16 Cygni: A key binary system for the study of the planet-star chemical connection

Marcelo Tucci Maia mmaia@lna.br @TucciMTM

COLABORATORS: JORGE MELENDEZ IAG-USP DIEGO LORENZO IAG-USP LORENZO SPINA IAG-USP

WHY 16 CYGNI?

A well known binary system

16 Cyg B has a Jupiter size planet (M>1.5 Cochram et al 1997) while A has no planets

Both stars are solar twins born from the same cloud: -Differential abundances (~0.01 dex)

Galactic chemical evolution and birthplace effects minimized

Reveal possible effects of planet formation or planet accretion on stellar surface composition

PREVIOUS WORK

Tucci Maia et al. 2014

Rocky Core \sim 1.5 – 6 Earth Masses

Why reanalyse 16 Cygni?

Better data!

CFHT – ESPADONS

 $R \sim 81~000$ S/N ${\sim}700$ around 600 nm

 $R \sim 160\ 000$ S/N ~ 1000 around 600 nm

Do not found different [Fe/H] between A and B: Deliyannis et al. 2000; Schuler et al. 2011; Takeda et al. 2011

The "new" surface stellar parameters

	А	В		А	В		А	В
Teff [K]	5832 ± 5	5763 ± 5	Teff [K]	5830 ± 11	5751 ± 11	Teff [K]	5816 ± 10	5763 ± 10
Log g [dex]	4.310 ± 0.014	4.360 ± 0.014	Log g [dex]	4.300 ± 0.02	4.350 ± 0.02	Log g [dex]	4.291 ± 0.01	4.356 ± 0.01
[Fe/H] [dex]	0.103 ± 0.004	0.063 ± 0.004	[Fe/H] [dex]	0.101 ± 0.008	0.054 ± 0.008	[Fe/H] [dex]	0.093 ± 0.007	0.062 ± 0.007

 Δ [Fe/H] (A-B) = 0.040 ± 0.004 Δ [Fe/H] (A-B) = 0.047 ± 0.008

 Δ [Fe/H] (A-B) = 0.031 ± 0.007

Tucci Maia et al. 2017, in prep

Tucci Maia et al. 2014

Nissen et al. 2017, in prep using seismic surface gravities from Silva Aguirre et al. (2017)

Our method is consistent

AGE, RADIUS AND MASS

	Α	В	
M/M_{sun}	1.06 ± 0.01	1.01 ± 0.01	This work
M/M_{sun}	1.08 ± 0.02	1.04 ± 0.02	Metcalfe et al. 2015
R/R_{sun}	$1.22\ \pm\ 0.01$	1.09 ± 0.02	This Work
R/R_{sun}	1.229 ± 0.008	1.116 ± 0.006	Metcalfe et al. 2015
Age [Gyr]	6.4 ± 0.2	7.1 ± 0.3	This work
Age [Gyr]	7.0 ± 0.1	7.0 ± 0.1	van Saders et al. 2016

ABUNDANCE CLOCK

[Y/Mg]	[Al/Mg]
$A = 6.2 \pm 1.0 \text{ Gyr}$ $B = 6.3 \pm 1.0 \text{ Gyr}$	$A = 6.6 \pm 1.0 \text{ Gyr}$ $B = 6.8 \pm 1.0 \text{ Gyr}$
Tucci Maia et al. 2016	Spina et al. 2016

Stellar parameters using automated EW measurement tools

DAOSPEC			ARES		ISPEC					
	Α	В			Α	В			А	В
Teff	5838± 4	5757± 4		Teff	5833± 19	5781± 18		Teff	5830± 5	5744± 4
Log g	4.330± 0.012	4.360± 0.011		Log g	4.340± 0.046	4.420± 0.054		Log g	4.350± 0.015	4.370± 0.013
[Fe/H]	0.104± 0.004	0.059± 0.004		[Fe/H]	0.107± 0.016	0.058± 0.017		[Fe/H]	0.104± 0.006	0.049± 0.005

 Δ [Fe/H] = 0.045 ± 0.004 Δ [Fe/H] = 0.049 ± 0.023 Δ [Fe/H] = 0.055 ± 0.008

16 Cyg A is \sim 0.04 dex richier than B

Stellar parameters using automated EW measurement tools

DAOSPEC

ARES

ISPEC

The "new" condensation temperature trend

Nissen et al. 2017, in prep

EW tools condensation trend

EW tools condensation trend

Linear fits

	Slope (dex. K^{-1})	Minium uncertainty (dex)
ours	$1.64 \times 10^{-5} \pm 2.52 \times 10^{-6}$	n.a.
iSpec	$1.45 \times 10^{-5} \pm 3.78 \times 10^{-6}$	0.006
ARES	$2.22\times 10^{-5}\pm 1.53\times 10^{-5}$	0.028
Daospec	$5.99 \times 10^{-6} \pm 4.66 \times 10^{-6}$	0.008

All fits show a positive Tcond trend

The condensation temperature trend is a signature of the 16 Cyg Bb rocky core?

Stabilization of the Convective Zone problem

Anomalous Li abundance for the age of 16 Cyg A, while 16 Cyg B seems normal

Carlos et al. 2016

The condensation temperature trend is a signature of the 16 Cyg Bb rocky core?

	$16 \mathrm{Cyg} \mathrm{A}$	$16 \ \mathrm{Cyg} \ \mathrm{B}$
Li (dex)	$1.31 {\pm} 0.03$	$0.61 {\pm} 0.03$
Be(dex)	$1.50 {\pm} 0.03$	$1.43 {\pm} 0.03$
$V_{macro} (km s^{-1})$	3.97	3.66
$v \sin i \ (km \ s^{-1})$	1.37 ± 0.02	1.22 ± 0.03

Li = 0.70 dexBe = 0.07 dex

2.5-3.0 Earth-like masses of Earth composition material

Evidence of planet engulfment on 16 Cyg A

Does not exclude the possibility of spectral signature of rocky core formation