# **Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations**

Diogo Souto

# Observatório Nacional - ON/MCTI

Katia Cunha



Verne Smith



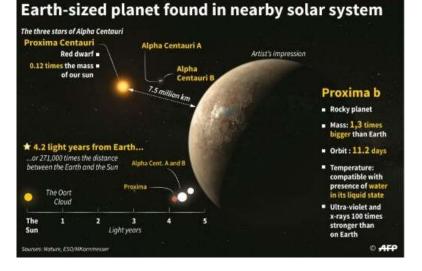




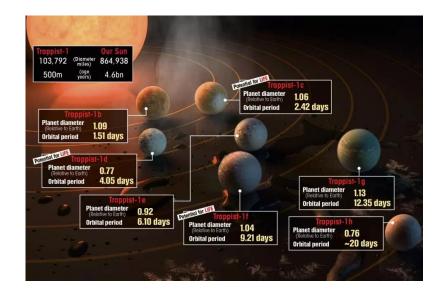
Olga Zamora








# Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186


Souto, D., Cunha, K., García-Hernández et al., 2017, ApJ, 835, 239

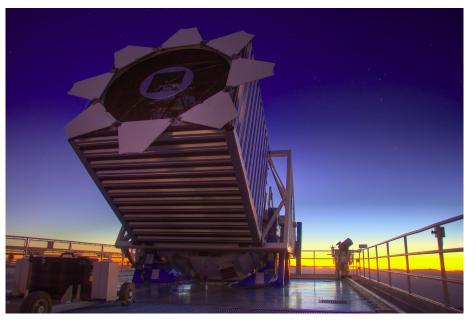
#### **M-dwarf Stars**

- M-dwarf stars are main targets to search for Earth-like exoplanets;
- Future missions as Tess and Plato are going to discover hundreds of thousands Earth-like exoplanet hosting M-dwarfs
- Besides being the most abundant stellar class in Milky Way -- Galactic Archeology implications
- With APOGEE we have opened a new window to the study of chemical abundances in M-dwarfs



Source: AFP press

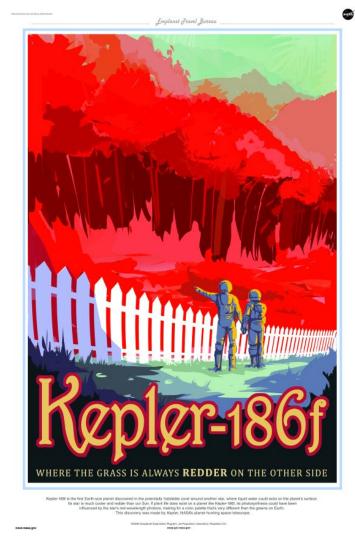



#### Source: The Sun press

Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations

Precision Spectroscopy: Towards Earth 2.0 | 1-4 August 2017, São Paulo, Brazil

## **The SDSS-4 APOGEE**


- O SDSS (Sloan Digital Sky Survey) Dedicated telescope at APO
  - > 2.5m diameter
  - Large field of view 7 degrees<sup>2</sup>
- O APOGEE (Apache Point Observatory Galactic Evolution Experiment) Espectrógrafo APOGEE
  - > Criogenic;
  - $\succ$  H-band between 1.51 and 1.69 µm;
  - $\succ$  R =  $\lambda/\delta\lambda$  = ~ 22.500;
  - ➤ Multi-fiber spectrograph (300).



Source: http://www.sdss.org/

- Sample:
  - Sample: two M-dwarf stars having low mass exoplanets detected by the kepler mission;
  - Kepler-138 is a system with three exoplanets with Kepler-138b was characterized as having Mars-like size (Jontof-Hutter et al., 2015);
  - Kepler-186 has 5 exoplanets detected and Kepler-186f is an exoplanet with similar size as us Planet Earth and also located in HZ (Quintana et al., 2014);

- ✤ Goals:
  - Proof-of-concept paper showing that APOGEE can be used to determine individual abundances for M-dwarfs
  - Initially 13 elements could be studied (C, O, Na, Mg, Al, Si, K, Ca, Tl, V, Cr, Mn, and Fe)



Source: Nasa

## Kepler 138 and Kepler 186

We adopt photometric calibrations to derive stellar parameters - Teff and log g.

Teff from Mann et al. (2015) using the colors V-J e r-J

log g from Bean et al. (2006) plus Delfosse et al. (2000) stellar masses.

|                         | Kepler-138    | Kepler-186    |  |  |
|-------------------------|---------------|---------------|--|--|
| V                       | 13.168        | 15.290        |  |  |
| J                       | 10.293        | 12.473        |  |  |
| Н                       | 9.680         | 11.824        |  |  |
| Ks                      | 9.506         | 11.605        |  |  |
| r                       | 12.529        | 14.664        |  |  |
| <i>d</i> (pc)           | 66.5          | 151.0         |  |  |
| $T_{\rm eff}$ (K)       | $3835\pm 64$  | $3852\pm 64$  |  |  |
| $\log g$                | $4.64\pm0.10$ | $4.73\pm0.10$ |  |  |
| <i>M/M</i> <sub>☉</sub> | $0.59\pm0.06$ | $0.52\pm0.06$ |  |  |
|                         |               |               |  |  |

## Individual abundances were determined from spectral synthesis:

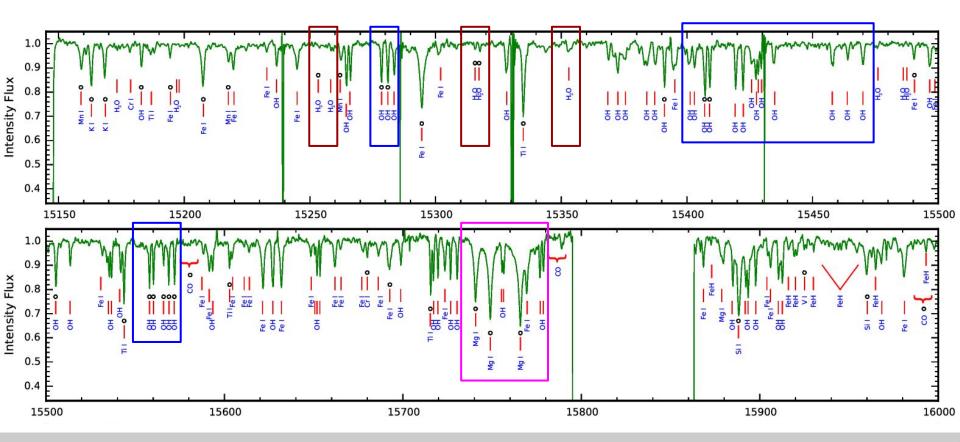
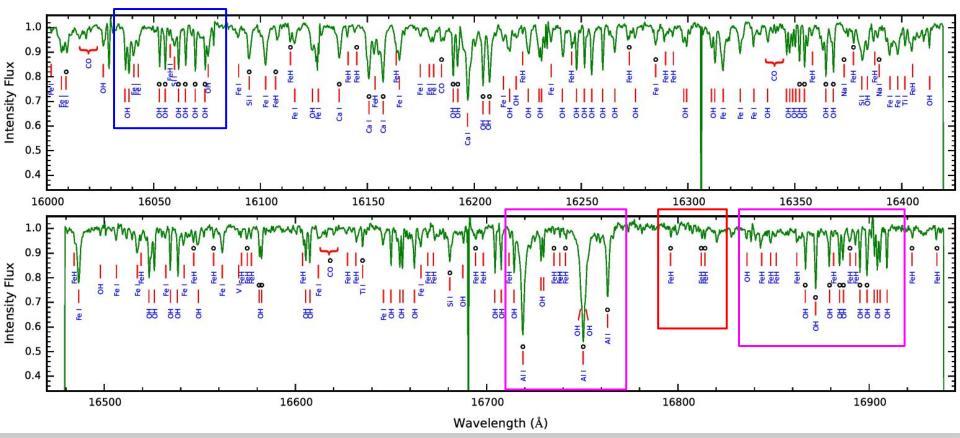

- > Derived atmospheric parameters
- > 1-D LTE plane parallel Marcs model atmospheres (Gustafsson et al. 2008);
- Updated APOGEE line lists: H<sub>2</sub>O (Barber et al. 2006) + FeH (Hargreaves et al. 2010);
- Turbospectrum code (Plez 2012).

 Table 1

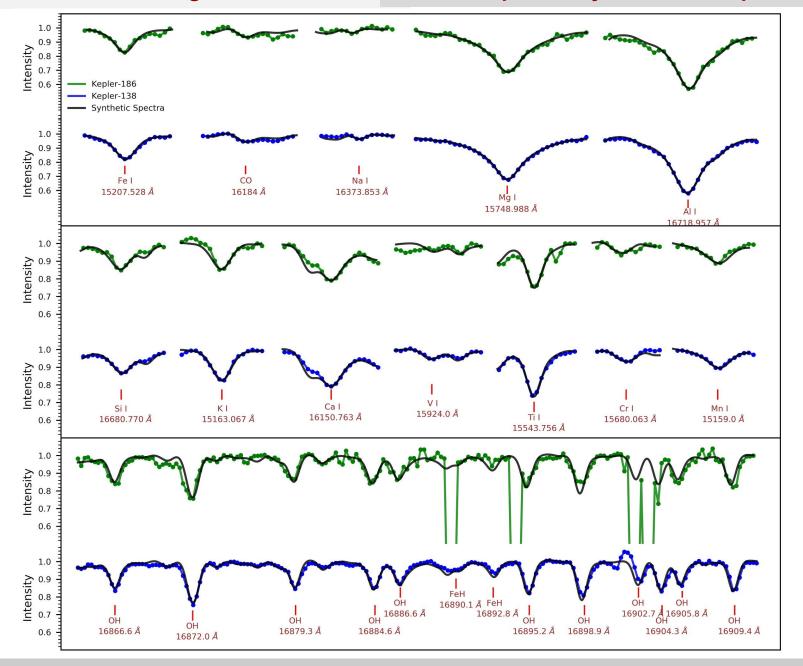
 Adopted Photometry and Atmospheric Parameters

- H-band spectral lines of M-dwarfs with Teff ~ 3800 K
  - Most dominated by OH lines
  - Lines of H<sub>2</sub>O molecule are less present in ~3800 K;
  - FeH lines are mostly in the red chip

Observed spectra of Kepler 138 - very high signal to noise ratio!




Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations


Precision Spectroscopy: Towards Earth 2.0 | 1-4 August 2017, São Paulo, Brazil

- H-band spectral lines of M-dwarfs with Teff ~ 3800 K
  - Most dominated by OH lines
  - Lines of H<sub>2</sub>O molecule are less present in ~3800 K;
  - FeH lines are mostly in the red chip

Observed spectra of Kepler 138 - very high signal to noise ratio!



**Spectral Synthesis Example** 



Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations

Precision Spectroscopy: Towards Earth 2.0 | 1-4 August 2017, São Paulo, Brazil

First results

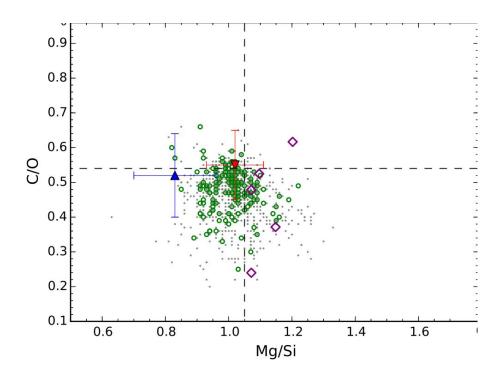
- Both stars has sub solar metallicity: [Fe/H]
   ~ -0.10
- Kepler-186 is silicon rich, [Si/Fe] = +0.18 and Kepler-138 is not: [Si/Fe] = 0.00.

| Element | Kepler-138 | σ     | Kepler-186 | $\sigma$ |
|---------|------------|-------|------------|----------|
| [C/H]   | -0.15      | 0.024 | -0.08      | 0.062    |
| [O/H]   | -0.16      | 0.086 | -0.08      | 0.103    |
| [Na/H]  | -0.07      | 0.076 | -0.01      | 0.094    |
| [Mg/H]  | -0.10      | 0.152 | +0.00      | 0.162    |
| [A1/H]  | -0.24      | 0.106 | -0.20      | 0.120    |
| [Si/H]  | -0.09      | 0.156 | +0.10      | 0.166    |
| [K/H]   | -0.17      | 0.051 | -0.25      | 0.076    |
| [Ca/H]  | -0.06      | 0.047 | -0.01      | 0.073    |
| [Ti/H]  | -0.19      | 0.089 | -0.16      | 0.105    |
| [V/H]   | -0.21      | 0.024 |            |          |
| [Cr/H]  | -0.03      | 0.045 | -0.04      | 0.073    |
| [Mn/H]  | -0.14      | 0.058 | -0.09      | 0.081    |
| [Fe/H]  | -0.09      | 0.087 | -0.08      | 0.104    |
| [C/O]   | 0.01       | 0.077 | +0.00      | 0.095    |
| [Mg/Si] | -0.01      | 0.037 | -0.10      | 0.068    |

 Table 4

 Mean Abundances and Uncertainties

## Kepler 138 and Kepler 186


#### Possible connections with exoplanets;

- Kepler-186 is silicon rich, [Si/Fe] = +0.18 and Kepler-138 is not: [Si/Fe] = 0.00.
- C/O ratio control ice chemistry in protoplanetary disk (Bond et al. 2010);
  - Kepler 138 (C/O = 0.55);
  - Kepler 186 (C/O = 0.52);
- Mg/Si can affect core-to-mantle mass ratios in rocky exoplanets, (Unterborn, Dismukes & Panero 2016);
  - Kepler 138 (Mg/Si = 1.02);
  - Kepler 186 (Mg/Si = 0.82);

# The lower ratio in Mg/Si could indicate a rocky exoplanet without tectonic plates, decreasing habitability chances!

(Unterborn et al. 2016, 2017)

HZ + Earth mass exoplanets are only a small piece of the puzzle, A lot more to understand about habitability



- O Planet hosts Brewer & Fisher (2016)
- non Planet hosts stars Brewer & Fisher (2016)
- Schuler et al. (2015)
- Kepler 138 This work
- Kepler 186 This work

# Take aways

APOGEE is pioneering the detailed chemical study of M-dwarfs

Detailed abundances for 13 elements can be studied from APOGEE spectra

Even in the habitable zone, Kepler-186f may be unsuitable for life as we know

