Tips for measuring Equivalent Widths

Dep. Astronomia, Univ. São Paulo

Line profile is convolution of Gaussian & Lorentzian: Voigt profile

- The natural, Stark, and van der Waals broadening coefficients all have the form of a dispersion profile:
 - $\partial_{\nu} = a \frac{b}{\Delta \nu^2 + b^2}$
- With damping constants (γ_{rad} , γ_2 , γ_4 , γ_6) one simply adds them up to get the total damping constant:

$$\partial_{\nu} = \frac{\pi e^2}{mc} f \frac{\gamma_{total} / 4\pi^2}{\Delta \nu^2 + (\gamma_{total} / 4\pi)^2}$$

- The thermal profile is a Gaussian profile: $\alpha_{\nu} = \frac{1}{\pi^{1/2} \Lambda \nu} e^{-\left(\frac{\Delta \nu}{\Delta \nu_D}\right)}$
- Instrumental profile is ~ Gaussian

Equivalent Width (EW) measurements: not trivial

CN blends for O I triplet

(Meléndez, IAU Symp)

CN blends must be taken into account, otherwise the EW may be over or underestimated

Fig. 11.11. In a few cases spectral lines, like this magnesium line in the solar spectrum, clearly show the Gaussian core and the dispersion wings with a relatively sharp transition between the two near $F/F_c \approx 0.3$.

D. Gray

Oxygen triplet in the Sun and solar twin 18 Sco

Jorge Melendez, from UVES spectra

The most important (and demanding) part in the differential work are the EW measurements

- Even if you're using sophisticated model atmospheres or line formation, your results will be wrong if the measurements are wrong
- Differential measurements: make the same (sensible) choices for your star & standard
- All starts with a careful line selection

Case study: carbon Higher absolute abundances! CI lines at 7111,4 & 7113,2 Å

Equivalent Widths for Precision Spectroscopy

Hand (manual measurements).

For automatic EW: DAOSPEC, iSpec, ARES

Bedell, Meléndez, Bean et al. 2014

Some tips

- Try to do consistent observations using the same instrument/configuration.
- Verify your relative continuum normalization

Measuring lines

- Whenever possible choose the cleanest lines
- If the lines are not perfectly clean, try to choose a line close to a continuum region

Bedell et al. 2014, ApJ, 795, 23

Measuring lines

Bedell et al. 2014, ApJ, 795, 23

NH in the ultraviolet, to obtain nitrogen abundances

continuum

††OH 1−1, *NH 0−0 **1−1

Solar twin spectra

- HIP79672.fits (18 Sco, 3 Gyr)
- Juno.fits (Sun, 4.6 Gyr)
- HIP102152.fits (old solar twin, 7 Gyr)

Line list (sun2015_05_18.moog) Lambda ion exc.pot log_gf C6 0.0 EW comment 4788.757 26.0 3.237 -1.763 0.175E-31 0.0 67.7 Fel 1 Plot star and standard to choose best continuum region

- Use a window of ~ 5 - 6 Å, meaning ±3 Å from line center (in some cases a larger window may be needed)

Ex.: Fel 4950.1 Å (using UVES spectra): splot HIP102152 xmin=4947.1 xmax=4953.1

Continuum region too small (±1Å)

Better, ±2,5Å or ±3 Å

onedspec> splot HIP102152 xmin=4947.1 xmax=4953.1

Fitting a Voigt profile: uncertain wings

Deblending using gaussians: careful about uncertainties in (exaggerated) contribution of components!

Using a single gaussian: careful about using the whole wings (blends contribute)

Using a single gaussian: careful about using the whole wings (blends contribute)

Measuring Fel line in HIP102152 "k" in splot (at the chosen continuum and left limit for profile fitting)

Measuring Fel line in HIP102152 "k" in splot (at the chosen continuum and right limit for profile fitting)

Measuring Fel line in the Sun "k" at chosen continuum and left/right limits

splot HIP102152 xmin=4991.1 xmax=4997.1

Fel 4994,1 Å

EW = 108,9 mÅ in HIP 102152

EW = 107,4 mÅ in Sun

EW = 107,8 mÅ in HIP79672 (18 Sco)

Fel line at 5577 Å

Fel line at 5577 Å

HIP102152: 12,3 mÅ, Sun (Juno): 11,8 mÅ 18 Sco (HIP79672): 12,9 mA

Nal at 6160.8Å: inclined continuum

Bedell et al. 2014, ApJ, 795, 23

Continuum has slope due to (Lorentzian) wing of strong nearby line

Perhaps try a single gaussian with local continuum. Borderline case: either flat or

some slope should be OK

