11 .3 ) was wl"'itten under the 

assumption that i represents "the inn!!;!" satellite; otherwise, 

inside t he summation, $ubscl"'ip'ts i and j must permute. 

For simplificat ion we introduce the complex parameter 

Equat ions (4 . 2) become 

dl;i 1 
aR~. aR~. 

d< 0 ----, (~ - i r' niai hi , 

or 

de i , aR~. i 
3R~. 

at 0 ----, (~ • ~, exp illTi · 
niai , 'i ami 

(Ii. Ii) 

Then we have 
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On in tegration wc get 

a· , 
exp i{(k+ l) ~ i -k~j} 

(k +lln. - kn. 
• l 

Rlj will contribute only to the first pair of l...:J.gr .:ltlgc 
equations and is negl igible ; inde ed the eccentricity of the 

distur bing sate l l ite wi l l be a factor in all the results a nd 
it i s ve r v small . 

1i .3 INEQUALITIES IN LONGI'1'UDE AND RADIUS VECTOR 

From the preceding results we may cal culate the short 

period inequa lities cf planetary t ype whic h will affect the 

radius vector and the lOngitude of the satellites . 

Int:roduc ing .h and Ie in t he eq!..la'tions 0 . 4) for thfl longitude 

a nd radius vee'to:r and l i mit ing 'to first degree 'terms we 

Obtain 

S9 
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0 

Tabl e 4. 1 - Coefficients of 0'J6 k(\-~j) in 5I'i(,mits 10- '<li ) 

Satellite I Sa:telli te n Satellite III Satellite IV 
k 

1- 2 1-3 1-4 2-1 2- 3 2- 4 3- 1 3-2 3- ' 4- 1 4- 2 4- 3 

1 +209 +107 '14 +129 +633 . 55 t192 +398 + 291 +105 ' 93 +980 

2 .211 -146 , + 307 +638 -6. • 6 +162 -17l1.2 • 2 +178 , -184 18 - 1 
• 73 

- 546 - 7 • 1 
• 38 

- 154 " 2 

4 - 48 4 
• 2S 

- 144 - 1 .13 41 '13 

5 -18 1 
• 10 

- 52 • 5 14 • 5 

Table 4.2 - Coefficients of sin k(Ai- A
j

) in 66i (units 10- ') i 
Satellite I Satellite II Satellit e III Satellite IV f:l 

k ~ 
1- 2 1- ' 1-4 2-1 2- 3 1-4 '-1 3-2 3-4 4- 1 4- 2 4-' 

1 - 753 - 269 - 32 +237 - 2271 - 135 - 179 +136 - 934 - 105 - 90 +395 ~ 
2 -684 +228 >14 +389 - 2064 ." • 5 +205 +3188 • 1 t197 ~ -3 +265 . " ., ' 16 + 849 ." • 1 . 41 + 2211 '41 ~ 
4 .65 • 4 

• 25 
. ,,. • 2 + 13 • " .13 

5 • 22 +1 
• 10 • 6S • 5 • 17 • 5 ~ --ffi 
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Their differcn tials, to th, first degree in tho eccentricity 

'"' 
o5r i o5 a i a .6k. 00' >. <I i ~hi sin >. , , , , 

59 i 6 Pi 
I 25ki sin 'i 25hi >.. ~ • 6 ti 0o, , 

If w'" introduce ti it fol lows 

'r· , (4 , 5) 

(4 . 6) 

The short period inequalities in th e radius vector and 

longitudes follow from the above set of results without dif 

ficulties. The numerical results are shown in Tables 4.1 and 

4 . 2 respectively. 

Th", orbit of the disturbed satellite lies inside or outside 

the orbit of the disturbing satellite and this fact creates a 

practical problem in calculation . In Tables 3 , 8 and 3.9 the 

derivative~ of A~j are with respect to the semi-major axis of 

the inner orbit. In many hooks the cases i<j and j<i are dedlt 
separately. Here we have preferred a single formulation and 

we LIse ",quatioll <3.26) to calculate derivatives of A~j with 

re~pect to the semi-major axi~ of the outer orbit . 

4.4 DE HAERDTL'S INEQUALITIES 

The set of inequalities in the longitudes arising from{3.2u), 

known since 1892 , was calculated correctly ror the first time 

by Lieske in 1973. The only variational equation capable of 
giving significant results is equation (2.20); it is a 

second-order equation, and on integration the d is turbin~ term 

t here has to be divided twice by the smal l quantity 7n'I-3n3 · 
This may counterwei gh the ~mallness of the fourth degree of 
the eccentricities. Using th", values given by Lieske we may 
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calculare the bracKets of (3 . 2~) which becomes 

0 . 5605 cos( n.~ - 3>'3 - ~ !II"It) 

-1. '+ 092 

+l.n21 

The variationa l equations f or s atellites III and IV are then 

0 . 00326 e
lt

lt sin( 7A It - 3A3 - 4~4) 

t 0 . 00821 e
4

3e
3 

sin( 7A 4 - n 3- o:ra - 31ll'1,) 

3 0 . 00867 elt e 3 sin<7A It - 3}.,3-ar3- 3arlf) 

t 0 . 00 813 042e 32 s1n(7A 4- 3}.,3 - 21ll'3 - 2o:r4 ), 

Before integrating these equations we need to know the 
behavior of the osculating eccentricities and perijoves wh ich 

are discussed in Section &.10. If we adopt the results gi ven 

in that section the integ~tion of the firs t equation gives: 

sin( 1}.,tt - 1A3-4gltt- 4S4) 

. I; 4 3 3 51n( 7}, - 3>' - 3g t - 38 -g t - 6 ) , 3 

• ' .3 



where g~t+6U are the proper perijoves (see Section 5.3) . The 

periods of the componcnt~ of the inequ~lities in 60
3 

are 

26.4. 31.1 and 37.S years, respectively. There are other 

components but they ,;lre negligible . 60 11 is similar dlld may 

be obt ained from 

~ .5 THE CONSTANT PERTURBATION 

In Sect ion 4.1 we negle c ted the case k~O: 

Similar term exis t in the force func t ion which corresponds 
to the gravitational fields o f the planet and of the Sun . 

They are 

and 

The corres ponding part in the variational equations are 

2 
da i d Pi 

~ 0 
dt 

~ 0 d7 
I Grn j 

!)A9. 3GJ Zb 2 Gmo dti 

dt 
~ - , 3a~J • , ------.. 

° i 4 i °i"i nia O 

63 
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except for terms of first degree i n the eccen t ric ities , .Jnd 

dr. i 
Gm . a 

3GJ?b
2 Gma aAij 

at : - { t ~ aca i 5 • 3liexp i>. i . 
> • ?nia i i'nia O 

On integrat ion we have 

(4 . 71 

where 

Gm . 0 3GJ
2

b 2 

'1 ~ - , ----.L Mij • , a ... · '1 5 
n i a· • n i .:I. i • 

(11.8) 

I nclusion of pe r t urb.;ltioll~ in J 4 leads to add 

t o ai ' For the Ga liIc']n oatclli t cs we obt ain the values : 

'1 
~ 0 . 0012 5 

" ~ 0 . 00060 '3 

" ~ 0 . 000 36 ,0 

'4 
~ a . OOOIlI 'S" 

1+. 6 OSCULATI NG MEAN MOTION AND SEMI - MMOR AX I S. MEAN DISTANCE 

The perturbations due to equations ( 4 . 7) in the radi us vector 

and longitude are re spectively 
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They are cal"ed co~stant paI'tW"bation8 . The perturbation in radius 

vec t or is a constant which shall be added tu the osculating 

semi - major axis in order to obtain the meiln distance from the 

sa te l li te to the planet , tha t is 

1 r i = a i (1 - '1 ail 

Simi larly the perturbation in the l ongitude is proportional tu 

time dnd the non - periodic varia t ion of the longitude is 

n · (1+0.) 6t . • • 
Thus, the ob!':e:rved medII motiun n i J.:; related to the osculating 

mean motion through the cquiltion 

(4.9) 

If the obse:rved mean mo t ion is used in the Keplers's third law, 

we obta i n a wrong semi-major axis: 

•• • 
l.. C(l+m.) 
..-{ -2 J. }. 

n i 

However the correct value is obtained by using the osculating 

mea n motion: 

'i 

G(ltm . ) 
~{ 1 } . 2 

n i 

To • first order approximation it resul t5 .. ~ • 'i (l • 2 
°i) :3 

r i 
~ 'i 

(l • 1 
°i)' , 
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If 1:hese rules are applied 'to 'the actual values we ob'tain the 

re~ull~ ~hown in Table ~. 3. In that table , values listed in 

coluJ:ln ni <ll'e Sampson's values for the observed sid!rcal mean 

m01:ions of the 5<11: .. 1. 1i1:es . Since Sampson's unit of time is 

wrong. the ~orrection 

(II .10) 

was used. This correction is based on 1:he an~ly$is of the 

observations and on Sampson's work to determine the mean 

mot ions from old observations (~ec Section 11.3). 

Tahl e ' . 3 - Mean Dis tances and Oscula1:ine Values. 

i ni •• ni •• , , 
1 3 . 55 1 552 280 5 . 9060 3 . 5117 10. 5 .902 ,3 

2 1. 769 322 721 9.3979 1. 766 2' 9 . 3951 

3 0 . 8 7 8 207 ''2 111.992 0 . 677 8" 14.989 , 0 . 376 ,,86 223 26.368 0 . 375 330 26 . 362 

The other values a re Obtained by means of the first - order 

formulae given in this section . 

It: i:::; worth not ing that the ob served. mean mot ion is the 

coefficien t of 'time in 'the equation o f the mei"ln longitude When 

perturba'tions are considere d . Thus , preciSion is increased in 

computation(mainly when a small divisor exists} when the 

observed mean motions are used instead of osculating mean 

motions . However , the semi - major axes appearing in the 

equat ions should not be confused with t he meaningless value 

~i or with the mei"ln distance from 'the planet r io The 

os~ulating values i"I
i 

a r e not a ffec t ed by secular or constan1: 
pertur bations of the first order (a.nd evel'\ of the s econd order) , 

and are cons idercd as such in computations. 
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REfERENCES AND NOTES 

11. 2 'Il1ere are equa:tions where t is used simult;meously as ::I..wscript and 

a lso to represent the ilMginary unit . 

The rreanings are different enough and .;Lvoid o::nfusion. On the other 

h.lnd ~ considered to be unnecessary to recall at every ncnent that 

i ir; the inaginary unit. 

.7 

J . H. Li eske : 1973, "On the 3-7 Cr..mmmS"..orabil.ity between 

Jupiter ' s Outer 1\.0 Galilean Satellite9", Aatl'01'I, AuUvpllu. 

?'?, 59- ;'5, 

4 .6 I::qu<l t ion (11.10) co~sponds to a Imit corr"ection of 0.6 minutes per 

century . This slope is Sfo.m by the dashed line in Figure ILL 

In this book we adopted the IlUSS and the equatorial rwtius of 

Jupiter as units of m.;LSS an:.! l6lght . The unit of tim! is the day . 

n." 



CHAPTER V 

THE tQUATION 5 OF THE CENTRE- .L 

5. 1 THE VARIATIONAL t QUATIO NS 

Tn the preced i ng Chap~er ~h@ ~erms yieluing sma l l divisorz 

have not been includ@d . We sh~ll consiuer thos e terms along 

with the quadratic e xpr@ssion in eccentrici t ies of the 

f orce - f unction 

(5 . 1) 

The te rms of expr@ssion (11 . 1) which involve tht! critica l 

<l r guments 

(5 . 2) 

are, fo r t he t hree inner satelli tes, r espectively: 

(5.3) 
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<.ln d 

where 

1 Gm j 2 
3A? 

r i j 1 ( 4 Ai j • ". --"-l 
2 , '" . n i ai , (j =i +ll 

1 
Gm . 

A~ . 
~A~. 

1 Gmi 
Gi j 

, 
" ,pl ~ 

I -----, , . 1 2 
n . a . ' ] ] aj 

nj~j'''i ] 1 

1 
Gm . 

A~ . 
aA~ . Gm.;;l. _ 

G! . > 

" --"-l 2 ' , ., -----, " . - ---4 
,] 

nj a j 
, 1 ] aa j lI jYj 

No"te "that: G . . "'G ! . s i nce Li a . 3 "'a. 3 fo r j =i +l . 
1) 1 ) 1) 

The di fferent ia l equat i ons for t.i aris i ne f-r"om these parts of 

the d i sturbine function are 

(5.5) 

where i =1=! a nd 
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fi.i} G , 1 1 
JGrn

O 
3G,T 2hZ 

~ --, ii ffi . Bij 3 5 
nidi j.ti J 4n i <lO 2n. a . • , 

(i ,j ) (joti ) . 

The IIwncrical values of the elements {:i.,j} are given in Tu.ble 

5.1 . I n the diagonal clemen ts we considered also t he 

second-order contributions 

Tah le 5 . 1 - The Matrix {i,j} (in units lO - 7d - l ) 

j=l j =2 j= 3 j=4 

i=l -23116 325 SO 5 

i=2 473. -579° 4 88 19 

i:3 32 '" - 1261 06 

i=4 2 5 102 -3H 

The coefficients Fij and Gij 
are 

l O-ad-l F" ~ 10213 , lO - 8d - l 

F'2 ~ - 6756 , 

G" ~ • 3451 G23 ~ • 902 

G12 • 3527 G23 • 944 
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5.2 THE FREE OSCILLATIONS 

It is noteworthy that the figures in the main diagonal of 

ma'trix {i , j} are not always much grea'ter than those in the 

same row or column . Due to this fact we cannot accept approx­

ima'ted solutions obtained from the separated equations 

de· cr:? + i{j , j}C j = 0 

a~ it is done in some other problems . It is not possible to 

disconnect the system's free oscillations . The solution is 

'to be obtained through integration of the complete system 

formed by equations (5.5) . The associated homogeneous system 

i, 

4 , 
k =l 

whose fundamental so lutions are 

<";j = C j exp igt 

o 

where g are t he roots of the characteristic polynomial 

det (g <'ijk: + {j,k:}) = O. 

(5 . 6) 

(5.7) 

To have fundamental solutions like this, the roots of the 

characteristic polynomial cannot be equal and for bounded 

oscillations they must be real. Laplace showed that the roots 

are always real, but in general it is not possible to be 

sure that they are all unequal . Tisserand and Seeliger 

showed the nonexistence of multiple roo ts for sys tems formed 

by t wo or three orbiting bodies . Darboux, us ing Kroneck:er ' s 

t heory of quadrati c forms showed that there may be equal 

roots in the case of more than three orbiting bodies . 
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In case of the Galilean satellit es of Jupiter the characteris­

tic roots are indeed not mUltiple and the general solution 

of differential equation (5.6) is 

4 , 
\.1=1 

where integration constant s cj are comp l ex and may be written 

d' 

It then follows: 

c~ = M~ exp iS\.I • 
J ] 

4 
E HI:' exp i(g\.l t +6 11 ). 

1.1=1 J 
(5 . 8) 

The real constant~ Mj are not independent and must satisfy 

for each value of \.I . 

S. J PROPER ECCENTRICITIES AND PERTJOVES 

Either in the case where we have a single body orbiting ~ 

a primary or in the case where on l y main diagonal elements of 

matrix {i,jl need to be considered, the solution can be 

wri t:t:en as 

~ = M exp i(g1:+6) 

which leads to 

61' = - aM COS(A - gt- B) (5.9) 

69 = 2M sin(A - gt - S) 

, 
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wh~re H ~nd B are real inLegrQtion constants . These equation~ 

are the equations of the centre of Kep leT"ian motion. By 

Qnalogy , M~ are called proopm' Ot!<lon.ti"l:citioil . Valuc!l of the!l e 

integration con8tl'lnts adopted by SampGoll .llLd va l ues determined 

by Dp. Sitter and by Lic!lke .lr e given i n Table !) . 2 . 

Table 5.2 - Proper Eceentricities( in units 10- 6 ) 

Sampson (1910) Do Sitter(1931) Lieske<l978) 

M' 
1 46 ll! , lO! 4 

M' , " 131119 92!.24 

M' , 1517 l.Hrl!. 3!1 1469±28 

M4 
4 7J71 73621:13 7333!27 

In equations (5 . 9) the angle gt +8 are the longitudes of the 

Pl'OP.l' p.l'ijovf1s and their motions a1"'e the roots of the 

characteristic equation. Assignement of a cha racteristic 

root to a satelli"te is donI! withou"t ambie;ui"ty . Tn non- coupled 

case we have gj= - {j , j) ; wheT"eas in coupled casc the re!lult 

is not exactly the same but the order of magnitude is 

maintained . The values T"eported in Table S , !I are not mueh 

different from t he absol ute value!l of the main diagonal in 

Table 5 .1. 

There are disc1"'epancies in the va lues obtained here as roots 

of equation (5 . 7) and by Sampson as w~ll as by De Sitter (see 

Tabl e 5. 4) . This i s due to the fac t that the Laplace -Lagrange 

theory of secular peT"turbation!l is not sufficient to describe 

the phenome na when the mean motions .:ire close t o r e sonance . 

ThlJ~ we wi ll consi.der the g~'eat long period inequalities in 

lhe me.:in longi"tudes and equation (5 . 5) wi ll accordingly be 

modified to eet a better solution for sec u la1'" perturbations . 
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5.~ GREAT INEQUALITIES IN THE MEAN LONGITUDES 

The terms (5 . 3) of the disturbing function d epend on the 

semi-major axes and longitudes and contribute to other 

variational equations, viz . the equations for Pi'£i and a i • 

These contributions are f i rst degrec in eccentricities 

and thcy do not affect much excepting when they contain th", 

the square of 

(S.lO) 

in denominator. Thus the only equations which should be 

considered are the second - order equations (2 . 20) that give 

the mean longitudes . 

, 
d " 

dt' 
o (5.11) 

, 
d '3 

dt' 

To include the results of Section 5.2 we introduce thf! formula 

(5.12 ) 



GREAT ~IES 

thus w. have 

, 
d '1 

~ 

, 
d " 

~ 

wheI"e 

H!~ " 
' J 

~ 

, 

, H' ~ 6in(u.g~t-~~) 
" 

12 

, , (Hi2 -H2~) s in (u-g~t- a~) (5.13) 

ana to avoid lengthy formulae the result of the theorem of 

Laplace , u=u'+w, desoribed in Section 7.5, has been used. 

75 

The direct integration leads to the great inequalities in the 

mean longitudes: 

H" 

"1 ~ "1 ~ - , 12 sin(u-gllt-ell ) 
(m+gll)2 

H~ H,ll 

", ~ '" ~ - , 12- 23 sin(u_gll t_S IJ ) (5 . ll+ ) 
(m+81l) 2 

, 
", • '" • , H" sin (u-g '>I t _ Sll) 

(111+,1.1)2 
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These inequali~ie s have large periods, ranging from 400 to 

486 days and t heir Amplitudes are discus sed in Sect i on 7.6. 
Some of them are t he most important in satellite' s mot: ion 

excepted t he lIIa ill equations of the centre a nd t he annual 

e quation of Jupiter I H(Ganyrnel.ltd . 

&. 5 NEW EQUATIONS f OR THE FR.E};; OSCILLNrIONS 

The inequali t iefi calculated in the preceding Sec tion affect 

<lngleo u and u I : 

2112 j - 2H~\ t lI i~ 
<m1- gll) 2 

(mtg\! ) 2 

H " 

" 

We will write equat ions (5 . 5) i n a different form. Us ing 
Taylor ' s theorem we have 

exp iu : exp iuO + i6u ex p iuO 

ex p iU '~ cxp iUb t i 6u ' exp iuO 

where ti O and Uo are the und i s turbed values 
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3y Laplace t heor'em (Section 7.S) we have exp i\l'o = - exp iuo ' 

Thus , to a fir~t -order approximation: 

ex? iu' 1 , 
;-

Thc exponen-rial terms involving U o and 2u o give forced 

oscillationG , w\leY'e aG the terms not conta inine " 0 are 

homogeneous with respect to the integration constants, and 

must he considered together with the homogeneous par~ of t he 

equat i ons( 5 , 5). Thus , ins"tead of equations (5. G) we have 

dr. l , {l,k}r.
k 

1 

"" 
, A' i(gllt+SIl ) • d t "2 ex, , , 

i 
d'2 , {2,k}!;;" • ! , (G

12
--Y FA ' J.I) exp i(gll-r+ f1 JJ) 

dt 2 " 
dr. 3 • dt 

k 

, {3,k}r.
k • , 

r. {11,k}!;;k = 0 
k 

, 

1 
?'23 

, A . , ,. 

and its fundamental solu t ions arc 

exp i(gllt+SlJ ) (5, IS) 

On substitution of the fundamental solutions and identification 
of coefficients of cqu~l ~rgumcntG result 
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gliMi - E {l,JdM~ 1 r 12,4,1.1 ~ ,-

gliMIl - E {2 ,ldM~ 1 (G
12

",i-l FA t ].l ) ~ ,-, 23 

"M" - r {3 ,k}M~ 1 " g 3 ~ 7: G
23

A 

'M" g 4 ~ r {!t,ldM~ ~ 0 

The right hand sides of these equations are linear combinat~s 

of the M~ . Thus \ole have the homogeneous system of linear 

equations: 

4 
E 

k = 1 

, _,-a_)l"k~~ 
(g ',ok + {j,k} + 

(m+ gll)2 
)MJ.I :: 0 

k 

where the values of the Ajk are given in Table 5.3 

k =1 k=2 k=3 

j =1 -9 485 - 31' 1309 

j= 2 466 -215 7 806 

j =J 471 10' -130 

j =4 0 0 0 

(5.16) 

k=~ 

0 

0 

0 

0 

For non-trivial solutions of equation (5.16) the determinant 
of the matrix of coefficients must vanish. The new values of 

the characteristic roots are shOwn in Table 5.4 where in 
• addit i on are sho wn the roots of the characteristical 
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polynomia.l <.5.7). 

Table 5.~ - Charact8ris tic 
. . - 6 -1 Root s(1n un1ts 10 d ) 

, ~oc::.t-s. "~ ~1I.ts".U,,) Roots of eqn.(S.7) 

, 27 11 232.9 

, ~~ 58. 
, 130 '26 
4 32. 9 32.0 

It i s int~resting to see how the characteristic roots are 
formed . The contribution of every source in shown for the 
innermos t and outermost satellites in Table 5.S 

Tab1f! 5. 5 - Part::i.a.l cal"tr:ibutiaJs to the dlaractecistic roots 
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Jupitf!I' HIo) Jl.¢ter IV (Callisto) 

Other satellites 63 . 2><10-Sd-1 lS.B9><10-Sd-1 

s.n 0. 4 11.19 

Cbl.ateness-Iir.>t Order 2252.7 U.97 

Cbl.&tcmess-sec:cncl Order 1'.} O.opa 

Forced OscillaticrlS(ajk) 3fl·$" 0.011 

",,,,,ling 0·9 -1. 0 G 

Relativistic effects a:re much smaller than errors involved in 
the determination of characteristic roots and than erTOrs 

involved in the observat i onal determination ot the motion of 
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the perijoves. For c xaJ:lple for Jupiter 1(10) t he relativistic 

contribution to the characteristic root is -a . a36~la-6d - l . 
However such effects are greater than in other motions in 

t he Solar System. 

The cha~acte~istic roots are also affected by the Libration . 

The effects of the Libration a~p. considered in Section 7.7 

where corrected values for the cha~acteri s tic roots a~e 

obtained (Table 7 . 2) . 

5 . 6 THE FRJ::E EQUATIONS OF THE CENTRE 

The effects of the free oscillatiuns in th e longitud~s and 

radius vec tor of the satellite orbits are obtained by using 

equations ( 4 . r, )and (4 . 6). It follows that 

'". ~ a i 
, M' coSO'i-gllt - all) , , 
" (5 . 17 ) 

60 i 2 , 
" 

M~ , sino. . . -gllt-all ) , 

These inequaliti es are characteristic of the system of 

Galilean satellites of Jupiter . It is noteworthy that the 

strong inte~actions among the satellites did not allow us to 

accept approximate solutions arising from separated equ<lt ion:> 

and thus r e sulted four inequalities similar to the equation 

of the centre for each satellite . In each inequality . the 

oscillation is referred to the proper perij ave of one of the 

satellites. 

According the description by Laplace in bOOK IV of its 

Exposition du Systeme du Monde" the ecaentl"icity of the orbit of 

the third eateUite presents unique il"l"eguz.m..itie8 and the thsor'j( aU-owed 

me to /OWV the orifJin. Thf?)J depend on two eepal"ate equatioWl of ths 

cent1'e. The fi1'ot . pl'Ope1' to thie o1'bit, i o -refe1'1'ed to a pa1'ijovlI which 

annua~ eiderlJO.l motion ie 9400 al'Csaaonds. and ths othsl'. which mall be 
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considered an emanation of the equation of the centre of the fourth 

satetzite is referred ro tM perijolJe of this l.ast body. (. •• ) TMse tl.io 

equations, wOOn combined, lead to a vazoiable equation of the centra 

refe17ed to a perijave ",haBa motion iB nat WlifCl'1'm. Thay !Jere 

coincident and W<]ra addad in 1682, and their BWIl NBe to 796 arcBaconde. 

In 1777 they ~re subtracted Cine of the athar and their difference was 

Clnly 307 arcsscands." 

The study of these inequalities puts some difficulties which 

are still not Salved . The free equations of the centre of 

Jupiter III (Ganymede) may be written as 

since and M~ al"e very 
known and the observations of Jupitel" III may serve to 

determine the remaining parameters . However, De Sitter 

concluded that it is impossible to find a common solution 

val id for the old observations of eclips,es of Jupiter III 

(1558 to 1898) and modern extra-eclipse observations done in 

the f i rst quarter of this century , 

Table 5 .6 - De Sitter results 
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Paraxreter rtdern Observations only Old and M:x:lern Observations 

.3 
3 139:13 "10- 5 134:13 "10- 5 

.4 
3 67:15 "lO-S 75±3 xI0- S 

63(1917.1> l3'?2±1?S lS?4±0'?7 

.3 128:14 "10-5d-1 11S.9±0.6 xlO- 6d- 1 

The first SOlution in Table 5.6 leaves large residuals in 
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the old cclip~es and the second would leave large res iduals 

in the representation of t he modern ObSef'VIlt: ions for which 

no explanation i s avai lable . If the first solut ion is arlop'ted 

the only possibility for the sa:tisfactory r cp rcscn t3t:ion of 

the old obscrva1:ions is the assumption of a systematic error 

depending on t h e zenith distance of Jupiter, or in "the 

seaSOn of the year, having roughly the period of Jupiter's 

time of re vo lution. 

The values of the Mj are related to the eieenveetors of the 

coefficients ' matrix in equation (S .15). If their numerical 

vdlues given in t his Chapt er are used we obtain . in un its 

of the corres ponding M~ , the set 01:- value!> shown i n Tab l e 

'.7 

Table 5.7 - The Eigcnvcctor&(units:M~) . 

, M' 
1 

M' 
2 

M' 
3 

M' , 
1 1 - O . Ol ~() - 0 .0086 0 

2 0 . 0051 1 - O.Oll t l -0 . 0001 

3 0 . 031 9 O.16 ~1 1 -0.10 ' _0 

, D.DOn 0.0 1 72- 0 . 09 96 1 

The value:; of the M~ ollre obtained from t he obser vat i ons (see 

Ta1;Ile 5.2) and arc di!lcu$sed in Chapter XI. A corrected set 

of va l ues fo r the eigenvectors is oht~ined in Section 7 . 7 

(see Tab le 7 .3) when the Libration and i t s effects are 

taken into iJ.ccount. 
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CHAPTER VI 

THE EQUATIONS OF THE CENTRE-II 

6 .1 THE FORCED OSCILLATIONS 

Af~er s~udying ~he free oscilla~ions in longitude and radius 

vector we cons ider the calculation of <'I p<'l1"'t icu lAr so lution of 

the complete s ys tem of vi;1ri a Cional equations (5 . 5) . The 1"'ight 

hAnd sides are such that the so lutions n~y be written as 

/; j = Bj e xp iu + Bj e xp i u ' (6.1) 

where the coefficients Bj and Bj are undetermined . In order 

t o obtain their a pproximate value. equations (S . l) are substi ­

t uted into equations (5 . 5) . Identifications of coeffic ients o f 

the terms exp iu and exp iu ' lead to tWO sets of four equati~ 

in Bj and Bj. However tliC quasi - comml!nsurable ratios n l / n2 .:lnd 
n

2
/n

3 
introduce ::i ignificant corrections a8 shown in Chapter V 

and may not be disregarded. Here they arise from the terms of 

second degree in the eccentricities whose arguments are 

2u or 2u' given by t he expression (3 . 28) . To obtain the 

contribution of these terms it mus t be ke pt in mind that 

t he t erms in (3 .2 6) occur in Rij exactly in the same way as in 
Rji since the mutual distances do not depend on which sat­

elli t e is dis turbing or being disturbed. Usi ng equations (4.4) 

and introducing these terms in equat ions (5.5) we have: 
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. dl;2 
~ at'""" = - (2 • b23'::2 b~31;~)exp 2iu' • (bhr.! b~lt;~)exp 2iu 

. dr.) 
0 • (b~2r.q b~ ") exp 2iu ' , ac- ... 32/;3 

where 

Gm. 
(4'IA~ . 

dA~. 
2 

a2A~ . 
1;7. ] 

2 • Ilia . ~ • 'i ~) 'J 'J , 
4n i d i 

, aa. , 

bI j 

Gm . , <lA~ . 
2 

a2A~ . 
J 

2 (1I2A
ij • 14<1.i aP • 'i ~) 

linia i 
, aa. , 

b
i Gm. 

(li2A~ . 
aA ~ • 

2 
a2A~. , • 14o.i ~a ~J • ~) 0 , a i j i 

1I 0
j

d
j 

'J "a i 

1>1 i 
Gm. 

2 "A~. 2 
a '2 A? , 

~ ~) 0 , (38Aij • 14o.i a • . • 'i 
41l

j
d

j • 3<1 . , 

j = i +1, and 1; ' is t he complex conjugate of C. In order t o ge t 

a pa.rticular solution of the complete system we will introduce 

the angI.,. 

, u' - u . (6 . '2) 

In Section 5 . 4 we used the theorem of Laplace . after which 

6=n . In t hi~ Section , since the equations are part of the 

assumptions to demonstrate the theorem of Laplace , such 

procedUre is not allowed . We will show that equation (6 . 1) 

is still an approximate particular solution of the complete 

system. ~et the solutions of the complete system be written dB 
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(6.3) 

wheI"e 
+~ 

8j = ~ st explue (6.4) 

-~ 

On multiplicat ion by exp(-iu) and suostitut ion, it follows 

- {3,2} 8
2 

+ 

In the calculation of the I"ight hand side of cach equation 
we had a teI"rn - i~j out we dI"opped this tCI"m; we assumed that 
they are VeI"y small when compared to t he main coefficients . 

Also, i n the forthcoming calculations m i s taken a s a 

consta nt . The numerical values of O~j are 

1 b l2 = 0.000 1915 2 
012 = 0 . 000 2811 

1 0 21 = 0 . 000 4089 2 0 21 = 0. 000 5932 
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2 
023 " 0 . 000 2879 

, 
023 " 0 . 000 42~7 

, 
b

32 
= 0 . 000 1 095 3 b 32 = 0 . 00 0 1 592 

The identification of the result i ng equations in the power s 

of exp ia leads to Cl'\ ;"'~i l'\\t-~ set · of linear equations whose 

s olutions .{or"" lkr~ z.. .. ~ . (I.ln: ~,,; lOt.) 

~, " 1+3~~ + la~exp -ia • exp-2i e ., " 2311 + 7"tI'1. exp ie + 'f, exp 

83 =-1 - 61Sexp i6 - I, exp 2ie 

84 = - a.2 exp i e, 

6 . 2 INDUCED EQUATI ONS OF TilE CENTRE 

... lie 
i? 0-

He 
-is 

- 32b e ze- Zi (; 

The effect of forced oscillations in t he longitude and radius 

vector of the satellites is obtained by introducing the 

results of Section 6 .1 in equations (4 . 5) and (4,6) . We get 

6r i - aiBi cos(Ai-uO) 

,o;6 i = iSi sinO'i - uO>' 

To calculate these inequalities the Laplace theorem in the 

form B= n wa s used again . Then 

" " +0.004 ,~O 

" " -0,0 09 35 8 

" " -to.OOO 596 



lNOOCED EQU\TIO:-lS OF TIlE CENTRE 87 

and the inequalities are given by 

These i nequalit ies are very similar to equations of the centre 

ana on account of the fact that the motion of Uo is very smal l 
(-0.013 d- l ) they have motions very close to t he sidereal mean 

motions. They are called induced equations of th8 centre and the 

I 8i I are called forced aacant1'ici1;ia~ • According to Sampson the 

induced equations of the centre are 

In these equat ions the two values underlined were deduced from 

observation and the remaining were calculated by Sampson . It 

is Worthwhile to rt'port Dt' Sit t er's values for the inequalities 

in longitude : 

(8128 :!: 40) " 

66 2 = - (18555 t 50) x 

To compare these T'esul ts we must remember that some inequalities 

having the same arguments as the induced equations of the 
centT'e have been calculated in Chapter IV (Tables 4.1 and 4 . 2) 

and adding these results to those obtained in this Section we 
have 
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'r, , -0 . OOljl {,,~ a
1 coso, l - 1,I0) ", , +0 . 008 3('1 5ioO'1 - u O) 

6I"~ , +0 . 009361 32 COS 0.
2

-1.1
0

) ", , -O . OlB53~ dn(;l.02 - uO ) 

'r, , - 0 . 0006 38 , .1 e"50. 3- u O) ", , +0 . 001210 sino.
3

- uO) 

Thc~c results agT'ee we ll with Sampson ' s v<llues. 

6 . 3 PERIODIC SOLUTIONS or FIRST KIND . 

1n cas~ of Jupiter I(10) ~nd Jupiter II(Europal, the induced 

eqU.:1tionG of the centre have much more i mportance than the 

free inequali t i e~ .. Thl;' induced i nequa lities have been ob;;er ved 

since a long time and their amplit udes are well s tUdied; 
prioI" to the space probe !> flight near Jupiter they have s erv ­

ed in the determination of thO;! physical paT'ame'ters o f the 

sys tem (see for in~tance Section 11 . 6). For Jupi ter III 
(Ganymede) the induced equation of the centre as well as ~wo 

free equations h~ve amplitudes o f ~he s~me order o f magnitude . 

One of the f r ee equatio ns se rved in the determination of t he 

physical par ameters (see Sec~ion 11 . 6) . 

The results o f this Chapter show that t he observed motions 

of the two inner ~atellites deviate from a uniform c ircular 

motion more because of the induced inequalities than because 

o f the Keplerian elliptic inequalities. In view o f this fact 

De Sitter considered a5 starting poin t of his t heory . a set 

o f intermediary orbits already affected by t he se inequalities. 

It was first pointed out by Poincare that the motion of the 

three inner Gal ilean satellites is very close to a periodic 

motion of first kind . 

The periodic solutions of the first k ind for k satell ites or­

biting around an oblate planet were studied by Griffin and by 

De Sitter for the three inne r Gal~le4n satellitco . For compar­

ison we a l so show the relative coefficients of the rad i us 

vector inequa lities calculated in Section 6 . 2. 
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Table 5.2 70rced EccenTricities in Periodic 201utions 

Griffin I s Results 

Sa t r;llitr; 
Without With D. SiTTer I 5 SecTion 

Oblateness Oblateness Results 6.2 

I 0.004 4 0 . 0026 0.00404 0 . 00417 
II 0 . 0093 0 . 00B6 0.00936 0 . 0093 =, 
III 0 . 0006 0 . 0006 0.00060 0.00064 

The differences arise mainly from the sr;t of va lues of the 

masses adopted hy Gri ffin; he considered L<ipl<ice':> old deter­

min~t ion, which, in Some case:>, is wrong by a factor 2 . The 

results shown in the last column include the effect of 

Jupiter IV(C<llli:>to) and Sun. 

6 .4 OSCULAT I NG ECCENTRICITIES AND PJ:RIJOV£S 

The osculating eccentricities and longitudes of perijoves are 

composed in a single complex variable 

which yie lds e i = I r. i I and (lfi = ~ I; i ' For the first two sat­

el l ites I; i does not differ too much from the forced oscilla­

Tions . The amplitude of the free oscillations in this case 

are only a few percent of the amplitude of the forced oscilla­

tions . The osculating values oscillate slightly around the 

values 

11 + u. 

I n the case of Jupiter IV (Callisto) there are no forced 

oscillations like the induced equations of the centre and t he 

three composed free oscillations are much more smaller' t han 
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the main one. Thus, the osculating values oscillate slightly 

around the values 

( =0 . 00733) 

In the case of Jupiter III (Ganymede) the situation is quite 

different from others and we have to consider at least two 

free oscillations added to the forced oscillation B3 exp iu. 

Using observed values for the free oscillations we obtain 

+ 0.00060 exp iu . 

91 

- 5 
T~rms below 10 have been negl~cted. One consequence of this 

relation is that 1r.3 1 may never become equal to 7.ero. The 

minimum value t hat the osculating eccentricity can attain is 

_O.OO O~ Since u is much faster than the proper perijoves ,the 

eccentricity passes from relative minima to relative maxima 

(and vice-versa) in 8 months. The free oscillil.'tions modulate 

this rhytm: the deeper minima are reached at ev~ry 180 years 

and have occurred around 1961. This periOdic behavior of the 

free oscillations is the same considered by Laplace and has 

been told in Section 5.&. 

The motion of the osculating perijove of Jupiter III is dom­

inated by the motion of the proper perijove of the satellite. 

One oscillation of total amplitude 50 degrees and period 18 0 

years due to the other free oscillation is superimposed . The 

IS-month component due to the forced inequality has variable 

amplitude : it is 86 degrees at the epoch of the deepper 

minima of the osculating eccentricity and it is only 32 

degrees a t the epoch of the higher maxima of ea ' 
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CHAPTER VII 

THE LISRATIQN 

7.1 THE LAPLACIAN THEORY 

In ~ection (5 . ~) the eq~~tions for the m.an longitudes were 

considered and the great inequalities <lrising out of the 
free equations of the centre were c<llculated. The indirect 
effect ari sing out of t he induced eq uations of the centre , 

discovl!red by loaplacc, is " complete ly oifferent phencmeron . 

Let the forced tl!rms (6.3) be substituted in equation (5.11) . 
1t then follows 

, 
d ' 1 , k sin k . ;;;r k 

K'2 

2 
d 0, k k k. ) ;;r ~ , {K

Z3 
sin Oc- U e • L12 sin 

k 

(7 .U 

2 
d " , k sin (k- l)e ;;r ~ L" 

k 

where 

2 

K~ . k 3n j ~ GijB~ ~ 3n i Fij Bi " J miiJ. i 

2 
k k lni<li2 k 

Lij ~ 6n
j
G
ij

S
j • 6n . FijS i • mj"j 



" Dl'NA."fiCS OF 'DiE OOILEAN SATELLITES 

Thl!l is not thl'! only instanc e where the argumentG ke appear. 

I n f act if the induced e quations of the centre arc !luberti'tUted 

in the equation!) for cf corrl!sponding t o the same par>ts of the 

d i sturbing function ~ considered in equations (7.1), and if 

t he resulting equa t ion~ ... re dif[el'entiated with T"espect to 

time we obtain equation!) like 

- , sin ke , 

k etc. The coeff i cients lIK12 • etc . , ar e just: a few percent: of 

the corresponding coefficil;!l1ts in equat ions (1.1) , Ilnd in a 

fir s t approach it s contribution needs no t to be taken into 

account . 

In each case the coeff icients are at .least quadratic in the 

!l~tellite masses. Hany similar terms exist when all contribu 

tionG of the second degree in the mass e s are conside red. In 
Sampson ' s theory ~here are 25 t erms contributing to eac h 

1 2 term Kl2 , and Kl2 , and so on. Whi l e the t erm~ cons icl ered here 

a~e the most important, the remaining, being large i n 

number , in to~al give a non-negligeable contribution. 

In t his book we are just interested in the characteristic o f 

the phenomenon. We will limi t the equations to their main 

pa~t as it has been done by Laplace. Le t us consider just t he 

contributions arising from the main B~ and use the 
1 

approximations 

,. 
0 

-F12 ,. 
0 

-G12 
1 m+g1 

2 m+g 1 

• -F:2 3 , i 
- G23 

" 0 

m+g1 
3 m+g1 
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Thus 

2 
d P, 

~ K 
11121113 

sin , dt' --, 
"I 

, 
d f'2 

~ - 3K 
1II1m3 

sin • dt' ---,-
" 2 

(7.2) 

, 
d " 2K 

1II
1

m
2 5 in e dt' ---,-

" 
whe I"e 

K ~ 

The way of i ntegrat ion of e quut ions ( 7 .2) is d ifferent from 

that o f ~qua t ion s (5.13) , since t here e was supposed to be a 

constunt (11). The differential equation in e is 

I As we have neglected the e f f ects aris ing from Ei we ha ve to 

consider just 

which results 
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d', C, sin , 
dt: 2 (7 . 3) 

whflI'e. 

C, rn2m3 9m
1

m
J ~mlm2 , K(-,- • ----,- • ----,-> 

", ", '3 

(7 . 4) 

is the Laplacian approxi~tion for coefficient C, . from the 

figures in preceding Chapter s we have K"' 2 .8~lO .... Ljd- 2 and 
- 5 - 2 C

1 
: l.lOxlO d 

In the discussion of the consequences of the libration it is 

cOl1venient t o introduce the factors of hbration 

which are the. coeffici,mts of sin e in e quations (7 . 2) in 

units of C1 , I~;S '";W\y\i¥"d t.o.\c .. lo..+ ........ )e".Js +-0 

It is noteworthy tha1: 

7 . 2 POSSIBLE SOLUTIONS OF EQUATION (7 . 3) 

Equation (7.3) is t he equation of the simple pendulum and 
may be so lved exactly in t er ms of elliptic functions . 

Multiplication of it by de/dt yields an exact differential 
equation which on integra tion leads tQ 



, 
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(7 . 5) 

where Co is an integration constant . It then fo llow s 

dt " (2CO 

and the ell iptic: integral 

o 
~ to ~ J (2e

O 
- 2C

l 
cos 0) - 1 /2 de 

00 

If CO>C
1 

the quan t i ty unde~ the radical sign io positive for 

all e and the [unction t(S) defined by the integral is 

monotonic: the solutions are cil'CUtat i.:ms. TIle angle e circulates 

and the period of the circulation is give n by 

2, 

T " l (2C O 

The time spe n t in go ing from 8=1112 t o 8=311/2. 

311/2 

1'1 :: I (2CO 
,12 

Tn the inte gration int erval cos 8 S 0, thus 

t hat is Tl< ~' 6 days. Thi s varia t ion in e would be greater 

than a .:!> degrees per day and wou~d not e~.c.:tpc detection. On 

contrary, observations show that e i s almost constant and 

is equal to II . 
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If CO . C1 , we may perform ~he integration by means of 

el ement~ry functions (thi s integral is also called lambda 
function) 

It is noteworthy that the integral diverges at the boundaries 

9= 0 (mod 2n). In this 8~trix solution the angle 9 has been 

in the remote past close to the unstable equilihrium point 

e",o and is going to be close again of this same point, in 

the remote future, after performing one complete revolution 

(in an infinite time). Under such condition the angular 

Velocity 

dt 
de , 

=2~sin'1 

reaches at its max~mum value 2~ when e=n (0 . 4 degrees per 

day), and this solution may be discarded. If e is close to 

n as observed, the solution is not almost constant whereas 

if i t is constant e should be close to O. 

This f act leads to CO<C l . In order to discuss these solutions 

we introduce eo defined by the relation 

Then we get 

, 
t = t o + J (2Cl(co~ 

'0 
0 . 5) 

To hav e a real solution cos e< cos e O ' that is , e Oo:::e-:2n - eO . 
Let i t be remarked fro m the ,Tacobi.an int egral (7 . 5) that de/dt 
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i!) equal to zero only ;;I.t the boundaries 60 and 2l1 - 60 . 

If dafdt is positive a't 'the initial 'time 'the ang l e a will 

increase from i ts initial va lue to the boundary 2n-a O ; a"t 

this poin"t th~ <lngular velocity d6/dt becomes zero and changes 

its sign . Then angle e ~i l l start decreasing and will reach 

"the boundary eO' Once more defdt becomes zero, changes its 

sign and the evolution of e is changed. The solutions in that 

case arc called Ubrutiona . nx: angle e oscilla tes be"tween the 

boundaries eO and 2l1-e
O

' The amplitude of the oscillat ion 

(211 - 16
0

) depends on the integration constant CO ' The period 

of libra"tion also dcpends on the integration constant and is 

given by 

, 
T = Ii f 

'0 

7. J THE LIBRATION 

(7.7 ) 

Let tfH:' auxiliary angle ~ be def ined by the standard trans­

formation 

sin t 
1 , 

= - k cos '2 

~hcrc 

Equation (7.6) then become!) 

~hcrc F( t,k l stands for the elliptic i ntcgral of the first 
kind. If "the starting point is the stable equil i brium 
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position eO =rr, we have 

t=t:(-1I) + 1 

.rc;: 
F( ¢, k) • 

The inversion may be performed hy means of the Jacob i an 

~lliptic func t i ons : 

cos ~ ::; - ksin if> ::; - k sn {~( 't -t ( 'II })} . 

The pe riod of the libration alre<ldy given in equation (7 , 7) 

becomes 

T • K(k) (7 . 8 ) 

where K(k) stands for the complete ell i ptic integral: 

' /L 
K(J.;) J Cl _k 2sin 2 <1')- 1 / 2 d<i> 

o 

KOO:;) is a monotonic function and for O<k<l we have 1I12<K(k)<oo. 

The amplitude and period of the libration depeoo on the value 

of the integration constant Co and must be determi ned from ob 
servations. This de t ermination is very difficult because the 

amplitude of the libration i s very small and i ts period is 

not lI.ccurately calculated . In 1 907 De Sit ter, assuming the 

value of the period, fo und O. l G±O. 05 degrees for the half­

amp litude . The st~nd~rd error is underestimated . In 1928 , in 

a new dis cus s ion, t he amplitude , period and phase were 

de termined; he then found O. 02S ! O. Ol l degrees for the half ­

amplitude and ZlSO±60 days for the period. A separate 
determinat i on usin~ only Jupiter 1(10) ~avc nearly the same 

phas e but an amplitude about four times larger, while using 
only Jupiter II(Europa) he Obtained the same a mplitude but a 
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difference of 100 degrees in phase. The determin<l.tion is 'thus 

eXTremely uncertain and the conclusion is that libration is too 

small to be detected from old observat ions . It is noteworthy 

that Erouwer in the determinaTion of l ibpation from the 

Johannesburg series of ec lipse observations found pI'actic~lly 

t he same values for the half-amplitude (0.03l±0 . 009 degrees) 

and phase assuming the period equal to 2050 dAyS . However t he 

separate ana l ysis of every sate llite gAve cont rll.dictoT"Y results 

and thus he concluded that the deTerminaTion only showed the 

l i bration to be too small to be (jetermi ned fr om the observaTions. 

The agreemenT of t wo absolutely independent determinations 

from different observations and by different investigators is. 

however, very remarkable . Recent determinat i ons by Lieske 

Show amp l itudes twice greater (see Section 11 . 8) . These 

results Show that the amplitude of the libration Around "the 

stable equi librium point n is very small. We may write 

(7 . 9) 

instead of equation (7.3). The solution of equa tion (7.9) is 

an harmonic oscillation around the center of libration n : 

(7 . 10) 

where nL =~ ; D and E are integration constants . We have, i n 

this approximation, 

sin 0 

and equations (7 . 2) become 

KD sin (n
L 
t+E ) , 



10Z D'J'NAHICS Of' 1HE GMJl£\N SATELLITES 

e~c . On inteiration we get the following inequalities, called 
l.ibrotiona hy Laplace: 

"1 • - Q, D sin (n
L 

t+E) 

", • - QZD sin (nLt+ E) (7 , 11) 

"3 • - Q3D sin (nLt+ E) 

7 . , THE PERIOD OF LIBRATION 

The period of libration is 2n/nL and was first determined to 
he equal to 2270 days by Laplace using the equations of Section 
7.3 . The values of t he masses used by Laplace i n some cases 

were wrong by a factor more tha n two. When one uses the 
values of the masses adopted by the International Astronomical 
Union one ohtains 1740 days. An accurate det erminat ion was 
made by Sampson who considered the entire seT of terms whose 

argument was k8 . and for the coefficients of sin e and sin 26 

he found 

respectively. For small librations 

given by equation (7.10) where 

the solution is s t i ll 

and the correaponding period is 2042 days . If t his period is 
recalculated using the present adopted masses it will become 
smaller by about 30 days. 

The result s of Sampson have been revitalized in the past ~ 
at the Jet Propulsion Labor ator y ( Pasadena, Cal . ) and at the 
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Bureau des Longi'tudes (Paris) . At the JPL Lieske ob:tained 

2094 days and at the 9DL Vu obtained 2240 . In each case the 

Sampson se~ of masses was adopted. Using a set of masses 

close to t he set used in this text (within 4\) Brown obt a ined 

2032 days . 

The main dif f erence between the;;e results a nd Laplaces's results 

is that in all theories developed in this century the terms of 

second degree in the equations of perturbations have been fully 

considered . The i mpor tance of the inclusion of second deeree 

ter~s in ~he solution of libration has explicite1y been 

pointed out by Marsde n in 1966 . 

7.5 LAPLACC THEORCMS 

The resu1~s of Section 7 . 3 may be summarized in the two 

~heorems stated by Laplace : 

(a) The time - average of nl 
(b) The time- average of '1 

3n 2 t 2n3 is zero; and 

3'2 + 2'3 is 11 . 

In fa c t, the libration is very small and we may write 

n l - 3n 2 + 2!l3 = 0 aod (1 - 3!; 2 + 2 ~ 3 =1I _ The r e a re some 

interesting kinematica l con;;e q uenccs of t hese theorems. The 

three satellites may not have a tr iple conjunc t ion , th..1 t is, 

a situation in which the three satellites are on tln.' same 

side of the planet and on a straight" line with Jupi ter . III 

fact, the three si'tuations in which a conjunction h<lppcns a r e 

as follows: 

(a) If Jupi'ter I(Io) and Jupi'ter II(Eu{-opa) ar'c in 

conjunction, that is, Al =A2 (mod 2Tr) ,'then, necessarily 

A2- A3=w/2 (mod Tr), This shows th~'t the radius vect"or of 

Jupi'ter III (Ganymede) is perpendicular 'to th e line of conjun£ 

tion of 't he ~wo inner satellit~s _ The sitva 't ion of Ganymede 

rela1:ive 1:0 Io and Europa is a quadzoature; 
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(D) If Europa and G~nymede are in conjunction • th~t is 

AZ=A 3(rood 2n), then A1-A 2=nCmod 211); this means that 10 lies 

in th@ same straight: line AS the other two and the ?lanet 

hut on the opposite side of Jupiter. The situat i ons o f 10 

l:'elative to Europa and Ganymede is a n 0ppoBition. 

(e l If 10 an::!. Ganymede ar e i n conjunction, t hat is, ),,1=),,3 

(!lOd 2'11), then ).1-"2=n(mod 2n/3); Europa is in opposition to 

t he o t h er satel!i t eg or i t is i n t he same side of the planet 

a s the other two but i ts radius vector is 60 degrees away 
of the . conjunction line. 

m 

m 
I Q) I b) 

fIgure 7 . 

m 

I, ) 

I t may be kept in mind that these resul t5 refer to the mean 

satellite . In fact: the inequalit i es in longitud e studied in 

earlier chapters may move the satellite forward or backward 

f rom their mean posi tions by as much as on e arc degree. 

7.6 INDIRECT EFFECTS . 

Let some long period inequalitie s in the mean longitude be 

written 
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C7 .12) 

It doe5 not matter how they arose; let jU5t be assumed that 

they were calculted in an identical way as inequalities in 

the mean longitude were calculAted eArlier>. The CCl1:'I'efJponding 

second -order differencial equations are 

If we do noc integrate as usual buc add the righc-hand side 

of chese equations to those of equacions (7.2) we obcain 

Q. C sin e -, 1 

and instead of equation (7 .9) we have 

sin «(tHB) (7.13) 

where L= L
l

- 3L 2+2L
3 

. Thus to the general solution (7.10) we 

have to add the particular solution 

When this additional term i s introduced in equations (7.13), 

the integration results, besides libration, the inequalities 



~ 

0 
1~le 1.1 - Gneat: Inequalities in 'the tiean lDngitudes ~ 

Factors mult iplying "the Proper B::centrici1:ies 
Satellite """"'"' Coefficients 

_000 r:.e Sitter Ilr<>m Eq\.ldtiol"ls Libration 
( 5 . 1~) Cocrect.d 

u-g1t-S1 - 2.704 - 2.105 - 3. 04 - 2. 95 - 3.0] - 0. 00003 

IJ:-&'lt_a'l +0. 833 +0.92 5 +1.311 +1. 37 +1.3" , 12 
I 

u-g3t-a3 +0 . 104 +0 . 094 to.134 +0.123 +0. 1·1b , 2. 
lID) 

trg4t _ S" +0. 0084 +(UllS5 +0.012 3 ~ O . O:t27 +0.01.","0 , n~ 

"",,,,_,' +4.288 +3.688 +4,41 +Li . 22 +4 . 4", t o . 00004 
0 

u-it-rl II +1.619 t1.635 +1.18 +1.01 +1.0," , 10 ~ '- u-g\ _S3 -0 .513 -0 . 584 -0. 850 - 0 . 767 - 0 . 11 0'1' 11\ !l 
u-gl/,t_a4 -0,0426 - 0.1055 - 0. 0734 - 0 . 0759 - 0 .08t1\ 

0 

5~ ~ 

~ 
u-g1t_a1 - 0. 067 - 0. 030 0 +0.01 - 0. 0:1 ~ 2 2 

III u- g t- 5 - 0 . 702 - 0.717 - 0. 162 - 0. 76 - 0. 77 - 0,00007 ~ (Ganymade) u_g 3t_a3 "+0. 077 +0.121 +0. 164 +0 . 14-2 +0.14 ,) , 21 

~ u- g 4t _a4 +0. 00 69 +0.0 219 +0. 0126 +0 . 0139 +0 . 014 '2. , ICO E= 
~ 

iii 
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sin 0 .14) 

If these results are compared with former values o f the 
inequalities (7.12) we find that the coefficients of the 
inequalities were modified and the modifications are as 

important as the period of the inequalities approaches the 
period of the librations. 

Let the results of this section be applied to the GNat 

InaquaUt ies in the. me.an longitudes introduced in Section 5.4 . 

Equations (5.14) were. obtained by direct integration of 

equations (5.~3) and thc numerical results are shown in Table 
7.1. Table 7 .1 also shows the resu lts obtained after correction 
of the libration effec ts by means of equation (7.14) . In 
general the corrections a r e not great s ince the periods of the 
Great Inequalit ies are not close enough of the period of 
libration . However, in the greatest among these inequali t ies: 

(7.15 ) 

the correction reaches 1:1.". This correction is to be consid ­
ered big if we remember that in Sampson's tables of the 

Galilean satellites all effects greater than 0"02 were supposed 

to be considered. Nevertheless the most striking features in 
Table 7.1 are the great differences between corresponding 
value s ; they ind i cate that the results are very sensitive to 
the va l ues of the masses And a lso to the perturbat ions 

technique adopted in the calculations. Thus , in Sampson's 
tables the coefficient of the inequality corresponding to 

equation (7.1S) is only 2' 40". 

7.7 EFFECTS ON THE FREE OSCILLATIONS 

If the inequalities tha t appear in t he right -hand · s i4e of 
equation (5.15) are affected by libratior. then the coefficients 
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~k in equations (5.16) are also affected . As a conseq.uence 

characteristic roots gil and the eigenvectors of the coefficients ' 

matrix are also affected . 

The values of the characteristic roots obtained by equation 
(s. I b)with corrected d

jk 
values a re shown ill Table 7.2, where, 

in addition, values obtained by Sampson, De Sitter dnd Lieske 

are also inc l uded. 

Table 7 . 2 - The Char<lcteristic Roo to (units 10-60 - 1 ) 

, Eqn . (S .I 'o} Sampson De Sitter Lieske 

1 2131 2756 2810 

2 70 0. 822 70 0 139 814 

3 130 121 123 1 5 124 

4 32.0 21..:..! 32 . 91 O. S 32 . 1 

Note: The values underl ined are deduced from the observations 

The corresponding values of the M~ are shown in Table 7 .3. 

These values may be compared to the set of values recently 

obtained by Brown (Table 7.4) i n a complete second-order 

calculation. 

Table 7.3 - The Eigenvectors(units 

, M' 
1 

M' 
2 

M' 
3 

M' , 
1 1 - 0 . 011 5 - O.OO8~ 0 

2 0 . 003 ~ 1 - 0.04').'1 -0. 0001 

3 O. C3,) \ 0 .16,0 1 -0. 1 05 9 
4 O.OO3 ~ D.017,} 0 . O9 ~~ 1 
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Table 7 . ~ - Brown's tieenveccors (units:M~J 

, M' 1 
M' 

2 
M' , 

1 1 - 0. 00 39 :" 0 . 008 7 o 
, - 0 . 0016 1 - 0 . 0"52 - 0 . 0001 

, O. OlSl 0 .1686 1 - 0 . 1127 

4 0 . 0031 0 . 0152 0 . 0882 1 

The discrepAncies in the fourch column of Tables 7 . 3 ~nd 7.~ 

Are th e most important since the proper eccentricity of Jupiter 

IV(Callis t o) M~ is mu ch ereAter than the eccentricities of 

th!.: inne r s3 te lli tcs . A simple analysis of the formation of 

the M~(k~q) shows lhat they al"e eiven by a linear combination 

of the {j . q }(j~It). The coefficients in chis combination 

depend weakly on m" (the dependence is che same as of g~ on 
mq) while the { j , It }( j ~JI) al"e p1"Oporc ional to mit ' Brown has 

used a value of m~ clos e cO Sampson's and we used the value 

derived a t the Jet Propulsion Laboratory from the analysis of 

the orbit of space probes Pionl'!er 10 and 11 and rec ommended 

by the Interna t ional Astronomical Union . For comparison with 

Brown ' s r esults our values of Hj(j~i+l must he reduced by 16 

percent . 

The most important remark is re lated to M~. WI'! ohtainl'!d 

Mj:0.099~~. SineI'! the observed value of M~ is 0 . 00 73 it 

f o l lows Hj ~ 0 . 00072 . Sampson and De Sitter from obsel"vations 

independently obtained 0 . 000 6~ and 0.0006 7 with standal"d 

error 0 . OD004 ) fol" H~. Our value for Mj is not consistent 

with the observational values . Future research must decide 

on three a 1 ternatives : (1) Sampson 's and Ol'! Sitter I 51 values 

for M; with different observations al"e t oo small, (2) the 
value of m'l obtained from the path analysis of Pioneer 10 and 
11 is coo high. and (3) it {51 not possible to r e la te H; with 
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rn4 accurately in current theories. It is noteworthy that one 

determination by De Sitter using old and modern observations 

gave 0 . 00075 (see Section 5 .6 ) which is the expected value . 

7.8 EfFECTS ON QUADRATIC INEQUALITIES 

We may also evaluate what would happen in the presence of 

actions, like dissipative forces, that would lead to q~tic 

inequalities in the mean longitudes . For instance let these 

inequalities be calculated as L1t 2 ,L 2t 2 and L3t2 when 

libration is completely disregarded. The corresponding seoond­

order differential equations are 

(i=1 ,2,3). 

Because of libration these actions should be considered 

together with equations (7.2) ; they contribute the additive 

quantity 2Li to the right- hand side of each one of equations 
(7 . 2) . In e quat ion (7 . 9) we obtain the a ddi tional forced t enn 

2L , where L=L l -JL 2+2L J . Thus we have 

whose general solution is 

, , 2L 
~ + D sin(nL +E) (7 . 16 ) 

If this solution is introduced in the composed second- order 

equations we obtain, besides librat ions, the inequalities 

"1 = (L -Q L) t
2 

1 1 
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This se"t of solu"tions contains "two noteworthy facts: (i) the 

libra"tion center deviates from n to nt2L/C1 , and (ii) the 

individual effects due to the physical agent on each satellite 

are redistributed among themselves in such a way that the 

Laplacian relation n l - 3n 2 + 2n3 = 0 is preserved . 

This shows a reality in the dynamic<ll evolution of the Galilean 

system . As an example let us suppose that a resisting medium 

exists around Jupiter and reaches the orbit of Jupiter 1(10) 

but not the outermost orbits . If 10 was orbiting alone this 

fictitious condition would give rise to an acceleration Lt 2 

in its longitude . Because of the resonance this e ffect Oe~s 

smal ler and is partly redistribut ed to t he outer satellites. 

The calculations yield ~~1 = O . 873 Lt2 , ~~2 = O.275Lt2 • 

6A3= - O. 029 Lt2 . Note that the acceleration of the third 

satelli te would be negative and also that m=O.33LCpositivc) . 

On con trary if tidal torques are acting on the satellites, L 

is negative toge"ther m and the rel ation n l -2n 2 tends to 

become more close to zero than it is now. 

REFERENCES AND NOTES 

7 . 1 The li1;Jration factors given in 'this Section may be cmpared 'to 

values derived frem other ~s. 
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Table 7 . 5 - Libradon factors 

Q, 

Section 7 . 1 0 . 121-

Sampson Tables 0.1381 

Lie~ke E?helMris [-2 0 . 1152 

Q, 

- 0 . 2750 

- 0. 2704 

- 0. 2767 

Q, 

a.02 it 
0. 0254 

O . O~74 

7. 2 It is ~rtho.lhile 'to mention that .J I...JpL:tce.Jn resonance also r.appens 

i!l!Cl!l,!'; 'the inner ~tc~.lites of Ural'\us. woose rMan nntions dr'? 

Ur'dI1U$ V (Mirom;!a ) n, , Li . 4452 1:1 - 1 

UI'>:iIlIJ$ I (Ariel) : n, , 2 . 4!B3 

,,,.,'"' II (lmlbricl) : n, , 1. 5162 

ns - lnl + 2n2 ~ - Q. D02l1 d- 1 

Neven-he!ess , in this caS(' t~ (,.'Cmr.ens~ility is not close cno u,g,h 

to get a libration . The angle a c.ll'CWa:tes . The 'theory pre5entt-><.1 in 

this book does ncr!: apply to UrunU(l s iltellites since in that case til 

i:; not a small Quantity (m=O, OSII) .md the forced t:enns in equadons 

(5 . 5) ulld (5 . 11l !My no1: he restt'ictcd to rlDse whose argtmentS <'I.l"'e 

u.:ux;lll ' 

7, 11 With the present adopted nasses Lieske 's .. "suIt for 'the period of 

l ibration becomes 2074 days. 

7 . 5 De Sitter results in Table 7 . 1 are fru:l 

w.Oe Sitter" : 1928, "Orbital l::J.~nts deter.:Uning'the lal­

gi'tUdes of Jupiter ' s Satellite~ . derived fror.I Observations", 

AnnaZen Ste~euacht ~iden. XVl( 2). 

when )., ' =1. Sl1 t:hat: COT'I'eSpondD to get: t:he ~ame value of Callisto ' 5 

II'QS S as here since~ ' is Dueh that l Ull ~ = 0.2230 (l+~ ' ). 
The. coeff icients :in the lust colum \o.'ere obt:ained using rhe proper 

etcerrtricidC5 of Lieske's ephemeris [-2 (set! Section 11.8). 
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CHAPTER VIII 

SOLAR EFFECTS 

8. 1 THE VARIATIONS 

The distupbing solar forces cterive from t he forcc - functions 
RiO calculated in Section 3.2 (eqns . 3 . S) . The r esult i ng 
inequalities are similar to those found in the theory of the 
Moon and they are named after the classical denominat i ons of 

the lunar theory . We 0.111 variations the inequalities whos e 

arguments are 2~i- 2AO ' They ari se from 

The corresponding va r iational equlI.tions art! 

- 3 
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~xcept for terms t h~t are of the order of the eccentricities . 

The integration leads t o 

exp un .-n
O

) 
( - ' 

3exp i(2A O->") , ) 

The correspond i n8 i nequalit ies in radius vector and longitude 

are ohtained when these results are used in equations ( 4 . 5) 
and (4 . 5) , It then follows 

'"-
3Gm

O
d i (-'- 1 3 ) cos(2,\i-V.

O
) 0 

3n i - 2nO ni - 2no 
, 

4n i ", 0 3 "i - nO 

3GmO 
7n. -4n

O 2 6 oe_ 0 ( , • n · - 2n 
) sin(v..c2~ O ) , 3 2 3n i -2nO 4n i o. O 2(n i -nO) , 0 

An impor tant simplif i cat i on follows immediately since 

and nO may be neglected in all combinations with "i' 

ehtain simpl ified equations: 

,sri " 
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11 Gmo 
, n 2 3 

i "0 

To obt a in 
introduce 

the usu~l simplified 
2 , 

equations of the varia tion we 

GmO=nO a O and get 

11 
= 8 ( 8 .1) 

I n t he mot ion o f the Gal i lean satellites these i nequalities 

are very sm<J. l l s i nce n i » nO ' The value o f the coef fi c ients 
a re Shown in Tabl e e.l . In tht!!. calculat ions we ado pted : 

no " 0. 001 450 215 d- 1 

' 0 " 10900 . 84 b 

'0 " 0 . 011B42 

mO " 1 047 . 572 J upiter masses ; 

Table e .l - Variation s 

Coefficients of the Variations 

Sa tellite 
Radius Vec tor Longitude 

I 
-, 

- 0 . 17><1 0 a 1 
0 .23><1 0- 6 

II - 0 . 67)(10-6a
2 0 . 93 

III 
-, 

- 2. 74)(1 0 a 3 3 .77 

I V - 15 . 0 )(1 0-6a4 20 . 7 
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The usual va lue 1047.355 is the ratio o f mass of Sun to that 

of th e planetary system, while mO is the ratio of t he mass 

of Sun to that of Jupi t er. 

We may compa re with the theory of the Moon where nO/ni~1/13 
and the varia tion in longitude is close t o 0 .5 a r c degree . 

8 . 2 THE ANN UAL EQUATIONS 

The annual equaticnw are t he inequa l ities whose argument is "the 

mean clnollld.ly of Jup i t er 1n its motion around the Sun. The 

period of these inequalities is the anomalistic period of 

Jupiter; in the theory of the Hoon the period i s one anom­

alistie year and t h i s i s the reason of the dcoorWloJ.Cion annua l. 

The annual equations arise f rom 

whi ch forms part of th e disturbing function and contributes 

only to o ne of the variationa l equations: 

- 3 

which on integrat ion gives 

If we use we get 

- 3 
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This inequa.lity h<.l:;) <.I very .long period (12 years) a nd t hu:o 

wi ll he s t rongly affected by libration as discussed in Section 

7 . 6 . The fo rmulae 7. l ~ apply to this c ~ se ~lso and lead to 

(8 . 2 ) 

where 

L ~ 

The numeric~l results depend on the values of Cl and also on 

th e r ac tor~ of l i brat i o n Q • • If the Q . are considered as in 
~ . !6 . 

Section 7 . 1, and if we take C1"",-}I'b.a. O , wh ich corresponds to 

P=2cq4d., ... e have the rcsult s shown in Tabl e 9.2 

Table 8 . 2 - Annual Equations 

Coe ffici e nts 

Sat ell ite -,-----,-----------------,--
Librat ion correct ed Without correction 

I 
II 

III 
I V 

8 . 3 THE EVECT I ONS 

- 3.0xIO- 5 

-16.'+ 
-23. ~ 

- 56.0 

_ 5 . 9xIO - 5 

- 11 . 9 

-24 . 0 

- 56.0 

The ;:vect.ions are the inequalities th~t arise from the term 
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Because of cne squared eccentricity t hat a ppears as a f a ctor, 

the only sign i f icant contributions from this term comes from 

perturba.tions i n the e cc e ntricities and perijoves. We- hav e to 

a dd t he term 

or 

(6. 3) 

t o t he r ight - hand side of equations (5.5); in (B.3) the as­

teris k st a nds f o r comp lex con jugation . It is worth recal l ing 

that in Chapters V a nd VI we alre a dy found 

~i : E M~ exp i(g~t+e~) + 8i exp iu. 

" 
This approx i mation allows us to modify (8.3) to 

E H~ .exp i(2).o- g]Jt-B]J) + Bi ,e xp i(2f.. o-u)}. 

" 
The part i cular solutions that correspond to this additive 

term are 

A~ 
) 

exp 

" -where t he real coefficients Aj and Aj are to be determined . 
The subs titut i on of this solution in the complete equation 

leads t o five a lgebraic systems: 
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(2n o- glJ )Aj • , {j ,kJA~ " 
15Gm

O M~ (\.1=1,2 , 3,4,) 
k 4nj a a 

, 
l 

and 

(2n
o

+m) A
j • , {j .kJAk " 

lSGm
O B

j
. 

k lin jaa 
, 

Since the e vections have small amplitude s WII!: may consider' the 

approximate solutions obtained when the terms outside the main 

diagonal in {j ,k } were neglected , Le., {j,k}=a if jil!J<;. This 

approximation yields 

A~ = 
J 

6. 
2no+Il\-+-~J' J } 

In some cases, howe ver , the divisor 2n o- glJ +{j,j) approaches 

~ero and a rigorous solut ion of the algebraic system i s 

nee~ed . I f the r e sult is enhanced by an internal resonance 

the theo r y of the evections mus t be re formulated t o get 

meaningful results . 

The evections in longitude and radius vector are 
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At variance with the theory of the Moon, we have four 

eveet ionsfor each satellite. rather than just One. Each 

cvcct ion is related to one of the proper perijoves . Also , 

there ie a fifth evection rel~ted to the induced equations 

of the centre . The numerical results are shown is Table 9 . 3 

Table 8 . 3 Coefficients o f the Evections <units:lO-6 ) 

j Al / HI 
j 1 

A2/ t12 
j 2 A~/M~ Aj /H~ Aj 

1 +! 03B 61' i1 - 1 - 0 . 7 

2 t ' '98 -273S - 2 '1 - 2.1 + 2 .7 

3 + t"j-tl • 2.01 - 3395 -299 - 0 . 3 

, - , 2.3 ~ 1 t ~2.Z - 7381 0 
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CHAPTER IX 

ROTATION OF JUPITER 

9. 1 EULER'S D~NAMlCAL EQUATIONS 

The motion of a rigid body i5 completely known if we know the 

space Illation o f one f i xed point i nside t he body and the POtiat 
o f the body around this fixed point. The theory of motion of 
a rigid body depends on two main theorems: (i) the theorem of 
( l inear) momentum (~) and (ii ) t he theorem of angular 
momentum ('t) 

where P and H ~re the t otal external forces and the total 
moment ( torque) of the external forces acting on the body with 

respec t to the point of reference . If the motion is a free 
motion(i.e without constraints ) it is convenient to t ake the 
point of ~ference in the centre of mass of t he body. In this 
Chapter we assume that the space motion of the centre of mass 
i s well known and we study the motion of the 501id around the 

centre o f mass . 

The Euler ' s dynamical equations are the most suitable 

expressions of th~ theorem of the anaular momentum . The angular 

momentum is defined by 

; w J (~ x ~) dm 
K 
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where the integral is taken over the complete mass of the 

body; the velocity ~ of a point is re lated to the velocity 

of the centre of mass throueh the expression 

+ + 
W , r 

in which w is the instantaneous angular velocity vector . We 

have 

+ r , x ;.) dm . 

If the referen..;e sy~ t elu is formed by the principal axes of 

inert ia of the body, it follows 

S = Api + Bqj + Crk 

where A,B,C are the moments of inertia along the principal 
+ . 

axes, p,q,r are the components of III ~n this system of axes and 

t,j,k are three unit vectors that form a right-handed system 

along the principal axes. The derivative of ~ is 

Euler's dynamical equations in vector form are 

... ... ... ... 
s + III " S = l"Iext 

Ilnd in classical scala r form they are 
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(D- CJ qr = L 

( C-A)I'P = H (9. 1) 

where L, M,N are the pr ojections o f l:he moment o f the ex"ternal 

forces with respect lO the centre of ma ss , on the principal 

axes 

9.2 fREE NUTATION Of JUPIT ER 

Let the rigia body under con 5ider a t ioll be Jup i ter and l et the 

externd l actions be Newl:oni a n action~ at'ising from another 

body, [01' example, One of it!: 5atelli tes, Lel: the distt'ibut:ia"l 

of mas s of Jupit er be assumed axia lly symmetric , that is , 
B=A. 

The f orce that dC"tS on an e lemen"t o f mass dm in t he planet is 

whl;:re m
i 

is t he externa l mallS, r i is i ts jovicentric posit ion 

and; is the jovicentric position of the element of mass . The 

moment of this f o r ce about the centre of mass o f the planet 

i, 

and henc e the tot a l moment 

-. I M " 
M 
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or 

wht!re 

• 
1'; x grad W. '- £.i 1 

( 9 . '2) 

Wi is the force - function of the gravita t iona l field o f Jupiter 

at the po int Pi and it was consider ed in Section 3 . 1 (equation 

3 . 2). Except for t he ce n t r al part Gmi/r i whose contribution 

to the cross product in equat i on (9.2 ) i s zerO, and e xcept 

for the factor mi t hat is not considered since RiJ is 

func tion per unit mass ( i . e . an accelerd.t ion - function) , 

RiJ arc the same . Then 

a force -

W. and , 

(g . 3) 

I t is noteworlhy tha.'t b"l and MJ ~l are na tural units in this 

text . The z- component o f the moment i s given by 

where Xi,Yi,Zi are the coordinates of the external body 

referred to the axes of inertia of Jupiter. On acooIJrrt of the 

fact that sin ~i ~ Z i/ri • Wi depends on Xi and Yi only throueh 

ri O Thus 

aw. 
N = ~ 'r . • 

x. 
(~ y 

i ri 

and the th ird Euler '~ dynamical equ~tion becomes 
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r ~ O. 

Thus, if the planet i s rigid and has axially symmet ric mass 

distribution, we have r =constant . In other words, the polar 

component of the rotation vector is constant ; th e remaining 

equat ion s become 

P • '. , L 
A 

( 9 . 11) 

• - 'P , M 
A 

where 

v = C-A 
A r . 

12S 

I I the body is free from external forces (that is, if L=H= Ol , 

the immediate solutions are 

P = cU' cos (vt+ Sl 
(9 . 5) 

q = (n' sin (vt+S) 

where a and S are in t egr a tion constants. The rotat ion vector 

in this free motion d e scr ibes a circular cone about the 

symmetry axis whose opening depends on the initial conditians 

and whose period is 

T = l! 
r 

A 
C- A 

(9 . 6) 

The dynamical determin~t ion o f J
2 

allows to ca l cula t e 

C -A=O.Ol~7S ; since A<O . 4 , l imi t that corresponds to a ~ge­

neous distribution, t here results T<ll days. The amplitude 

sha ll be very small. It is worth rememberin& that for Ea rth 

the observed Chandler period is around l~ months(for a r igid 

Earth it would be 305 days), and the amplitude corr.~ponds 



-6 
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9 . 3 EULER'S GEOMETRIC EQUATIONS 

A knowledge at" forced mo'tion of t he planet requi res particular 

solu tions of the complete equation~ (g.~). 

Let a s et of geometrical equaTions rela ting <'II T'eference system 

solidary with the body a nd the fundamental sys t em o f Y'eferl!n Ce., 

be conside red. Let K be a unit vector i n the direction of the 

pole of the fundamental reference !lys tem . In II. moving 

refe ren ce system, the time derivative of K is 

K + ; " K = O. (9 . 7) 

Let the components of K in the moving reference system be KI , 

K2 , K3 . The scalar equivalent of equa tion (9 . 7) a re Poisson ' s 

eq uat ions : 

K, " rK, - OK, 

" " pK, - r K, (9 . 8) 

. 
" " OK, - pK, 

Also (see figure) • • K. k " co, I , and 

P~jij K = sin I {-sin X r + cos X j) 

where the angle X i s measured from II. fixed meridian, on the 

e quatOr and, 

planet. T". 
by d8finition . includes the rot ation of the 
.L .. ~4- ~qV()"+;ID".s Io.,o..,e. 
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", • sin 1 ::sin X 

", • sin I co, X (g . g) 

", • co. I 

POLE OF FIGURE 

\ , 
\..-1 

ii) \ , , , , 

z 

FIOlA 9 .1 

EQU4TOR OF FIGUR£ 

T 
----~ 

REFERENCE 

It i s evident that the determinant of the syst em (9 . 8) where 

the unknowns are r , p a nd q, is zero and the sys tem cannot be 
solved. Under such condition an independent addit i onal 

equation is necessary . On equating the derivatives of the 
Unit - Vec tor N i n bot h t he system _ moving and fixed _ we 
have 
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N • • • (K N) • w • N " " • 

and from FiguI"f! 9 . 1 

N, " co, X 

N, " sin X 

N, " 0 

The first scalar component 

Nl= rN2-~K3N2 ' Since Nl ;;;; 

of cqu(!tion 

XN2 we hav e 

X 

Equations (9.8) may now b. solved for 

mind that 

K, K2X K, 1 sin ., " K1X • " I co, 

wo ge< 

1<1 51 
, 

p ~ • co, X I 

, 
q ~ "," • <in X I 

(9.10) 

(9 . lO) is 

(9.1l) 

p and q. Keeping in 

X 

X 

(9 .1 2 ) 

Equations (9.11) and (9 . 12) are Euler's geometric equations. 

9,14 EQUATIONS OF MOTION OF JUPITER'S EQUATOR. 

On ~ub~titutiQn of Euler' s geometric equations in Euler' S 
dynar.lical equatioJ'll; (9.4) . and considering equations (9.8 land 

(9.1ll we have 
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ROI'ATJQN OF JUPITER 

, 
" -- . 

A( -qK.3fl .. l). fl - ~m: sin X + I COS )() • ('rO<20 +isinXl , L 

! • .. 
A ( p~Q t ~n .. Kiif =X' I sf ('I ,( ) - Cr<'S.fI: + i: cos x) ~ H 

S~ all velocities in the left- hand s i de s are ne~ligible w~ 
compared t o ~ . we Cdn write, a pproximately 

Cr(K2Q • j sin xl ~ L 

. ! 
- C:r(K1O • I co, X' ~ H . 

! 
Solving these equa tions f or il and I and substituting e qua-
tions( 9 . 9) in t he resu lts we get 

! 
j L H n s in , 

Or co, X • Or sin X 

(9.13 ) 
! L M I , 

Cr s in X - C;; co. X 

The components L and M of the moment of the external f orces , 
defined by cquationn (9 . 2 ) and (9.3), mAy b. written as 

L: - YW
Z 

where 

_' _G"_,>,. J"" 
S 2i = ", 
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i~ the partial derivative of W with respect t o £.i ' obtained 

explicilly and 001: considering the dependence of W on Zi 

thr ough 1'i ' for it does not: contribute to Land M. 

Suostitut ion i n equ~tion~ (9.13) yields 

, 
1 0 sin I ~ 

Cr WZ< -x sin , • y 00' ,> 
(9 . 1 4 ) 

I ~ 
- 1 
Cr WZ{X cos , • Y sin ,> 

The brackets represent a rotation of t he solidary axe s that 

brings the x-~xis into the intersection (nodal line) of the 

fu ndamental reference pla ne and the equator of the planet . 

The rotation of the system about this line bringing the 
fundament al reference plane to coincide with the. equator 

r esult a co rrection of t he order of (I - cos!) , that is , of the 

order of the square o f the inc l in~tions . Neglecting t his 

correction we ha ve 

, 
1'1 sin t 

(9 . 15 ) , 

The valu p.s of Xi and Y
i 

a r e given i n Chap ter III(equa't ions 

J . tI) except for 'the correction of 'th e fa.ct that the origin 

of 'the SY$tem ;;: ,y is displaced from 'the origin o f the sys'tem 

x ,y and this displacemen't is measured by the angle O. Thus 

r.{cos(6. - n ) 1 1. 2 sinW i -ill siIlO. - Il . ») Xi ~ • 2 • • • , , 

r.i{sinC9 i -n> 1 T. 
2 cos (Il. - ih sinC}. clli») Yi 

, 
2" , • 



, 

.' 

ROTI\TTON OF MITER 

Retaining only the terms that are independent of orbital 
eccentric ity and inclination, we have the approximate re14t~ 

x. ~ 

' i cosO'1 -Ii> 
" 

Yi ~ 

'i sinOi- a) 

The dir~ction cosine s of the &xis OZ in t he system Oxyz can 

ea s i l y be calc ula t ed, and 

Z. : 

" 
sin I • I" zi cos 

Neglecting the higher-order ~orrection (l-cos1) we have 

or 

81no. . -O . >, 
" " 

When all the~e results are substituted in equat i ons (9.15)and 

when terms involving eccentricities as factor are neilected. 

those equations be come 

3GmiJ2 
cosUl

i 
-ih I 3{-l i • 

2Cra i 

n s in i = 

• 'i cos(2"i- Oi- n> i cos(2Ai-2(1)} 

I ~ 

3Gm · J 2 1 (I sin([L-O) 
2Cra

i 
3 i " 

" 'i sin(Hr- n i - O) • I sin (2A .-2n)). 
" 
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1\11 terms in 'the hrat':kets have coefficien1:s of lhe same order 

(thp. order of inclination~) . The int eeration destroys the 

e qu a l ity in ordeN: since ,"vpry t e rm will be multiplied by 

its r eriod. To a n aoproxima tion, il is s uffi c ient to consider 

o nly the CQnstant und long-period ter~~: 

>l sin 1 = 

I " 

These eqU'll lQI\~ may sb 11 be writ'ten as 

I " 

where 

1 aU i 

Cr sinI aT 

- 1 aUi 

erstnI an 

ror Jupiter. instead o f considering Ui we have to consider 

u=ru i where the summation comprehend all the Galilean 
s~ tcllit e s and the Sun . Thus these equations 4re considered 

i n the fo rm 
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where 

dr 
aT 

4 
= - 1: 

o 

- dO 
I dt 

W.I. sinU'l:,.-rn , , 
4 

+ t Wjlj CosCnj- O) 
o 

4 
, w. 
o J 

133 

(9.16 ) 



CHAPTER X 

INEQUALITI ES IN LATITUDE 

10 . 1 VARJATIONAL EQUATIONS 

The appro x ima t e var i ational equations for the sp<lce orbital 

e lements are 

dI j : 

dt 

dO. 
;rr1 

Since the inclinations of the orbits of the Gali lean satellites 
are very small the above pair of equations will be considered 

in its modified form 

dq. 

,EJ-' (1 0 .1) 

The probl em i5 ereat ly 5implified if we introduce a complex 

quantity Il j defined by 

i = R 

Equations (10.1) become 

- , (10 . '2) 
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or, in a more operational form 

dll j .: 
dt 

135 

(10.3) 

Let us consider t he space part of the disturbing functions 

where the longitudes of the satellites a~ ~ell as of the Sun 

are absent . We have 

1 , 

'8 kotj 

1. ' 
) 

'II ). cosUl.- n )} 
") 

The corresponding vari ac i ona l equacions a re 

~= 
dt 

where , ~o keep similarity, we put 

. , 
k 

I exp iG (}.0.5) 
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If equdtions(lO.4 )are compared to equations (9.16) we fi nd 

that all t hese equations are inte~ependent and may not be 

integrated separately. ~hus, bes ides equations (10.4) we 

have to consider 

Equations (10.4) and (10 .6) f orm a l inear dif ferential 

system 

where for eac h j ,k=1, 2 ,3,4 

(j,j) = 

( 5 .5) " W5 

1 

(j ,k) " 
G~Bjk 

(j ilk) 
4nj a j 

, 

(j ,5) " 
3GJ2 
2n

j
d

j 
5 

,5,ld " Wk " 
3GIIlli 2 

2cra~ 

(l0.6) 

(1 0 .1) 
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(j ) 
3GmO • ! 4n

j
a

O 

,» '0 
3GmOJ 2 

• • , 
2Cra

O 

The nume r ical yalu@s of (j ,k) and (j) are given in Tabl e 10.1. 

For ~he l114in-diaional elements and for the element s in the 

fifth column we cons idered also the second - order ~t~ 

15G (3J 2 2J 1+) 7 -
6n

j
a

j 

, 

that were added to ,,- (5, j ) and subtracted from the (j , jl. 

Table 10.1 - Values of (j ,k) and (j ) ( in units 10-'d-l ) 

j (j ,I) (j ,2l (j ,3) (j ,1+) (j , 5) (j l 

1 - 23262 '" 175 18 22626 " , 
'" - 5789 659 43 41+1+0 9 

3 66 170 -1261 '" 865 18 

, 7 12 150 - 330 ,20 42 , J3 " 3 0 - " 0 

It is notewort hy that in each row of Ta~le 10.1 the sum is 

equal to zero. I nd eed from th@ prec@d i ng formulae we haye 

5 
r (j , k)+{jl = O 

k=1 
<1 0 .8) 
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This is oil well known f~ct in planetary t heories a nd it is not 

altered when the motion of the equatorial plane of the p~ 

body is inc luded . The only difference with re s pect t o the 

classical equations 

the (j,k) when j or 

o f p13netary thl'!ory is the definiti on of 

k t<ikes value 5 and the existence of 

an externa l action , which giVCD ris e t o non-zero coeffi cients 

(j ) . 

Anothe r impo r tant property o f (j,k) is t hat 

where 

(j<5) ; 

Let the quan tity 

be de fi ned. From e quation (10 .7 ) i t fol lows 

I ( j .k l R
k 

+ i t 
k j 

and using the symmetry property (10 .9) we have 

s " i t dk Uk I 0, . j) + i 
k j 

Hence 

50 " i 

nO . 9 ) 
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If the solar influence is not considered the right ehand side 

of the ~bove equation vanishes and we find the law of 

conservat i on of the ~ngular momentum : B= constant . The exist­

e nce of this firs t integral is associated with the fact that 

in abs ence of externa l (~olar) a c tions we have det(j,k) =O 
and on e of the charactcri~tic roots of the system is zero . 

In planetary t heory, the plane whose inclination and nodeare 

given by lI =s /1: d j is called int.\V'iabl.e pla>l8. This plane i s no 

more invaria ble in t he Gal ilean system since (j) cannot be 

taken a s zero . 

10 . 2 FREE OSCILLATION OF THE NODES 

In these calculat ions, like in the calculation of the free 

equat i o ns o f the centre (Section 5 . 2) we cannot accept appro~ 

imate free solutions obtained f rom 5epo:m:tted equations 

dn. 
~ - i (j ,j)lI j = 0 (l0.1 0) 

The solution is obtained by integrat ing the c omp lete associated 

homogeneous system 

dn
j 

, 

at - i t 
1 

whose fundamental solutions are the f unctions 

(l0 . 11) 

Where the values b are the roots of the characteristic 

polynomial 

o. 
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The o::mrerrts of Section 5 . 2 also apply in this case and the 

gener al so l ution of equat ion (10 . 11) i s 

(10 .1 2) 

The values of the f ou r main characteristic roots obta ined by 
t he v!.lues listed in Table 10 .1 are ~iven in Table 10.'2 where 
we compare these vdlues with those obtained by Sampson, 
De 5i 'tter , Brown .nd Lieske . 

Table 10.'2 - The Characteris tic Roots(in uni ts 10-6d-1 ) 

, b' S41llpson D. Si tter Dr own Lieske 

1 - 233 1 - 2340 -2306H6 -'2305 - 2318 

2 seD 571 56B! 7 576 5" , 126 123 1 2"! 1 1 23 1 25 

4 31 32 311 1 31 31 

The angles b~t + y~ (~ <5 ) are t he 10ng1tuues of 'the proper 

nodes. The assignement of 4 proper node to a satellite is nOOe 

without ambiguity since the solutions in the non- coupled case 

would be b~ = (~.~) and the numerical differenc e to the actual 

values i s small . 

The fifth r oot is extremely small : 

(Souillart - 8 -1 
found - J . 8 ~ 10 d ) . 

The r~al constants Nj are not indepe ndent , and they are such 



lNE~lTlES IN lATI11/IlE 141 

that 

(10 . 13) 

To e.;!.ch value of )J we have f ive f:lquat ions out of which four 
are independent . The Nj are completely known if we know 5 
amongst them, one for each value of \.I . With the numerical 

valuee listed in Table 10 . 1 we obtain , in units of the 
corresponding N~, the set of values shown in Table 10 . 3. 

Table 10.3 - The Eigenvectors(units 

" N" 
1 

N" 
2 

N" , N" 
4 N" 5 

1 1 -0.0359 -0 . 002 7 - 0 . 0003 - 0.0011i 

2 0 . 02J6 1 - 0.0377 -0 . 0011 -0 . 0009 

, 0 . 0071 O. HlS 1 - 0 .1620 - 0.0034 

4 - O.OOD 0 . 0227 0.1493 1 - 0 .003B 

5 0.99911 0 . 9939 0.9695 O. B601 1 

These va lues may be compared with values recently obtained by 
Brown wh ich are thrown in Table 1 0 . 1i 
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Table 10.1.! - Brown ' s Eieenvec~or(uni~s N" ) 

" 

" N" N" N" N, 2 3 , 
1 1 - 0 .0351 - 0 . 0026 

2 O . O2~" 1 - 0 .037 0 - 0 . DOll 

3 O. 0111 0.11199 1 - 0 .1745 

, 0.0022 0 . 021+1 0 .1367 1 

By anal ogy with the approximated so l ut ions obtained from the 

separated equations (10.10) the N~ may he called p~op8 r 
inctinationB . However the way in which forced oscillations 

are consi dered i n Section 10 . 3 modifies equations (1 0.12) 

and also the geometric interpretation of the integration 
constants (see Section l O.ij) . 

10 .3 FORCED OSCILLATIONS 

On the right - hand sides of equ~tions (10 . 4) we have the t erms 

i {jl"O where ITO is the complex parameter that gives the 
position of the orbita l plane of Jupiter . If we could ass~e 
it as a constant , then the particular solutions of equations 

(10. 8) would be nj=no{constant) for al l i , and the general 
sol utions would be 

N~ 
J 

nO . lll) 

In fact , nO would be a cons tant if Jupi ter was the only 
planet in the So l ar System. However othe r planets disturb t he 
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orbital motion of Jupiter. With respect to the ecliptic and 

equinox of a certain date, say 1950 . 0 , we have 

1I 0 (t) = r s'" exp i( s"' t +o"') , 
and this funct ion is nothing bu t the general solut ion of the 

~y~ tem ClO.l1) in the problem of mutual interactions of the 

planets in the Solar System. The nwnerical values found by 

Brouwer and van Woerkom are given in Table 10.5 

Table 10 . 5 - Motion of Jupi ter' s Orbital Plane 

5' 
, 

0"'(1950 . 0) , 

0 +0.0275703 0 xlO- 8d- l .1 . 869 

1 207 -6.9 .0.339 

2 130 +8.7 - 0.732 

3 2 -2!l.9 - 1. 832 

" 18 - 23. !l - 1.106 

, 63064 - 3!l.2 .2 . 223 

6 95 71 3.9 - 0.78!l 

7 11669 o. , -2.753 

We have yet not defined the fixed reference p lane . Let it be 

the orbital plane of Jupiter in a given epoch to. Then , f rom 

the spherical triangle formed by this plane , the orbital 

p l ane at t and the reference plane of Table 10.5 ( see 

figure 10.1) neglecting terms that give a value of the order 

of 10 -5 we have , 
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FiQun 10 . 1 

7 
nO = E S"'{exp i(s"'t+o\l) - exp i<s\''tO+a'll» 

o 

ECLIPTIC 

for sake of convenience we will take t o as the epoch of t he 

data in Table 10 . 5 , that is 1950.0; the~fore 

7 
ITo = E S"'{exp 1(,"'t+o"') - exp iev } . 

1 

It is sufficient to consider the first - order approximation 

(10.15 ) 

as the pcriodG of .11,1 components are very gl'1I'!4t ( the shorter 

is that for v::S and is 50,000 years) . The forced oscillations, 

considered in only a small fraction of their periods wi l l 

appear as secular and have the form 

ClO . 16) 
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where II? and II . ar-e unde'ter-mined coefficients. If this solution 
J J 

i s introduced in 'the complete equations (10 . 7) the ident i fic -

ation in the powccsof t yields 

By using the equatio n (l0 . 8) i t follows 

fol" all k, and 

K, - I;(j , 'dn~ , , . 
K 

(10.17 ) 

Thl.! numel"ic al results are 

n' 1 
, 0 .99 93 5 n' 5 6 K, • lOa. 

n' 2 
, 0.9938 n' 5 3S ", • 102 (10.18) 

n' 3 
, 0 . 969 1- n' 5 125 "0 • 10">' 

n' 
" 

, 0.859 n' 5 36 0 "0 • 1O ~ 

The compl ete system may not be solved because the fifth 

equation introduc ~5 a huge uncertainty in the system. Rouihly 
, K ·7 0 we have nS: -3 OKlO The errors in liS does not allow to 

aive different values for the other n ~ ; these errors a re 
lal'ge and al'ise ma i nly from the tact that (S) i s very c l ose 

t o zero . A better determination of n~ needs the accurate 
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dfl'termination of slltelH t8 masses with at l east II significant 

figures. 

We lIlay relate 

multiplied by 

t he subscript 

n~ t o N~ . Equations (10 .17) and (10.13 ) when 

d NIJ and d). ,OJ respectiveoly. and summed over 
j j ~ield 

" " d .',0 .. j j j 
j 

Because of equation (10.9), the left-hand sides of the above 

equations are equal , then 

This system has 5 linear algebraic equations and may be 

solved . We h ave 

In view of the values listed in Table 

values of the characteristic roots , it 

the te rm \J =S contributes signific;mtly 

internal precision better than 10- 3 we 

K ,0 --" 
S • b' 

ClO.19) 

10.3 together with the 

is evident t hat only 
o . 

to nS • Wl,'th an 

may writ e 

I 
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whi ch ClhoW6 tha't 'thl'; larg~ uncel"''tain'ty in the determin!;ltion 

of the n~ is a consequence o f 'the r ough determina'tion c f the 

fi flh cho!ll"'ac teristi c r oot . 

The particular solution of 'the comple'te :;y:;tcm will he consid ­

ered ill d modi fil!d form . l ncJeed. we can add aN~ exp i b '\ wi'th 

o'lrbi'trary constant (l to any solu t .~ on , and the result is 

Cl t ill d ~()lution . Since b 5 is very sm<lll , e vt!ln when comp<l red 

to the other characteris tic root . this <ldditive term may be 

written aN7 n+ib5tl . Adding thi ::; term to the particular 

s olut i ons 1 1 0 .16) dn d choosing aN~"' - nj. in order t o elimina'te 

the con::;'tan 't 'te rm of 6n ., we get the particular s olutions 
J 

611 j : iKjt 

where 

The numericdl values of tho Kj 
.r. given by 

'1 • (I . 0006S '0 • 0 . 01" " 1 0- 10 
oxp i o 

" • 0 . 0062 '0 • 0 . 13 

" • 0 . 030~ ' 0 • 0.65 

" • 0 . 1"1 '0 • '. 0 

where we ha ve introduced 

KO " So exp io 

a nd use d SO : 2 . 12xIO- 9d- l and 0=2. 23 as calculated from Table 

10 . 5 

The above cho ice of a is no't 'the same as madt'! by Souillar't 

( 0. "0), or by Tisserand. Hence, 'tht'! results of these 

calculations may not be directely compared. 
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10.4 INEQUALITIES IN LA'fITUDE . PROPER INC LI NATIONS 

Let ~j ~nd 'j be ~he latitudes of a sat ellite refer~d to the 

fixl:!o :'I:!Ierence plane ~nd orbita l pl"'-ne of Jupiter t"eSj')l!ct:ively 

(see Figure 10 .2). 

SATEllITE 

Figur. 10. 2 

The i:jinus law yieldi:i 

sin "'j' : sin I since ") '+' j j -"j . 

If higher-order terms and the satellite eccentricity are 

neglected we have 

(l0.20) 

A similar reasoning over the other triangle yields 

( 10 . 211 

T f WI'! use thl'! compll'!x variables " j' the equations (10 . 20) cmd 

(lO.21) become 
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Therefore 

Considering the resul~s of the preceding sections we have 

and 

where 

'j = r nj ~in(~ j - bU t _y~) ~ t (So-Sj) C05(~j -a) , 

In order to hAve the latitude~ referred to the equAtor of 

Jupiter we use the approximate fO lm of equa~ion (J . G) 

or 

'!'herefore 
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N~ - Ng aT'e t h e pr opsl'inclinations of the orbital planes referred 

to the p lane of J upit er ' s equator. The sm<lliness of the 

N~ (j II' ~) .:lnd the innaccura.cy t hat ~nvolves the determination of 

the N~ .1110"'5 us to wr i t e N~ -N~ "'N~ . 

The p~per inclinations deter~ined by Sampson, De Sitter and 
~ieske are gathered in Tab l e 10 . 6 . 

Table 10 . 6 - Proper Inclinat i ons(in unit ~ 10· ") 

Satellite Sampson D. Sitter Lie ~ke 

1 11.7 6 ~ . 5!;O . 2 7 , O:!:2 . 9 

2 81. ~S 81 . 41:0 . 2 SI.5:tl' . 0 

3 35.59 n . 2±O . 2 32 . 4.!.1.G 

, 4 7 .11 7 IIl . StO . l 1I11. 3!4 . 8 

10 . 5 POSIT ION OF JUPITER I S EQUATOR 

The position o f the eq uator of J upiter with respect to the 

r e f erence plane is given by 

5 
nS : t N~ exp i(hU t+yu) 

1 

were f orced t erms do not appear due to the cho i ce made for 

the arbitrary constant ~. In order to have the position of 
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the e q u<ltor of J up ite : ' with " C$pcct to the actual mean orbit 

o f t he planet we have to con li ide r the sphe rical t " ianglc 

shown i n f i gure 1 0 . 3 , which may be solveo with r espect to 

thes e parameters . Excep t f o r third- deg r ee terms , wc ha v<: 

The r e f o r'c 

j . " p 

or 

I 2 , 

FIQure 10 , ;3 

iO ' " I . >p iO 

n' , " n; - ITIT ' 

- I, .>" 

EQUATOR 

HI O 

ORBIT 
(JUPITER) 

( l o.21t ) 
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11: 'then follows 

5 
ITS = i N~ exp i(b~t+y~) - itSo exp io 

The numerical values of N~ and So are very small compared to 
5 NS" Let then the parameters 

and the angle 

be introduced. We have 

hence 

I' exp Hl " 

where 

5 . , 
1 

(10.25) 

The absolute value of the summa'tion in equation (10.25) i~ 
very small when comp<lred to unity . Equation (10.2S) lIkly be 

easily solved for the unknownS l ' and ~". The result is 

5 . , 
1 
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5 
0" ~ 

, ." sin 0' 
1 

and 

0' hr. t • y5 • 
5 , .' :;in a" 
1 

ii ' is the motion of the jovian equinox . It has a retrograde 

(t)5<0) linear part - the jovian lWli- aotaJo Pl'daBoU"t On - o f 2. S 

a r c:;econds per year . The nutation terlfGelJ sin all
{1l!.4) are 

periodic and their periods ~re the periodS of revo lution of 

the satellite nodes in ~ reference system affected by the 

j ovian .1 uni - so18.1' precession . The f ifth term: as sin as is , 
approx imate l y 

5 0 
which is the jovian planet.a1'/l pl'SClfsaion. If we adop t N5 ~ 3.ll 

and '(5"316~4 (see Sect i on 1.1. 1) we have + 3.0 arcseconds pel' 

year. The jovi a n general p1'aod66io~~C'1ongitude is then direct 

and very sma ll : just O. S a~c8econds pCI' year . 

The inclinat ion is affected by the 

(ll<S) , For ].1:5 we have t5 0 cos all , 

nutatian terll\SN~ co!> all 

or the linear approximation 

The corresponding sec:ular vo!ll"iat i on of the jovian mean obl·iqll.ttll 

is -2 . 1 arcsl!lconds per century . 

10 . 5 PERIODIC INEQUA~ITIE5 

We have diD cus sed every part o f the disturbing function, 

except one. The tel'ms that have not been discussed so f ar are 
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". 2 2 
( ....J.) (I. 

' 0 ) 

of solar origin, and the tet'm 

COS(2Aj - 2fl j ) 

that originatcG from the planet's force-funct ion . Two othe r 
terms of t he :;ame orde r were not cons idered si nce. they are 

independent of OJ and I ] and t hus may not eive ris e 

inequalit ies of the same order a~ we considered . From 

Souillart ' !: complement to "the fo rce - function (eqn .3. 23 ) we 

get 

{(n 6 _n A )2 exp 2iu} + 1 2 au ' ). 

~se partG add some t erms having periodic coefficiento on 

the r ight - hand side o f l!quation nO.7). They .J.re 

from the firs t two part s , and from Souillart's comple me nt to 

t he [ orcc - func'tion : 

iGm " 
exp 2iu' - 2 

1+ 0 2,42. 
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and 

for the first , sl!cond and third satellite respectively. 

In the <lctu<ll c<ll cul<ltions II; are substituted by thf'! gf!nf'!l"al 

~qiutionG of the homogeneous part as given by equations 

(10 . 12) . Also, the left - hand sid~ of the equations a re not 

considered in its complet~ form .:.r.s in equati ons (10 . 11) but 

as ei ven by the Gcparated approximate equations (l0.101. As 

an example, for the first satellite we have 

exp 2iu 

and the resulting periodic ineqU<ll i ties 
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There are als o varLations related to the motion of the oroit:a1 

plana of J upiter, i . e ., to the v~T'ili tion of nO : 

( 1 - it) exp 2iAo 

These C!ontributions .:ire vcry small. Amone thl'! periodic: 

o~cillations described above we consideT' just those thot a re 

increased by the smallness of the denominator . The terms of 

soluI' origin increase in importance wi th j and ~ . We select: 

", • 4 . 6 >( 10. 6 
""I' i(2~o-b5t- l) 

on, 13 . 6 " 
-, 

iW·O· b\-YS) • 10 exp 

"3 • 31.0 " 
- 6 5 5 10 exp i(2Ao- b t-y ) 

,n, • 66 .S " 10-6 axp i(2~O-b5t-y5) -t 6 . 0 " 
- 6 4 4 

10 el'lP i( 2).0 - b t - y ) 

The Souillart 's te"t'ms are o f t he orde r of 10. 7 and are not 

calcula ted e xplicitly he)"!! . 

The corresponding inequAlities in the l atitude of the 

sate l lites are calcul&ted in the same way a s in Section 10 . 4 . 

f or eX\lJlIple 

and so on . 
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CHAPTER XI 

ELEMENTS AND PHYSICAL PARAMETERS 

11 . 1 PHYSICAL PARAMETERS 

The theory o f motion of the Gali l ean satellites of Jupiter 
involves more t han thir~y physical parameters and i ntegration 
constants , which are to be determined from ohservations. ~ 
are 6 integration constants for each satellite orbits , 2 for 

the motion of the pole of Jupiter and several physical 
parameters. These physical parameters are associated with 
disturbing forces . Untill recently, the determination o f the 
masses of the satellites and the second harmonic of Jupiter's 
potential, was done simultaneously with the orhital elements . 
Other parameter , the fourth harmonic, was determined from the 
motion of t he node of the innermost j ovian satellite : 
Jupiter V(Amaltheal. De Sitter, using a xnown value of J 2 and 
the formula derived hy H.Struve determined J 4 . More recent l y 

Brouwer and Clemence ohta ined 

- 8121. 6 J 2 
2 - 9024.0 J" = 346.53 " 0.14 (11.1> 

With modern space probes flying in the vicinity of Jupiter 
the main parameters can be determined independently. The 
firs1: effort was made at the Jet PropulSion I..aboratory (JPL), 

Pasadena, California, by analysins the Doppler shift of the 
signals emmited by the spacecr&ft s Pioneer 10 and Pioneer 11 
when they were near Jupiter. These results together with the 

classical results ohtained by Laplace , Sampson and De Sitter 
are shown in Table 11 . 1 . The las t column of Tabl e 11.1 showS 
the values recommended by the Sixteenth General Assembly of 
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the International Astronomical Union to be used in the prep ­

aration of ephemeris ; these IAU values have been adopted i n 
this book . 

Table 11 . 1 - Satellite masses and Jupiter 's J and J , " 

Ill! Sitter JpL 

17 45.0 38.l!-4 . 5 46 . 84;1; . 22 '+7.0 

23 25 . 1t 21+ . 8:U 25.23! .2S 25 . 6 

88 79.9 81 . 7.1.1.5 78 . 03!.30 78.1t 

42 45 . 0 50.9;1;6 56.6U.19 56.0 

11t8.5 !ltS . 3:t2 !lt7. 33!.Olj I1t7.5 

6.9 - 5.87.1 . 07 - 5.8 

159 

It is worth noting that the JPL determi nation of Jlj agrees 
completely with the values e xpected by using equation (11. 1) . 

Further, the 

unsucessfull 
for J 6 . 

attempts to determine J 3 , J& and J 22 have 
- 6 -5 within lxlO for J 22 • lxlO for J 3 and 

Other physical parameters are relat ed to Jupi ter : 

size, rotation ,mass. moments of inertia, etc. For the 

equatorial radius of Jupiter, the value recommended by l AU is 

b o:o 7139 8 Ian which is based on the Pioneer 10 and 11 studies. 

The mass of Jupiter with respect to the Solar mass is wel l 

knOWh .tnd we adopted the reciprocal of 101t7 . 572 ( lAU 
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recommended value 104 7 . 355 refers to the whole jovi an 5y~tem) . 

The rotation of Jupi t e r is a parameter difficult to be deter­

mined: we can observe only the upper atmosphere of the planet 

and t he observed rotation depends on the htit\lde . We hav e 

adopt ed the l"'<I1i.o.ls t roronical determina t i on P : 0 . 41354 d o f 

the period of Jupiter as it is believed that the ~os~s 

originate from deeper region~ and may be r e lated to the actual 

body of Jupiter. The moment of i ner tia of Jupiter is ill 
determi ne d and we have adopt ed C=O . 26 . 

The position of the pole of Jupiter , determi ned f rom the 
motion of Pioneer 1 0 i s 

" . 267° , 998 ± 

on December 3 , 1974 . The transfo rma tion in 0 ' and I' gives 

Precision is lost i n the transformat ion because of 
uncertaint i es i n f i gures giving the pOSition of Jupi~er's 
orbit derived from ~he theory of Brouwer and Van Woerkom. 
This determination is compatible with Sampson ' s values for 

1900.0: 

I n this book we have adopted f o r the epoch 1950.0 the values 
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11 . 2 SAMPSuN'S ORBITAL ELEMENTS 

The o"rbi ta1 elements determined by Sampson wer!'! obta ine d from 
the analysis of several series of photometr ic records of 

ec l ipses of the satellit es made a t the Harvard College 

Observatory from 1878 to 1903. These observations were sup ­

pleme nted by visual observations of eclipses col lected by 

Delambre , for the determinat ion of two secular motions,and 

a lso supplemented by t he results o f Damois e a u for the 
determina t ion of the mean motions 

Sampson first de termined the mean longitudes at a fixed epoch 

(11390 Januar y 1 . 0). The observations were reduced twice, 

independently, at Harvard and Durham. The average longitude 

for the three inner satellites were f ound t o be 

and thus 

Sampson asswned t he sum to be equal to 18 00 and to fi t such 

condition he introduced t he corrections +0°.00 03, - 0° . 0003 

and +0 °.0003 respectively. Thus 

" ~ 24,° . 9674 " ~ 59° . 6378 " ~ 57°.97 30 

Th. corresponding va lues from Damoiseau's table s ar·e 

" " 243°.0160 " 590 .(,578 " ~ 5 7° .9803-
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The comp;;J.rison be t ... een the!le values indicates corrections t o 

D~moi~~~u ' s va l ues by 

cr correct ion s to Damoiseau ' s daily t ropi c motions yi~ldin8 

the vl'llue!'; 

50° . 317 6116 290 

For Jupite r IV (Callis to ), processing in exactly the same '.Jay , 

except fOl' libriltion c orrections I Sampson found the ~"ti.<Y.l 

to Damois eau ' s tables to be +0° , 042 6 , However it was nOt 

cleal'" that this shoul<.1 be attribu ted to et'!'OneOU::i mean motion 

or not . Delamt.>r'e ' $ collection of cc1ipsc5, when r c disl'u $scd, 

Showed that at epoch 1788 , 79 Damoiscaus ' s mean lonsitude was 

in error by +00 . 0352 , This was 3ccepted by Sampson and total 

cor~ection was then +0° , 00711 in 36966 days , The C:Ol'"re Cted 

da ily tropic mot i on resulted is 

In order '0 have side I'ea1 mean motions " i. s u fficicnt '0 
consider precession, 1'he resul ting va lues or. 

n , , 203° , 1188 95'. 20' 

n, 
, 101°,3711 '" 445 

", , 50° , 317 [,/1 8 063 

n4 
, 21° . 571 071 403 

I 
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which have eeen adopted l1y S.;lJ1Ipson . 

The position of perijoves and nodes at the epoch JD 2~15020 . 0 

(1900 January 0.5) determined by Sainpson are given in Table 

11.2 

Table 11 . 2 - Perijoves and Nodes (1900 Jan.a.S) 

Satellite Peri jove Node 

1 2650 .719 33°.299 

, 196°.534 2900 .550 

, 3400 . 679 3200 . 705 

4 263°.258 7° . 331 

'63 

The other elements determined by Sampson have been considered 

in de ta i l s in prf"eedin g chapt ers . 

11. 3 SAMPSON ' S TIME SCALE 

The nominal time scale in Sampson ' s tables is the mean solar 

day which is not uniform. The theory of Sampson as well as 

every mechanical theory defines a proper time scale, uniform 
except for the errors of the theory itself. This scale is 

dire c tly related to the observations used for sake of 

Obtaining the integration constants of the theory, i.e .• the 

elements. 

The fi~5t studies on Sampson's time scale (t s ) were made by 

Rodrigues (197 0 ) assuming that the shift of ts leads to a 

systematic component in the observed positions. His results 

have been confirmed by further studies . Some recent results 
are shown in Table 11 . 3. 
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Epoch 

1913.5 

1914 . 6 

1'.n5.7 

1916 . 8 

1919.0 

1922 . 3 

1924.6 

1927.5 

192B. 7 

1934 . 4 

1968 . 2 

1973.7 

1974.7 

Table 11. 3 

0. 29 ± 0 . 03 

0 .25 ± 0. 02 

0 . 30 ± 0. 03 

0 . 24 :!: 0. 0'2 

0 . 29 ± 0. 03 

0. 24 :!: 0 . 04 

0.22 ! 0. 04 

0 . 36 ± 0 . 011 

0.49 ± 0. 05 

0. 2!! ± 0.08 

0.41 ± 0 . 04 

0. 67 ± 0 . 03 

0 . 26 ± 0 . 04 

rwNAMICS OF TIlE GALIlEAN SATELLITES 

Values of l!.t 

Observatory {Observer' 

Cape/* 

Capel" 

C:lpe/'" 

GY>eenwich/** 

Gr>eenwich/** 

Leiden/W,H. van d.en B::ls 

Cape/* 

,Tohannesbur'g IH. L. Alden 

Johannesl".>l!re /H. L .Alden 

Bucharest I G. Petrescu 

Leander-McCor.nick ILl. Fase:\.! 

U. S.N.O. Washingtcn /D. Pascu 

U. S N.O. Washington ID.Pascu 

• J . Lunt , J . W. Jackson,R.Woodgate and G.Duncan 
** M.Jones, C.Davidson, P . Melotte and E.Martin 

FI;ure ILl 

.llt.t *ts- ET 

• 

• 
1960 

• 

• 
• 

y~ar 

• 
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In these results the shift of Sampson ' s time scale is a 

~cighted mean of the least squares solution for the shift of 

the i ndividual time seale of each satellite. 1·he resu l ts shew 

that ~ significant shift in Sampson ' s time scal e exi~ts. A 

ver:>, :.implified model may help us to have a. better un(Ien;t<ulding 

o f what happens. 

~~t us suppose a simple phenomenon whose state is given by a 

mea:.urJole paramete~ e and assume that a theory exists~ 

that e uepends on the uniform time through a linear funct ion 

~ (t) : 

e " f{L{t)} (11. 2) 

If the mean motion L is determined from two sets of measure s 

made at the mean epochs t4 a nd to' it is possible to evaluate 

the effects of usinr, a non - uniform time scale CUT) as it 

happened i n the derivation of the mean motions by Sampson . He 

used the law 

o " f {L{s}} (11. 3) 

where 8 i~ the same instant as t but in the UT - scale . 

The correct determination of the mean motion is given DY 

- 1 where g = f . The actual calculations have been made with the 

improper law (1l.3): 

• :g_, -;;' 0,-'-:--.,..:-' _"-,",-' 
'0 - sa 

(11. 5) 
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The relationship between t hese t wo mean motions may be written ., 
LE d - d , , 1 - o • , 

t o- La Lu 

where de and d • • re the differences ET- UT in the considered 

epo ch s , " 
dO 

, to - ' 0 d. , 
t. - 'a " 

Let t his theory be used for a new s e t of measures made at t he 

wean epoch t. Since the UT is not uniform the i mproper law 

will not reproduc e the measures. Let 65 be t he correction of 

the time scale require d to get the observed r esult wi th the 

improper l aw. Then 

where Lu is t he linear function L with Lu as mean motion. 
Therefore 

We assume that t he correct law (11.2) would reproduce exactl y 

t he observations; thus 

We also assume that both laws reproduce exactly the measures 

at the mean epoch to' that is 
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Then 

and afte r some calculations we have 

( n.5) 

where 6 t ::; ts - ET . 

Let us now apply this simple model to Sampson ' s tabl es. The 

old data used by Sampson wer~ longitudes provided by 
Damoiseau ' s table s , wh ich depend on eclipses observed from 

the end of the seventeenth century to about 1830. The ~t 

values o f ET- UT adopted for that epoch and for the mean epoch 

of t he Harvard eclipses are 

ta = 1750 . 0 da ::; 0 seconds 

to ::; 1890 . 0 7 seconds 

and thus we have 

l - l ::; 0.05 is/year . 

The adopted values for ET- UT were obtained by D.Srouwer who 

compared observations of the Hoon to the theory of E.W.Brown. 

Brown ' s adopted tidal acceleration of t he mean longitude of 
the Moon was - 11 " .22 T2 (where T is in ce.n'!:uries). Van 

Flandern c laims t hat this accelera~ion needs a correction 
wl0 " T2 . The Moon moves one arcs econd per 1.92144 seconds and 
~he corresponding correction in Brouwer ' s de~ermin4~ ion of ET 
is +18 .21 T2 . He then sugiests the correc~ion 

0 .15 - 2.55(7- 19 .6 3) + 1 8.21 (T- 19 . 6J1 2 seconds. 
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If this correction is adopted we have 

d' " 88s a 

~*-l : 0.6 s/year . 

d~ = 55 

On adopting the time-scale correction of 0 .6 minutes per 
centul'yCO .36 s/ye<lr). we have ,he sidereal mean motions 

203°.48e 956 4 , oO,OUO 000 IId- 1 

101° . 374 724 5 , 2 

50° .317 608 6 , 1 

21° .571 071 64:!: 05 

which have been used throughout this book . 

11.4 ON ACCELERATIONS 

The time scale of S<lIlIpson ' !l theory may not explain t he olIseIVed 

deviations in the longitude of the satellite s . There are 

errors in other e l ements, viz. positions of perijoves and 
nodfl6, and there are errors in the coefficients of impol'tant 

long period inequalities. Se~idec, neglected long period 
inequalities and accelerations may exist. The extension of 

the model considered in previous section to t he case where 

accelerations exis t is very easy. Instead of equation (11 . 2) 

suppose thAt the state of the pllenomenon is given by 

e :: f{Q(t)} Q :: a + bt + t ct2 (1l . 7) 

The mean motions derived by means of equations ( 1 1.~) and 
(11.5) from the set~ of m ••• ur., made at the mean epochs t a 



, 

-, 

and to r espective ly are 

where i.E is the average of Q in the time int~rval. For the 

set of measures m~de at the mean epoch t we have 

which defines lis . Similarly . tOI" the mean e poch to we have 

s ince lis 0 at epoch 't o' Thus 

and 

Negl~ctine higher-order corrections in these relations it 

follows 

lit + dO - (~ - l)(t-to) 

(t-ta)Cr- t o ) 

From the dat a given in the previous section we have c/b : 
- 9 - 1 +1 x 10 cy were we used Brouwer ' s results. Using V~ 

Flandern scale ET A we haVe c/b = - 5 x 10- 9 cy- l . These 

results need some discussions. 
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Data l isted in Table 11.3 are averages of the evolution of 
the satellites . Accelerat ions a re expected because of s~ 
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variations in The oroi t of Jupiter . and in this case. the 

outermost satellites would be more a ffect ed than the inner 

satell ite~ . Accelerations are also expected because of tidal 

frict ion and i n this case on ly the inner satelli tes wou l d be 

affected . But observational consideration of each satellite 
separately i s impaired by the existence. of important: la'lg-period 

residuals (whi ch a re more or less averaged when we consider a 

joint time-scale correction) . At the end , t he model used is 
very simplified. The r esults only serve to give an idea of the 

observational uncertainty still existing before acceleration 
is aetected . 

When tidal friction is neg lected, the most probab l e source of 

acceleration in the motion o f a satelli te is The s ecular 

variation of eccentricity of the orb i t of the central planet 
aro und the Sun . The quadratic term in the l ongitude o f t he 

epoch is given by the equaTion 

2 3GmOe O 
3 2nao 

. - 2n 

where eo = constant + eot . After integrat ion The time de~t 
part of eO gives 

1 2 I '1 ct = 05 2£ = 

2 
3n O 
-.n 

wh ich is very small . After Brouwer and Van Woerkom eo = 
1.59 x 10- 6 y-l. Therefore . for the Galilean satellites 
nc = 4 . B5 x 10-11{d- 2 cy- l ). The maximum rate c/b is that 

o f Jup i ter IV {Callisto): - 3 . 4 x 10-10 cy-l . 

Tida l e ffects are important sources of evolutionary inequalities 

i n a system o f satellites . The classical formula is 

• a = 



or 

n 
n sin 2(. • 

In these formulae k2 is the tidal Love mumber and t i6 the 

tidal lag angle:the angle between the maximum tidal bulge 
and the planet~54tellite line of centres. For the innermost 

satellite we have 

. 
n n : - O.OB k2 sin 2E 

-1 
'Y 
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where the fcct that it will redistribute part of its effects 

to other satellites because of libration was already consid­

ered. For almost circular orbi ts , the sign of c is governed 
by the sign of r-n which is positive . Therefore, whatever is 

k2 sin 2£ the acceleration is negative . 

At last it must be kept in mind that important long-period 
residuals still exis t in Sampson's t ables. These residuals 

avoid a me~ ning!ul study of the accelerations. Nevertheless, 
new campaigns of observations and the reconsideration of old 
data p~og~@s s. We are confident that a better knowledge of 
long~period terms will be soon available and will allow to 
consider the residual accelerations with more r igour and to 
obta in some results . 

The values obtained by De Sitter 50 years ago of the order 
- 8 - 1 of 10 cy are not acceptable. Their corrections to get a 

uniform time scale were based on a uniform deceleration of 
the Earth whereas in fact the Earth's deceleration is in no 
way uniform at all. 

11 . 5 ELEMENTS OF DE SITtER 

The determination of the elements by De Sitter, who consid­
ered all available observat ions made before 1928. was much 
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JIDl"e eclectic than that of Sampson . 

(~) PhOtOg~4phi c obser vations: De Sitter considered 

about t en serie6 of photographic observations made ct t the 

Observa tories in lIelsingfors . Cape . Pulkovo , Greenwich, lelden 

dnd Johannesbur g in the period 1891- 1927 . The telescopes used 

had focal lengths ranging from 3.43m(Carte du Ciel telescopes 

at Helsingfors and Pulkovo) to lO.9m(Yale- Columbia Southern 

Station telescope at Johannesburg) . The pre c i sion o f these 

slu·i.e'S were s tudied by De Sitter! who de t e rmined the .'itanl1ard 

errors involved for one coordinatc ( averages of 6 e~posures 

measured in t wo positions) , The rcsultfi are shown in Table 

11 .4. These results have yet not been confirmed by more 

recent analysis of the ohse~vational data . 

Tahle ll.~ - St~ndard Er~ors 

Te lescope Focal Le ng th Standard Error 

Carte du Cit!l 3 .4m O~'O8 

Leiden S.' 0 . 05 

Cape and Grt!enwich 6.a 0.05 

Johannt!shur g 10 . 9 0 . 03 

(b) Micrometric observations: Several series of microm­

etric observations made between 1903 and 1909 at Washington 

and Berlin were cons idered. 

(cl Heliometric observations: De Si t ter cons idered t he 

s er ies ot ohs~rvat ions made wi th the Cape heliometer (focal 

l e nght 2 . Sm) by Gill and Finlay i n 1891 and by Cookson in 

190 1 and 1902 . 
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(d) ObscrvQt ions of eolipses and phenomena . De Sitter 

also considered parts of the old collection of ec l ipses used 

by Wargentin. Oelamhre ~nd Damoiseau. and the photome~ric 
series of Harvard as we l l a s the very detailed observations 
of phenomen~ made by I nnes and Wood ~t Johannesburg and 

discussed by Brouwer . 
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From the point of view of their intri nsic precisions it is 
interesting to compare these different kinds of observations . 

Table 11 . 5 shows De Sitter ' s estimates of the standard errors 
con'verted in time (s econds 1 

Table 11. 5 - Standard errors in seconds 

Sate lli tf! I II III IV 

Eclipsl'!s (Harvard) 10 IS 17 J2 

Heliometer <O . G111) 9 12 IS 19 

Photographs ( Johannesburg) 5 7 9 12 

Considering all data listed above, De Sitter deduced elements . 

Table 11.6 lists the mean motions and the positions of the 

perijoves and nodes at the same epoch of Sampson ' s elements . 

Other elements were considered in detail s in the preceding 
chapters. 
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Tabl e 11.6 - Mean Motions , Perijoves and Nodes 

Satf11lite Mean !'btlen (d- I ) Perijove Node 

1 203°.4889 9636!20 ,,0 :t320 640.7 !3° . , 
2 101°.3747 6336:t17 1119°.5 , 6° .6 292° .81!Oo.16 

3 50°. 3176 4106:t15 345°.6 , 1°.2 3190 .8l!cOo.46 

• 21°. 5711 1041:t20 2820",79± 0°. 10 12°. 79:t~ . 31 

Al though De Sitter's r esul ts have one more digit than all owed 

by the ffi.:tgn.itude of the Gtand ard e:rrors, they have l es5 digits 

tha n Sampson's result s. The resul t5 given by Sampson have IMnY 

meaningless digits; they have been kept i n t hi s book i n order 

to reproduce exactly the data used by Sampson in his t heory 

and in his tables. 

11.6 OTHER OBSERVATI ONAL DATA 

To determine the physical parameters of the satellites.~ 
as well as De Sitter had determined from the observations the 

amplitudes of several inequa lities and some daily motions. 
The quantities that were determined hy "them from the ooserw.­
tialS are 

,., Th. coefficient: 251 of "the induced aquat ion of the 

centre i n the longitude of 10 (see Sec"tion 6.1); 

'b' The coefficient 282 of the induced equAtion of the 

centre in th, longitude of Europa (see Section 6.l) ; 

( c ) The coefficient 2M~ of the 

longitude of Ganymede whose argument 

5.6 ami 7.7); 

free oscil l ation in the 
• • is )'3-& t - B (see Sections 

(d) the daily motion g4 of t he proper apsis o f Callisto 
(see Sections 5.6 a nd 7.7); 



EL9IENl'S 

(el the daily motion b2 of the proper node of Europa 
(see Section 10.2). 
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Their results are shown in Table 11. 7 together with the results 

obtained in this book using the IAU recommended values of the 

physical parameters. 

De Sitter also made determinations of other proper apsidesand 

nodes (see Tables 5 . 4 and 10.2) as well as the amplitude of 

some other inequalities; 

(f) The coefficient Nj of the free oscillation in the 

latitude of Ganymede whose argument is A
3
-b 4t_ y4 (see Section 

10.4), and 

(g) The coefficient 28 3 of the induced equation of the 
centre in the longitude of Ganymede (see Section 5.1). 

TiiWle 11.7 - Comparison of some quantities (in units 10-
5

) 

Deduced frcm Observations 
Quantity """"'" - De. Sitter 

'"" 
8:27 . 0 823 . 0 821.5 , , .. 

-'s, 1852.5 1867 . 8 1866.5 , ' .8 

'-: 1" 128.8 134 .3 ±12.6 , 
3.21 3.24 3 . 29± 0.05 g 

b' 58.0 56.7 56.9 , 0.7 

N' 
3 

66.1 50.9 , '.0 

2°3 121.0 112 US 
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11. 7 MUTUAL EVENTS RESULTS 

A concerted campaign and much international cooperation provi~ 

ed a large collection of observations of mutual phenomena of 
the Galilean satelli'!:es during thl! favorable passage. of. the 

Earth through the plane of Jupiter's equator in l'HL AAsnes 

a nd Franklin made an analysis of 91 mutual eclipses and 
occultations that occu~ed from June to December 1973. They 

ob tained four different least- squares solutions for longitude 
corrections and two different least - squares solutions for 
latit ude corrections . 

The best solutions for the proper elements at the mean epoch 

of the Observations JD 2441920.5<1973 . 65) <lI'e shown in Table 

11. 8 

Table 11.8 - Mutual Events Results 

Sat ll!llli'tl! 
Pr>oper Propel" Proper Proper 

Perijovl! Eccen'trici'ty Node I nclinat ion 

1 3250 :t17° "" xlO- S 117o ±5° 73%23 "lO- S 

2 "' ±23 lS±Li 135. tuO.5 52 Li:tl6 

, 17Li . 7 ±O . S lS213 l25 . 2±O. 5 35Li1l9 

" 332.88 :!:O.OS 730:1 If 321. 3!O. Li 377:123 

They also dl!t ermined from ~he observations the coefficien~ of 

the 'two largl!st inequalities in longitude 
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If the values in Table 11.8 are compared ~o Sampson ' s tables, 
some important disa8l"'eement~ a.rise : (a ) the node of 10 is 

90° far from the value predicted in Sampson's tables for the 
mean epoch of the observations (2 6° .8) ; (b) the perijoves o f 

10 and Europa have shifts of 1350 and 20°. respectively S (c) 

remaining perijoves and nodes have shifts that are smaller 

but important because the corresponding eccentricities and 
inclinat i ons are large . 

The discl"epancies arise mainly from some unexpected bad values 

for some characteristic roots in Sampson ' s tables. Table 11.9 
shows the motion of the proper perijoves and nodes deduced 

from comparison of Samps on's determina ti,ons of the perijovcs 

and nodes at 1900 Jan . D.S to mutual event results . Mo~ions 

obtained with De Sitter's determinations instead of Sampson's 

are shown in bracke~s. T<lble 11 . 9 also shows the characteristic 

roots in Sampson's ~ables, in Lieske's ephemerides E- 2 ( see 

Se ction 11.9) Ilnd the value s obtained in ~his book. 

Table 11. 9 - Motion of proper perijovesand nodes(in units 10-6d-1 ) 

- 1.ieske's Tab ... 
Satellite fran Tables Sarrq:loon • s Ephe:Ieris 7.2 ...., 

11 . 8 and 11.2 Tables E- 2 10 . 2 

Perijoves 

I 281+0 (2733) 2756 2910 2 ~JI 

II B35 ( 865) B22 811 700 

III 126 121 IZ. 130 

IV 32 . 2 32 . 4 32.1 32 .0 

-. 
I - 2290 ( -23 02) - 2340 -2319 -23.~ I 

II - "" ( - 569) -571 569 - 5.'90 

III - 125 - 123 125 126 
TV - 29.9 32 - 30.7 30 . 8 
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The bQd value of the motion of Jupiter II (Europal obtained 

with the approximate theory given in this book is an example 
o f the importa nCe o f high- order terms in the theory of the 

motion af the Galilean satellites . 

ll . 8 LIeSKe'S r:P!!I:MERIS r:-2 

Recently. at the Jet Propulsion Laboratory, Lieske deve loped 

analyt ic express i ons for the positions and partial derivatiYes 

of the satell i tes utilizing the same method as Sampson . and 

made <l prelimi nary ""valuation o f the constant s employed in the 

new theory in order to best fit observa:tions. He started with 

the analysis of the photometric ecl ipse observations mad e at 

Harvard during the year s 1878- 1903 as well as the very f ew 

photome t ric eclipse obs erva~ions of half-brigh~ness made since 

then . A se~ of para meters (called E- l) was derived by 

itera tively fit~ing and re - fitting the data untill the 

solu t ions converged. As noted before by Franklin and Aksnes , 

some par ameters (vi z . the nodes and aps ides) r equire large 

corrections. As in Sampson's tables the o r bit of Jupiter IV 

(Callisto) is derived from few observat ions (31 in the per i od 

1878-1903 and 7 after 1954) . 

A second set of parameter (cal led E- 2 ) was derived in the same 

way . fitting 

photographic 

also the mutual avent data , as well as 2964 

obs e rvations fro m 19 6 7 t o 1978 . The 

ocservation s were obtained with equal t elescopes 
photographic 

at the U.S. 

Naval Observatory by D. Pascu, and at the Leander Hc . Cormick 

Observatory by D. Pascu , P . Ianna and P. Seitzer. The mean 

motions , proper elements and longitudes at the epoch 

JD 244 3000 . 5 (1976 August 10 . 0 ET) for E- 2 ephemeris are 

Shown in Tables 11 . 10 and 11 . 11 . 
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Table 11 . 10 - Metric Elements in Ephe~eris E-2 

Sutellite 

r 

II 

III 

20P . .... 8895536( 175 ) 

101° . 37 .... 7 2 .... 56(!~9) 

• 

Proper Eccentt'id ty Proper !ru::linatioo. 

70128 ><10- 5 

816121 

11+7:1:3 321+116 

733t3 

Table 11 . 11 - Angular Elements in Ephemeris E- 2 

Satellite I..ongitudc at the: epoch Proper Pftt'ijove 

I 10So .078G(tl 7Gl ,,0 • ,,0 308° ! 18° 

II 175° . n3B( l 39) 129 , 16 100 , 1 

III • 1 B7 . 6 1 0.9 119 • , 
N 84°.4558(:1; 49) 335.3 1 0.1 323 , , 

Since the mean motion and longitude at the epoch of Jupi ter 

III (Ganymede) are derived f rom Laplace theorems, t wo othe r 

independent integrat ion conStants are needed . They a re the 
amplitude and phase of the Libration . The two amplitude 

deter minationo made by Lieske are shown in Table 11 .12 . 
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Ta ble 11 . 12 - Amplitude of the Libration 

Lieske ' s Ephemeris 

E-1 

E- 2 

Amplitude (D) 

9 . 7 t 3 .5 ~10 - ~ (3 ' 22 ") 

11.5 t 2 . 2 xI0- ~ ( 3'57") 

In both determinations the phAse i s clOSE! to zero at 

JD '2443000.5 buT the standard errors of the determined values 

is very great . 

The librations in the longitudes of the three inner satelli tes 

=c 

(27")" 

(65") 

These inequalit ites have amplitudes of the same order of 

!nagnitude of some among the Great 

(see Table 7 .1 ) Lieske ' s va lue ot 
corresponds to a l ibration period 

Inequalities in Longitude 
n is 3 . 03 K lO- 3d-l which 

L 
of 2074 days . 

The work of Lieske is still in progress and the results of 
this Section are expected to be improved short l y . 

Lies ke 's set of elements ~- 2 together with the mean mo~ions 
derived in Sec~ion 11 . 3 have been widely used all along ~his 
work. 
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and for nuking ccrnparisoos they !IlJst be divided by 0. 6745. 

The dasl:ed line in Figure 11.1 crosses the mean epoch of Harvard, 

series ilt Brouwer ' s value ts - EI' co ur - E1' = 76. 

Recently Morrison, using the results of his analysis of the tirM­

residuals of transits of ~ury in the period 16H to 1973, 

indicat ed ~ observed tidal acceleration of "the M::lon _ 26 " cy- 2 

L.V .Morrisc:fi : 1917, ''Tidal Deceleret:ioo of the Earth's 

Rotatim deduced frool AstT-::nanical ObseI'Va:tions in the 

period A. S. 1600 to the present", N.A . O. Teclu! . Note 43 , 

Roy Greenwich Obs ., H.rilslwn. 

These results indicate >"- 1=0. 1 s/year .md the sane dO as Brouwer. 

U.4 A recent study of the eclipse observations of Picard and RoenEr 

fIqn 1668 to 1678, using a .:::iInpillied rrode.l gives 

fil ~ 203 . 4889 19±16 deg/day: 

S.J .Goldstein Jr.: 1975, "On the Secular Change in the Period 

of 10, 1668- 1926", Aa tl"On .JoUl"rlal 80, 532- 539 . 

A oamparison with modern values leads to c/b= (7±3) x 10-B GY-l If 

this value is corrected for the deceleration of the Earth's 

rotation it is reduced and <;crIel> t o the ~ oY'der of its s t andaro 

error; that is still greater than the expeded value. 

11. 5 De Sitter's work is discussed in the Gold Medal lectuX'c 

W. De Sitter : 1931 , "Jupiter's Galile<l11. Satellites", Mon~hly 

Notic6~ Rcy. A.trcn. Scc. 91i 706- 736. 

De Sitter uses always proba.ble errors; thus we transforne:l. them 



, 

in to s tandard et"I'QrS in order to ~ his results wi'th ot:hE!rs. 

The caIpaI'isons .indicate that De Sitter's ert'CII'5 are, perhaps , 

und~s1:i!na'ted. 

11. 7 M..&tual event 1'I!!sults o f the 1973~ are ro11ected and 

discussed in 

K.J\ksnes and f .A. F'ronlU.in : 1976 , ''IiJ't'I.I4l. ~ of the 

Galilean Satellites in 1973. Fin&l Results fran 91 Light 

Curves", Astron. JOUPl1a1., 81, 464-481. 

s.e 4lro 

T.NakaJrura : 1976 , "Analysis of Mutual f'IleD:lmeNl of Galilean 

SatelliteI'; in 1973", Pub1..Aa"tl'. Soc . Japan 28. 239-257 . 

11 . 8 Ephemeris £-1 i s discussed in 

J .H.!..ieske : .L978 , "Gali1e&l Sa:tellites : Analysis of 

Photometric Eclipses". AstJ'On. Aatrop4la . 6$~ 83-92. 

The WOI'k leading to EpheuEris B-7. has no"!: ye"!: been p\ll:JJ.iSht.'d. 
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